Remote Sensing-Based Analysis of the Coupled Impacts of Climate and Land Use Changes on Future Ecosystem Resilience: A Case Study of the Beijing–Tianjin–Hebei Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Framework
2.4. Prediction of Future LUCC Demand in Different Scenarios Based on the SD-PLUS Coupled Model
2.4.1. Scenario Setting
2.4.2. SD Model for Land Use Structure Prediction
- (1)
- The Economic Subsystem
- (2)
- The Population Subsystem
- (3)
- The Climate Subsystem
- (4)
- The Land Use Subsystem
2.4.3. PLUS Model for Land Use Spatial Distribution Prediction
2.5. Ecosystem Resilience Evaluation Framework
2.5.1. Ecosystem Resistance
- (1)
- Water Conservation (WC)
- (2)
- Soil Conservation (SC)
- (3)
- Habitat Quality (HQ)
- (4)
- Carbon Storage (CS)
2.5.2. Ecosystem Adaptability
- (1)
- Shannon Diversity Index (SHDI)
- (2)
- Shannon Evenness Index (SHEI)
- (3)
- Landscape Division Index (DIVISION)
- (4)
- Contagion Index (CONTAG)
- (5)
- Landscape Shape Index (LSI)
- (6)
- Area-weighted Mean Perimeter–area Ratio (PARA_AM)
2.5.3. Ecosystem Recovery
2.5.4. Ecosystem Resilience Index Calculation
2.6. Ecosystem Resilience Zones
3. Results
3.1. Land Use Prediction Under Three SSP-RCP Scenarios
3.1.1. Verification of Prediction Accuracy
3.1.2. Characteristics and Spatio-Temporal Heterogeneity of Land Use Under Three Scenarios
3.2. Spatio-Temporal Patterns of Ecosystem Resilience
3.2.1. Spatio-Temporal Dynamics of Ecosystem Resistance Under Three SSP Scenarios
3.2.2. Spatio-Temporal Dynamics of Ecosystem Adaptability Under the Three SSP Scenarios
3.2.3. Spatio-Temporal Dynamics of Ecosystem Recovery Under Three SSP Scenarios
3.2.4. Spatio-Temporal Patterns of Ecosystem Resilience Under Three SSP Scenarios
3.3. Distribution and Characteristics of Ecosystem Resilience Management Zones
- (1)
- The core ecological protection zone has the highest ecosystem resilience, a stable ecosystem, rich biodiversity, and important ecosystem service functions. It is predominantly located in the most forested mountainous areas of northeastern and southwestern BTH, characterized by high ecosystem resilience. Examples include the Yanshan Mountain Water Conservation and Soil Retention Area and the Taihang Mountain Water Conservation and Soil Retention Area.
- (2)
- The ecological optimization zone has relatively high ecosystem resilience but still has room for improvement. Some regions may be slightly affected by human activities, such as agriculture and low-density development. It is mainly distributed around the core ecological protection zone, located in a mixed distribution zone of mountainous forests, grasslands, and river valleys.
- (3)
- The ecological restoration zone has relatively low ecosystem resilience, and the ecosystem has been degraded to a certain degree. Areas of this type are scattered across the northeastern, southwestern, and northwestern parts of the BTH region, while they are more concentrated in the southeastern region, interspersed with small ecological vulnerability control areas. A key example of this area type is the North China Plain Ecological Restoration Zone, primarily composed of cultivated land and other land use types. As an artificial ecosystem, the agricultural landscape is highly susceptible to human activities, with limited self-recovery capacity.
- (4)
- The ecological vulnerability control zone represents areas with low ecosystem resilience that require focused conservation efforts. Covering a relatively small area, regions of this type are primarily distributed across the Bashang Plateau, the Bohai Bay area, and the central urbanized region of Beijing. The Bashang Plateau, a key ecological barrier in North China, faces major challenges, such as soil erosion, wind-blown sand, and drought [72,73]. The Bohai coastal region experiences ecosystem fragility due to coastal erosion and excessive development [74]. Meanwhile, the urban center in Beijing struggles with environmental degradation due to excessive land development. Strengthening ecological protection in the ecological vulnerability control zone is essential to optimizing ecological security and promoting sustainable regional development in the BTH region.
