Beyond Algorithm Updates: A Systematic Validation of GPM DPR-V07 over China’s Multiscale Topography
Abstract
1. Introduction
2. Datasets and Methods
2.1. Study Area
2.2. Ground Reference
2.3. GPM DPR
2.4. Methodology
3. Results
3.1. Overall Performances
3.2. Quantification Performance
3.3. Detection Performance
3.4. Error Decomposition
3.5. Elevation Dependence
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duchon, C.E.; Essenberg, G.R. Comparative rainfall observations from pit and aboveground rain gauges with and without wind shields. Water Resour. Res. 2001, 37, 3253–3263. [Google Scholar] [CrossRef]
- Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So, how much of the Earth’s surface is covered by rain gauges? Bull. Amer. Meteorol. Soc. 2017, 98, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.J.; Kwon, H.H.; Kim, K.B. Calibration of the reflectivity-rainfall rate (ZR) relationship using long-term radar reflectivity factor over the entire South Korea region in a Bayesian perspective. J. Hydrol. 2021, 593, 125790. [Google Scholar] [CrossRef]
- Song, Y.; Han, D.; Zhang, J. Radar and rain gauge rainfall discrepancies driven by changes in atmospheric conditions. Geophys. Res. Lett. 2017, 44, 7303–7309. [Google Scholar] [CrossRef]
- Thies, B.; Bendix, J. Satellite based remote sensing of weather and climate: Recent achievements and future perspectives. Meteorol. Appl. 2011, 18, 262–295. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM multi-satellite precipitation analysis (TMPA). In Satellite Rainfall Applications for Surface Hydrology; Gebremichael, M., Hossain, F., Eds.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Yang, S.; Nesbitt, S.W. Statistical properties of precipitation as observed by the TRMM precipitation radar. Geophys. Res. Lett. 2014, 41, 5636–5643. [Google Scholar] [CrossRef]
- Iguchi, T.; Seto, S.; Meneghini, R.; Yoshida, N.; Awaka, J.; Le, M.; Chandrasekar, V.; Brodzik, S.; Kubota, T. GPM/DPR Level-2 Algorithm Theoretical Basis Document. NASA Goddard Space Flight Cent. 2021, 450, 10–13. [Google Scholar]
- Skofronick-Jackson, G.; Kirschbaum, D.; Petersen, W.; Huffman, G.; Kidd, C.; Stocker, E.; Kakar, R. The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations. Q. J. R. Meteorol. Society. 2018, 144, 27–48. [Google Scholar] [CrossRef] [PubMed]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Amer. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Seto, S.; Iguchi, T.; Meneghini, R.; Awaka, J.; Kubota, T.; Masaki, T.; Takahashi, N. The precipitation rate retrieval algorithms for the GPM Dual-frequency Precipitation Radar. J. Meteorolog. Soc. Jpn. Ser. II 2021, 99, 205–237. [Google Scholar]
- Hamada, A.; Takayabu, Y.N. Improvements in detection of light precipitation with the Global Precipitation Measurement dual-frequency precipitation radar (GPM DPR). J. Atmos. Ocean. Technol. 2016, 33, 653–667. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Berg, W.; Kidd, C.; Kirschbaum, D.B.; Petersen, W.A.; Huffman, G.J.; Takayabu, Y.N. Global precipitation measurement (GPM): Unified precipitation estimation from space. Remote Sens. Clouds Precip. 2018, 69, 175–193. [Google Scholar]