4. Discussion
4.1. The Spatio-Temporal Dynamics of Ecosystem Resilience to the Coupled Impacts of Climate and Land Use Changes
4.1.1. The Influence of Land Use Change on Future Ecosystem Resilience
4.1.2. The Role of Climate Change in Shaping Future Ecosystem Resilience
4.1.3. Interpreting the Unexpected Resilience Peak Under SSP5-8.5 in 2060
4.2. Management Strategies and Policy Implications of Ecological Management Zones
4.2.1. Core Ecological Protection Zone
4.2.2. Ecological Optimization Zone
4.2.3. Ecological Restoration Zone
4.2.4. Ecological Vulnerability Control Zone
4.3. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BTH | Beijing–Tianjin–Hebei |
SSP-RCP | Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs) |
RES | Ecosystem resistance |
ADA | Ecosystem adaptability |
REC | Ecosystem recovery |
RESIL | Ecosystem resilience |
SD | System dynamics |
PLUS | Patch Generation Land Use Simulation |
InVEST | Integrated Valuation of Ecosystem Services and Tradeoffs |
Appendix A
Appendix A.1. Historical Land Use Data in the BTH Region
Appendix A.2. Rationale for Selection of Land Use Driving Factors
Appendix A.3. Climate Variables Under SSP-RCP Scenarios
Climate Variables | 2030 (2020–2040) | 2060 (2040–2060) | ||||
---|---|---|---|---|---|---|
SSP1-2.6 | SSP2-4.5 | SSP5-8.5 | SSP1-2.6 | SSP2-4.5 | SSP5-8.5 | |
Projected Mean Precipitation (mm) | 678.8516 | 681.3850 | 663.5665 | 710.2390 | 736.4845 | 748.0945 |
Standard Deviation of Precipitation | 98.8285 | 109.0324 | 93.8055 | 114.5788 | 104.7520 | 113.8589 |
Projected Mean Temperature (°C) | 11.0836 | 11.2400 | 11.5809 | 11.5665 | 12.0984 | 12.5428 |
Standard Deviation of Temperature | 3.5100 | 3.4644 | 3.4873 | 3.5761 | 3.5277 | 3.5060 |
References
- Baumgaertner, S.; Strunz, S. The Economic Insurance Value of Ecosystem Resilience. Ecol. Econ. 2014, 101, 21–32. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Liu, X.; Li, Z.; Wang, T.; Cheng, S.; Zheng, X.; Jia, L.; Liu, B.; Li, J.; Miao, Z. The Change of Ecosystem Resilience and Its Response to Economic Factors in Yulin, China. Environ. Res. Commun. 2023, 5, 45006. [Google Scholar] [CrossRef]
- Xu, X.; Wang, M.; Wang, M.; Yang, Y.; Wang, Y. The Coupling Coordination Degree of Economic, Social and Ecological Resilience of Urban Agglomerations in China. Int. J. Environ. Res. Public Health 2022, 20, 413. [Google Scholar] [CrossRef] [PubMed]
- Sterk, M.; Gort, G.; Klimkowska, A.; Van Ruijven, J.; Van Teeffelen, A.J.A.; Wamelink, G.W.W. Assess Ecosystem Resilience: Linking Response and Effect Traits to Environmental Variability. Ecol. Indic. 2013, 30, 21–27. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, S.; Ma, M.; Dong, J.; Han, B.; Wang, J. Linking Cultural Ecosystem Service and Urban Ecological-Space Planning for a Sustainable City: Case Study of the Core Areas of Beijing under the Context of Urban Relieving and Renewal. Sustain. Cities Soc. 2023, 89, 104292. [Google Scholar] [CrossRef]
- Li, B.; Li, X.; Liu, C. Dynamic Evolution of the Ecological Resilience and Response under the Context of Carbon Neutrality. Ecosyst. Health Sustain. 2023, 9, 130. [Google Scholar] [CrossRef]
- Li, J.; Nie, W.; Zhang, M.; Wang, L.; Dong, H.; Xu, B. Assessment and Optimization of Urban Ecological Network Resilience Based on Disturbance Scenario Simulations: A Case Study of Nanjing City. J. Clean. Prod. 2024, 438, 140812. [Google Scholar] [CrossRef]