- Kummerow, C.; Simpson, J.; Thiele, O.; Barnes, W.; Chang, A.T.C.; Stocker, E.; Adler, R.F.; Hou, A.; Kakar, R.; Wentz, F.; et al. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteorol. 2000, 39, 1965–1982. [Google Scholar] [CrossRef]
- Wang, J.; Wolff, D.B. Comparisons of reflectivities from the TRMM precipitation radar and ground-based radars. J. Atmos. Oceanic. Technol. 2009, 26, 857–875. [Google Scholar] [CrossRef]
- Gao, J.; Tang, G.; Hong, Y. Similarities and improvements of GPM dual-frequency precipitation radar (DPR) upon TRMM precipitation radar (PR) in global precipitation rate estimation, type classification and vertical profiling. Remote Sens. 2017, 9, 1142. [Google Scholar] [CrossRef]
- Tang, G.; Long, D.; Hong, Y.; Gao, J.; Wan, W. Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau using space borne precipitation radars. Remote Sens. Environ. 2018, 208, 82–96. [Google Scholar] [CrossRef]
- Petracca, M.; D’Adderio, L.P.; Porcù, F.; Vulpiani, G.; Sebastianelli, S.; Puca, S. Validation of GPM dual-frequency precipitation radar (DPR) rainfall products over Italy. J. Hydrometeorol. 2018, 19, 907–925. [Google Scholar] [CrossRef]
- Biswas, S.K.; Chandrasekar, V. Cross-validation of observations between the GPM dual-frequency precipitation radar and ground based dual-polarization radars. Remote Sens. 2018, 10, 1773. [Google Scholar] [CrossRef]
- Hirose, M.; Shige, S.; Kubota, T.; Furuzawa, F.A.; Minda, H.; Masunaga, H. Refinement of surface precipitation estimates for the Dual-frequency Precipitation Radar on the GPM Core Observatory using near-nadir measurements. J. Meteorol. Soc. Jpn. Ser. II 2021, 99, 1231–1252. [Google Scholar] [CrossRef]
- Seto, S.; Iguchi, T.; Meneghini, R. Correction of path-integrated attenuation estimates considering the soil moisture effect for the GPM Dual-Frequency Precipitation Radar. J. Atmos. Oceanic. Technol. 2022, 39, 803–821. [Google Scholar] [CrossRef]
- Li, J.; Yong, B.; Shen, Z.; Wu, H.; Yang, Y. A New Method for Hour-by-Hour Bias Adjustment of Satellite Precipitation Estimates over Mainland China. Remote Sens. 2023, 15, 1819. [Google Scholar] [CrossRef]
- Speirs, P.; Gabella, M.; Berne, A. A comparison between the GPM dual-frequency precipitation radar and ground-based radar precipitation rate estimates in the Swiss Alps and Plateau. J. Hydrometeorol. 2017, 18, 1247–1269. [Google Scholar] [CrossRef]
- Liao, L.; Meneghini, R. GPM DPR retrievals: Algorithm, evaluation, and validation. Remote Sens. 2022, 14, 843. [Google Scholar] [CrossRef]
- Wang, M.; Fu, Y.; Zhao, C.; Zhong, L.; Li, R.; Wang, D.; Qiu, X.; Zhou, S. Characteristics of summer cloud precipitation along latitude 30° N in East Asia derived from Tropical Rainfall Measuring Mission Precipitation Radar and Visible and Infrared Scanner measurements. Int. J. Climatol. 2022, 42, 5373–5392. [Google Scholar] [CrossRef]
- Hayakawa, Y.S.; Oguchi, T.; Lin, Z. Comparison of new and existing global digital elevation models: ASTER G-DEM and SRTM-3. Geophys. Res. Lett. 2008, 35, L17404. [Google Scholar] [CrossRef]