- Jie, Y.; Shiying, W.; Jie, Z.; Jing, Z.; Wenliu, Z. Optimisation of Ecological Security Patterns in Ecologically Transition Areas under the Perspective of Ecological Resilience—A Case of Taohe River. Ecol. Indic. 2024, 166, 112315. [Google Scholar] [CrossRef]
- Li, D.; Meng, W.; Liu, B.; Xu, W.; Hu, B.; Huang, Z.; Lu, Y. Temporal-Spatial Change of China’s Coastal Ecosystem Resilience and Driving Factors Analysis. Ocean Coast. Manag. 2024, 255, 107209. [Google Scholar] [CrossRef]
- Yan, H.; Zhan, J.; Liu, B.; Huang, W.; Li, Z. Spatially Explicit Assessment of Ecosystem Resilience: An Approach to Adapt to Climate Changes. Adv. Meteorol. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Zhao, R.; Fang, C.; Liu, H.; Liu, X. Evaluating Urban Ecosystem Resilience Using the DPSIR Framework and the ENA Model: A Case Study of 35 Cities in China. Sustain. Cities Soc. 2021, 72, 102997. [Google Scholar] [CrossRef]
- Liao, L.; Ma, E.; Long, H.; Peng, X. Land Use Transition and Its Ecosystem Resilience Response in China during 1990–2020. Land 2022, 12, 141. [Google Scholar] [CrossRef]
- Feng, Y.; Lei, Z.; Tong, X.; Gao, C.; Chen, S.; Wang, J.; Wang, S. Spatially-Explicit Modeling and Intensity Analysis of China’s Land Use Change 2000–2050. J. Environ. Manag. 2020, 263, 110407. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; He, M.; Li, X.; Li, H.; Tan, Y.; Li, Z.; Wei, Y. Spatio-temporal Analysis and Driving Forces of Urban Ecosystem Resilience Based on Land Use: A Case Study in the Great Bay Area. Ecol. Indic. 2024, 159, 111769. [Google Scholar] [CrossRef]
- Baho, D.L.; Allen, C.R.; Garmestani, A.; Fried-Petersen, H.; Renes, S.E.; Gunderson, L.; Angeler, D.G. A Quantitative Framework for Assessing Ecological Resilience. Ecol. Soc. 2017, 22, art17. [Google Scholar] [CrossRef] [PubMed]
- Ingrisch, J.; Bahn, M. Towards a Comparable Quantification of Resilience. Trends Ecol. Evol. 2018, 33, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Duo, L.; Li, Y.; Zhang, M.; Zhao, Y.; Wu, Z.; Zhao, D. Spatiotemporal Pattern Evolution of Urban Ecosystem Resilience Based on “Resistance-Adaptation-Vitality”: A Case Study of Nanchang City. Front. Earth Sci. 2022, 10, 902444. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wan, Z.; Zhao, C.; Zhu, J.; Ma, X.; Chen, J.; Wang, J. Assessment and Prediction of Coastal Ecological Resilience Based on the Pressure–State–Response (PSR) Model. Land 2024, 13, 2130. [Google Scholar] [CrossRef]
- Xia, C.; Dong, Z.; Chen, B. Spatio-temporal analysis and simulation of urban ecological resilience: A case study of Hangzhou. Acta Ecol. Sin. 2021, 42, 116–126. [Google Scholar] [CrossRef]
- Griffith, G.P.; Hop, H.; Vihtakari, M.; Wold, A.; Kalhagen, K.; Gabrielsen, G.W. Ecological Resilience of Arctic Marine Food Webs to Climate Change. Nat. Clim. Change 2019, 9, 868–872. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, J.; Cong, N.; Yu, X.; Lin, Y.; Liu, T.; Qi, G.; Ren, P. Modeling Ecological Resilience of Alpine Forest under Climate Change in Western Sichuan. Forests 2023, 14, 1769. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.M.B.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. (Eds.) Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Qin, J.; Hao, X.; Hua, D.; Hao, H. Assessment of Ecosystem Resilience in Central Asia. J. Arid Environ. 2021, 195, 104625. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Bayar, A.S.; Yılmaz, M.T.; Yücel, İ.; Dirmeyer, P. CMIP6 Earth System Models Project Greater Acceleration of Climate Zone Change Due to Stronger Warming Rates. Earth’s Future 2023, 11, e2022EF002972. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X. Global Land Projection Based on Plant Functional Types with a 1-Km Resolution under Socio-Climatic Scenarios. Sci. Data 2022, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic Simulation of Land Use Change and Assessment of Carbon Storage Based on Climate Change Scenarios at the City Level: A Case Study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, B.; Yang, D.; Wang, T.; Yang, Y.; Ma, T.; Santisirisomboon, J. Future Changes in Water Resources, Floods and Droughts under the Joint Impact of Climate and Land-Use Changes in the Chao Phraya Basin, Thailand. J. Hydrol. 2023, 620, 129454. [Google Scholar] [CrossRef]
- Li, G.; Wang, W.; Li, B.; Duan, Z.; Hu, L.; Liu, J. Spatiotemporal Simulation of Blue-Green Space Pattern Evolution and Carbon Storage under Different SSP-RCP Scenarios in Wuhan. Sci. Rep. 2025, 15, 4017. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Gong, J.; Li, Y.; Yang, J.; Liang, X. Ecological Network Assessment in Dynamic Landscapes: Multi-Scenario Simulation and Conservation Priority Analysis. Land Use Policy 2024, 139, 107059. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Mondal, S.K.; Zhai, J.; Wang, Y.; Wen, S.; Gao, M.; Lv, Y.; Jiang, S.; Jiang, T.; et al. Insight from CMIP6 SSP-RCP Scenarios for Future Drought Characteristics in China. Atmos. Res. 2021, 250, 105375. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Carter, T.R.; Ebi, K.; Harrison, P.A.; Kemp-Benedict, E.; Kok, K.; Kriegler, E.; Preston, B.L.; Riahi, K.; Sillmann, J.; et al. Achievements and Needs for the Climate Change Scenario Framework. Nat. Clim. Change 2020, 10, 1074–1084. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Tao, Y.; Fu, W.; Li, T.; Ren, F.; Li, M. Dynamic Simulation of Land Use/Cover Change and Assessment of Forest Ecosystem Carbon Storage under Climate Change Scenarios in Guangdong Province, China. Remote Sens. 2022, 14, 2330. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Wang, W.; Cai, W.; Chen, N.; Hu, S.; Luo, X.; Li, J.; Zhan, C. Land Use/Land Cover Prediction and Analysis of the Middle Reaches of the Yangtze River under Different Scenarios. Sci. Total Environ. 2022, 833, 155238. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cao, Y.; Liu, J.; Wang, S. Simulating Land Use Change for Sustainable Land Management in China’s Coal Resource-Based Cities under Different Scenarios. Sci. Total Environ. 2024, 916, 170126. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Kong, W.; Wang, L.; Wang, T.; Luo, P.; Cui, J. A Novel and Dynamic Land Use/Cover Change Research Framework Based on an Improved PLUS Model and a Fuzzy Multiobjective Programming Model. Ecol. Inf. 2024, 80, 102460. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, B.; Wang, C.; Zang, W.; Huang, X.; Wu, Z.; Xu, M.; Zhou, K.; Li, J.; Yang, Y. Carbon Storage Simulation and Analysis in Beijing-Tianjin-Hebei Region Based on CA-plus Model under Dual-Carbon Background. Geomat. Nat. Hazards Risk 2023, 14, 2173661. [Google Scholar] [CrossRef]
- Li, X.; Fu, J.; Jiang, D.; Lin, G.; Cao, C. Land Use Optimization in Ningbo City with a Coupled GA and PLUS Model. J. Clean. Prod. 2022, 375, 134004. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Nie, W.; Xu, B.; Yang, F.; Shi, Y.; Liu, B.; Wu, R.; Lin, W.; Pei, H.; Bao, Z. Simulating Future Land Use by Coupling Ecological Security Patterns and Multiple Scenarios. Sci. Total Environ. 2023, 859, 160262. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Furukawa, T.; Iwasaki, Y.; Seto, M.; Mori, A.S. Perspectives for Ecosystem Management Based on Ecosystem Resilience and Ecological Thresholds against Multiple and Stochastic Disturbances. Ecol. Indic. 2015, 57, 395–408. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, Y.; Fu, F.; Song, J.; Wang, Y.; Han, Y.; Wu, T.; Fu, B. Declined Terrestrial Ecosystem Resilience. Glob. Change Biol. 2024, 30, e17291. [Google Scholar] [CrossRef] [PubMed]
- Cote, I.M.; Darling, E.S. Rethinking Ecosystem Resilience in the Face of Climate Change. PLoS Biol. 2010, 8, e1000438. [Google Scholar] [CrossRef] [PubMed]
- Sharp, R.; Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N. InVEST User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2018; Available online: https://naturalcapitalproject.stanford.edu/software/invest (accessed on 7 December 2024).
- Budyko, M.I.; Miller, D.H. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Li, M.; Liang, D.; Xia, J.; Song, J.; Cheng, D.; Wu, J.; Cao, Y.; Sun, H.; Li, Q. Evaluation of Water Conservation Function of Danjiang River Basin in Qinling Mountains, China Based on InVEST Model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, J.; Liu, Y.; Hai, X.; Shanguan, Z.; Deng, L. Driving Factors of Ecosystem Services and Their Spatiotemporal Change Assessment Based on Land Use Types in the Loess Plateau. J. Environ. Manag. 2022, 311, 114835. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Jiang, H.; Zhu, S.; Wen, Y.; He, C.; Wang, X.; Sheng, L.; Guo, Y.; Cao, Y. Projecting the Response of Ecological Risk to Land Use/Land Cover Change in Ecologically Fragile Regions. Sci. Total Environ. 2024, 914, 169908. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of Urbanization and Landscape Pattern on Habitat Quality Using OLS and GWR Models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Wei, Q.; Abudureheman, M.; Halike, A.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Temporal and Spatial Variation Analysis of Habitat Quality on the PLUS-InVEST Model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Wu, L.; Sun, C.; Fan, F. Estimating the Characteristic Spatiotemporal Variation in Habitat Quality Using the InVEST Model—A Case Study from Guangdong–Hong Kong–Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Wu, X.; Shen, C.; Shi, L.; Wan, Y.; Ding, J.; Wen, Q. Spatio-Temporal Evolution Characteristics and Simulation Prediction of Carbon Storage: A Case Study in Sanjiangyuan Area, China. Ecol. Inf. 2024, 80, 102485. [Google Scholar] [CrossRef]
- Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the Effects of Ecological Engineering on Carbon Storage by Linking the CA-Markov and InVEST Models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Jia, Y.; Tang, L.; Xu, M.; Yang, X. Landscape Pattern Indices for Evaluating Urban Spatial Morphology—A Case Study of Chinese Cities. Ecol. Indic. 2019, 99, 27–37. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Wu, J.; Lv, H.; Hu, X. Linking Ecosystem Services and Landscape Patterns to Assess Urban Ecosystem Health: A Case Study in Shenzhen City, China. Landsc. Urban Plan. 2015, 143, 56–68. [Google Scholar] [CrossRef]