- Lyu, Y.; Yong, B. A novel Double Machine Learning strategy for producing high-precision multi-source merging precipitation estimates over the Tibetan Plateau. Water Resour. Res. 2024, 60, e2023WR035643. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Pan, Y.; Yu, J. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res.-Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef]
- Xie, P.; Xiong, A.Y. A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses. J. Geophys. Res.-Atmos. 2011, 116, D21106. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Liu, L.; Wang, D.; Huang, H.; Pan, C. Evaluation of CMPA precipitation estimate in the evolution of typhoon-related storm rainfall in Guangdong, China. J. Hydroinform. 2016, 18, 1055–1068. [Google Scholar] [CrossRef]
- Chandrasekar, V.; Hou, A.; Smith, E.; Bringi, V.N.; Rutledge, S.A.; Gorgucci, E.; Jackson, G.S. Potential role of dual-polarization radar in the validation of satellite precipitation measurements: Rationale and opportunities. Bull. Am. Meteorol. Soc. 2008, 89, 1127–1146. [Google Scholar] [CrossRef]
- Awaka, J.; Le, M.; Brodzik, S.; Kubota, T.; Masaki, T.; Chandrasekar, V.; Iguchi, T. Development of precipitation type classification algorithms for a full scan mode of GPM dual-frequency precipitation radar. J. Meteorol. Soc. Jpn. Ser. II 2021, 99, 1253–1270. [Google Scholar] [CrossRef]
- Li, Z.; Wen, Y.; Liao, L.; Wolff, D.; Meneghini, R.; Schuur, T. Joint collaboration on comparing NOAA’s ground-based weather radar and NASA–JAXA’s spaceborne radar. Bull. Amer. Meteorol. Soc. 2023, 104, E1435–E1451. [Google Scholar] [CrossRef]
- Yong, B.; Ren, L.L.; Hong, Y.; Wang, J.H.; Gourley, J.J.; Jiang, S.H.; Chen, X.; Wang, W. Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resour. Res. 2010, 46, 759–768. [Google Scholar] [CrossRef]
- Shen, Z.; Yong, B.; Gourley, J.J.; Qi, W.; Lu, D.; Liu, J.; Ren, L.; Hong, Y.; Zhang, J. Recent global performance of the Climate Hazards group Infrared Precipitation (CHIRP) with Stations (CHIRPS). J. Hydrol. 2020, 591, 125284. [Google Scholar] [CrossRef]
- Lasser, M.; O, S.; Foelsche, U. Evaluation of GPM-DPR precipitation estimates with WegenerNet gauge data. Atmos. Meas. Tech. 2019, 12, 5055–5070. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D.; Eylander, J.B.; Joyce, R.J.; Huffman, G.J.; Adler, R.F.; Hsu, K.; Turk, F.J.; Garcia, M.; Zeng, J. Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res.-Atmos. 2009, 114, 5055–5070. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Song, J.; Qi, W.; Lyu, Y.; Zhang, H.; Song, Y.; Shi, T.; Wen, Y.; Yong, B. Detecting the Vertical Structure of Extreme Precipitation in the Headwater Area of Yellow River Using the Dual-Frequency Precipitation Radar Onboard the Global Precipitation Measurement Mission. Int. J. Climatol. 2024, 44, 5918–5933. [Google Scholar] [CrossRef]
- Yang, B.; Ren, S.; Wang, X.; Niu, N. Precipitation Characteristics at Different Developmental Stages of the Tibetan Plateau Vortex in July 2021 Based on GPM-DPR Data. Remote Sens. 2024, 16, 1947. [Google Scholar] [CrossRef]