- Tonetti, V.; Pena, J.C.; Scarpelli, M.; Sugai, L.; Barros, F.; Ribeiro Anunciação, P.; Marques Santos, P.; Tavares, A.; Ribeiro, M. Landscape Heterogeneity: Concepts, Quantification, Challenges and Future Perspectives. Environ. Conserv. 2023, 50, 83–92. [Google Scholar] [CrossRef]
- Pascual-Hortal, L.; Saura, S. Comparison and Development of New Graph-Based Landscape Connectivity Indices: Towards the Priorization of Habitat Patches and Corridors for Conservation. Landsc. Ecol. 2006, 21, 959–967. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, J.; Zhan, Y.; Cui, W.; Yuan, Y. Using Landscape Indicators and Analytic Hierarchy Process (AHP) to Determine the Optimum Spatial Scale of Urban Land Use Patterns in Wuhan, China. Earth Sci. Inform. 2018, 11, 567–578. [Google Scholar] [CrossRef]
- Jaeger, J.A.G. Landscape Division, Splitting Index, and Effective Mesh Size: New Measures of Landscape Fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Riitters, K.H.; O’Neill, R.V.; Wickham, J.D.; Jones, K.B. A Note on Contagion Indices for Landscape Analysis. Landsc. Ecol. 1996, 11, 197–202. [Google Scholar] [CrossRef]
- Ye, Y.; Qiu, H. Using Urban Landscape Pattern to Understand and Evaluate Infectious Disease Risk. Urban For. Urban Green. 2021, 62, 127126. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Liu, Y.; Fei, X.; Yu, W.; Zhang, Z.; Meng, Q. Ecosystem Health Assessment: A Comprehensive and Detailed Analysis of the Case Study in Coastal Metropolitan Region, Eastern China. Ecol. Indic. 2019, 98, 363–376. [Google Scholar] [CrossRef]
- Li, C.; Han, H.; Cui, N.; Lan, P.; Zhang, K.; Zhou, X.; Guo, L. Spatiotemporal Dynamics and Spatial Correlation Patterns of Urban Ecological Resilience across the Yellow River Basin in China. Sci. Rep. 2024, 14, 31286. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Nie, Z.; Wang, K.; Xu, M.; Fang, Y. Spatiotemporal Evolution and Influencing Factors of Urban Resilience in the Yellow River Basin, China. Reg. Sustain. 2024, 5, 100159. [Google Scholar] [CrossRef]
- Mallick, S.K. Prediction-Adaptation-Resilience (PAR) Approach- A New Pathway towards Future Resilience and Sustainable Development of Urban Landscape. Geogr. Sustain. 2021, 2, 127–133. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Foody, G.M. Status of Land Cover Classification Accuracy Assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Singh, A. Review Article Digital Change Detection Techniques Using Remotely-Sensed Data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef]
- Du, H.; Zhao, L.; Zhang, P.; Li, J.; Yu, S. Ecological Compensation in the Beijing-Tianjin-Hebei Region Based on Ecosystem Services Flow. J. Environ. Manag. 2023, 331, 117230. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Ke, Y.; Hong, J.; Zhang, Y.; Pan, Y. Assessing Degradation of Lake Wetlands in Bashang Plateau, China Based on Long-Term Time Series Landsat Images Using Wetland Degradation Index. Ecol. Indic. 2022, 139, 108903. [Google Scholar] [CrossRef]
- Li, S.; Wang, R.; Jiang, Y.; Li, Y.; Zhu, L.; Feng, J. Seasonal Variation of Food Web Structure and Stability of a Typical Artificial Reef Ecosystem in Bohai Sea, China. Front. Mar. Sci. 2022, 9, 830324. [Google Scholar] [CrossRef]
- Chen, J.; Dong, Z.; Shi, R.; Sun, G.; Guo, Y.; Peng, Z.; Deng, M.; Chen, K. Urban Multi-Scenario Land Use Optimization Simulation Considering Local Climate Zones. Remote Sens. 2024, 16, 4342. [Google Scholar] [CrossRef]
- Song, S.; Wang, S.; Gong, Y.; Yu, Y. The Past and Future Dynamics of Ecological Resilience and Its Spatial Response Analysis to Natural and Anthropogenic Factors in Southwest China with Typical Karst. Sci. Rep. 2024, 14, 19166. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Aihaiti, A.; Mamtimin, A.; Sayit, H.; Peng, J.; Liu, Y.; Wang, Y.; Gao, J.; Song, M.; Wen, C.; et al. Increases in Temperature and Precipitation in the Different Regions of the Tarim River Basin between 1961 and 2021 Show Spatial and Temporal Heterogeneity. Remote Sens. 2024, 16, 4612. [Google Scholar] [CrossRef]
- Fang, W.; Qin, H.; Lin, Q.; Jia, B.; Yang, Y.; Shen, K. Deep Learning Integration of Multi-Model Forecast Precipitation Considering Long Lead Times. Remote Sens. 2024, 16, 4489. [Google Scholar] [CrossRef]
- Li, Z.; Luo, S.; Tan, X.; Wang, J. Trend Analysis of High-Resolution Soil Moisture Data Based on GAN in the Three-River-Source Region during the 21st Century. Remote Sens. 2024, 16, 4367. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, Z.; Wu, X.; Lai, C.; Liu, W. Effect Difference of Climate Change and Urbanization on Extreme Precipitation over the Guangdong-Hong Kong-Macao Greater Bay Area. Atmos. Res. 2023, 282, 106514. [Google Scholar] [CrossRef]
- Yao, Y.; Lu, L.; Guo, J.; Zhang, S.; Cheng, J.; Tariq, A.; Liang, D.; Hu, Y.; Li, Q. Spatially Explicit Assessments of Heat-Related Health Risks: A Literature Review. Remote Sens. 2024, 16, 4500. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of Land Use Change on Ecosystem Services: A Review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Chaigneau, T.; Coulthard, S.; Daw, T.M.; Szaboova, L.; Camfield, L.; Chapin, F.S.; Gasper, D.; Gurney, G.G.; Hicks, C.C.; Ibrahim, M.; et al. Reconciling Well-Being and Resilience for Sustainable Development. Nat. Sustain. 2022, 5, 287–293. [Google Scholar] [CrossRef]
- Wei, G.; He, B.-J.; Liu, Y.; Li, R. How Does Rapid Urban Construction Land Expansion Affect the Spatial Inequalities of Ecosystem Health in China? Evidence from the Country, Economic Regions and Urban Agglomerations. Environ. Impact Assess. Rev. 2024, 106, 107533. [Google Scholar] [CrossRef]
Classification | Data Name | Data Sources | Resolution Ratio |
---|---|---|---|
Land use data | Land use data (2005–2020, at five-year intervals) | Chinese Academy of Sciences Resource and Environmental Science Data Center (https://www.resdc.cn/) | 30 m |
Natural environmental data | Elevation data (DEM) | Geospatial Data Cloud (https://www.gscloud.cn/) | 30 m |
Precipitation | Space-time three-pole environmental big data platform (https://portal.casearth.cn/poles) | 1000 m | |
Temperature | |||
Potential transpiration | National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/) | 100 m | |
Available moisture content of vegetation | HWSD soil database | 100 m | |
Vegetation root depth | HWSD soil database | 100 m | |
Precipitation erosivity | Calculated based on precipitation data | 1000 m | |
FVC | National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/) | 250 m | |
Socioeconomic data | Population | Data center for resources and environmental sciences of the Chinese Academy of Sciences (https://www.resdc.cn/) | 100 m |
GDP | 100 m | ||
Night-time lighting data | Earth Observation Group (https://payneinstitute.mines.edu/eog/, accessed on 28 October 2024) | 500 m | |
Primary road | National Geographic Information Resources Directory Service System (https://www.webmap.cn/) | 100 m | |
Railway | |||
Government location | |||
Water area | |||
Socioeconomic statistical data | CEI data (https://ceidata.cei.cn/) Statistical Yearbook of Beijing (https://tjj.beijing.gov.cn/) Statistical Yearbook of Tianjin (https://stats.tj.gov.cn/tjsj_52032/tjnj/) Yearbook of Hebei (http://tjj.hebei.gov.cn/) | / | |
SSP-RCP scenario setting data | Future precipitation | WorldClim Global Climate Data https://worldclim.org/ | 1000 m |
Future temperature | |||
Future GDP | China Climate Change Info-Net (https://www.climatechange.cn/) | 5000 m | |
Future urbanization ratio | |||
Future population |
Land Use Type | Cultivated Land | Forest Land | Grassland | Water Area | Construction Land | Unused Land |
---|---|---|---|---|---|---|
Elasticity coefficient | 0.3 | 0.6 | 0.8 | 0.7 | 0.2 | 0.1 |
Resilience coefficient | 0.5 | 1 | 0.6 | 0.8 | 0.3 | 0.2 |
Target Layer | Criterion Layer | Weight | Element Layer | Weight | |
---|---|---|---|---|---|
Ecosystem resilience | Ecosystem resistance | 0.3468 | WC | 0.4069 | |
SC | 0.1095 | ||||
HQ | 0.4226 | ||||
CS | 0.0609 | ||||
Ecosystem adaptability | 0.5955 | LH | SHDI | 0.1786 | |
SHEI | 0.1566 | ||||
LC | CONTAG | 0.0390 | |||
DIVISION | 0.0833 | ||||
LS | LSI | 0.2285 | |||
PARA_AM | 0.3139 | ||||
Ecosystem recovery | 0.0577 | Elasticity | 0.6000 | ||
Resilience | 0.4000 |
Land Use Types | Actual Area in 2020 (km2) | Predicted Area in 2020 (km2) | Prediction Error (%) |
---|---|---|---|
Cultivated land | 100,318.62 | 99,063.20 | 1.25 |
Forestland | 45,761.31 | 45,015.4 | −1.63 |
Grassland | 34,204.26 | 33,839.4 | −1.07 |
Water area | 7084.60 | 7084.19 | −0.01 |
Construction land | 28,213.14 | 28,193.00 | −0.07 |
Unused land | 1691.23 | 1691.04 | 0.01 |
Land Use Types | 2020 | 2030 | 2060 | ||||
---|---|---|---|---|---|---|---|
SSP1-2.6 | SSP2-4.5 | SSP5-8.5 | SSP1-2.6 | SSP2-4.5 | SSP5-8.5 | ||
Cultivated land | 100,318.62 | 95,683.00 | 96,340.60 | 95,678.00 | 91,895.00 | 93,372.30 | 93,334.90 |
Forestland | 45,761.31 | 47,947.60 | 47,832.71 | 46,991.91 | 46,112.21 | 46,838.43 | 45,305.00 |
Grassland | 34,204.26 | 33,995.00 | 33,948.80 | 34,466.15 | 35,732.50 | 35,546.50 | 35,697.20 |
Water area | 7084.60 | 7856.26 | 8946.31 | 7865.73 | 7117.26 | 10,136.10 | 7168.89 |
Construction land | 28,213.14 | 29,631.53 | 28,263.60 | 29,620.90 | 34,653.97 | 29,096.30 | 34,045.90 |
Unused land | 1691.23 | 2159.77 | 1941.14 | 2650.47 | 1762.22 | 2283.53 | 1721.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, J.; Xu, F. Remote Sensing-Based Analysis of the Coupled Impacts of Climate and Land Use Changes on Future Ecosystem Resilience: A Case Study of the Beijing–Tianjin–Hebei Region. Remote Sens. 2025, 17, 2546. https://doi.org/10.3390/rs17152546
Ni J, Xu F. Remote Sensing-Based Analysis of the Coupled Impacts of Climate and Land Use Changes on Future Ecosystem Resilience: A Case Study of the Beijing–Tianjin–Hebei Region. Remote Sensing. 2025; 17(15):2546. https://doi.org/10.3390/rs17152546
Chicago/Turabian StyleNi, Jingyuan, and Fang Xu. 2025. "Remote Sensing-Based Analysis of the Coupled Impacts of Climate and Land Use Changes on Future Ecosystem Resilience: A Case Study of the Beijing–Tianjin–Hebei Region" Remote Sensing 17, no. 15: 2546. https://doi.org/10.3390/rs17152546
APA StyleNi, J., & Xu, F. (2025). Remote Sensing-Based Analysis of the Coupled Impacts of Climate and Land Use Changes on Future Ecosystem Resilience: A Case Study of the Beijing–Tianjin–Hebei Region. Remote Sensing, 17(15), 2546. https://doi.org/10.3390/rs17152546