- Matrosov, S. Polarimetric radar variables in snowfall at Ka-and W-band frequency bands: A comparative analysis. J. Atmos. Ocean. Technol. 2021, 38, 91–101. [Google Scholar] [CrossRef]
- Del Castillo-Velarde, C.; Kumar, S.; Valdivia-Prado, J.; Moya-Álvarez, A.; Flores-Rojas, J.; Villalobos-Puma, E.; Martínez, D.; Silva-Vidal, Y. Evaluation of GPM dual-frequency precipitation radar algorithms to estimate drop size distribution parameters, using ground-based measurement over the central Andes of Peru. Earth Syst. Environ. 2021, 5, 597–619. [Google Scholar] [CrossRef]
- Peinó, E.; Bech, J.; Polls, F.; Udina, M.; Petracca, M.; Adirosi, E.; Gonzalez, S.; Boudevillain, B. Validation of GPM DPR rainfall and Drop Size Distributions using disdrometer observations in the Western Mediterranean. Remote Sens. 2024, 16, 2594. [Google Scholar] [CrossRef]
- Bertoncini, A.; Thériault, J.; Pomeroy, J. A new GPM-DPR algorithm to estimate snowfall in mountain regions. J. Geophys. Res.-Atmos. 2025, 130, e2024JD041481. [Google Scholar] [CrossRef]
- Ma, Z.; Zhu, S.; Yang, J. FY4QPE-MSA: An all-day near-real-time quantitative precipitation estimation framework based on multispectral analysis from AGRI onboard Chinese FY-4 series satellites. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Liu, B.; Li, H.; Liu, L.; Shang, J.; Kuo, K.S.; Lu, C.; Yuan, M.; Jiang, B. On the detection sensitivities of dual-frequency radars onboard FY-3G and GPM-CO. Atmos. Res. 2025, 316, 107935. [Google Scholar] [CrossRef]
- Wei, L.; Zhao, L.; Li, Z.; Li, Y.; Wen, Q.; Ma, Y. Numerical simulation of circulation characteristics of orographic precipitation in Qilian Mountains, Northeastern Tibetan Plateau. Atmos. Res. 2024, 312, 107762. [Google Scholar] [CrossRef]
Statistic Metrics | Unit | Equation | Optimal Value |
---|---|---|---|
CC | NA | 1 | |
RMSE | mm/h | 0 | |
RB | % | 0 | |
POD | NA | 1 | |
FAR | NA | 0 | |
CSI | NA | 1 | |
Hit bias | % | Hit bias = | 0 |
Miss bias | % | Miss bias = | 0 |
False bias | % | False bias = | 0 |
H | F | |
M | / |
DPR SVCs | E | M | W | Mean | |
---|---|---|---|---|---|
CC | V06-NS | 0.77 | 0.81 | 0.80 | 0.78 |
V06-HS | 0.80 | 0.84 | 0.86 | 0.81 | |
V06-MS | 0.80 | 0.84 | 0.83 | 0.81 | |
V07-FS | 0.80 | 0.80 | 0.76 | 0.78 | |
V07-HS | 0.79 | 0.84 | 0.86 | 0.81 | |
RB (%) | V06-NS | 10.58 | 19.16 | −6.17 | 7.86 |
V06-HS | −3.48 | −5.28 | −27.25 | −12.00 | |
V06-MS | 26.58 | 27.34 | −1.76 | 17.39 | |
V07-FS | 12.52 | 19.89 | −2.90 | 9.84 | |
V07-HS | 3.15 | 0.14 | −21.88 | −6.20 | |
RMSE (mm/h) | V06-NS | 2.88 | 1.87 | 1.33 | 2.03 |
V06-HS | 2.21 | 1.57 | 1.23 | 1.67 | |
V06-MS | 2.91 | 1.81 | 1.82 | 2.00 | |
V07-FS | 2.94 | 1.86 | 1.33 | 2.04 | |
V07-HS | 2.34 | 1.59 | 1.19 | 1.71 | |
POD | V06-NS | 0.61 | 0.58 | 0.52 | 0.57 |
V06-HS | 0.57 | 0.54 | 0.45 | 0.52 | |
V06-MS | 0.62 | 0.59 | 0.55 | 0.59 | |
V07-FS | 0.63 | 0.60 | 0.56 | 0.60 | |
V07-HS | 0.48 | 0.44 | 0.39 | 0.44 | |
FAR | V06-NS | 0.28 | 0.31 | 0.38 | 0.33 |
V06-HS | 0.23 | 0.25 | 0.30 | 0.26 | |
V06-MS | 0.29 | 0.31 | 0.36 | 0.32 | |
V07-FS | 0.30 | 0.33 | 0.42 | 0.35 | |
V07-HS | 0.40 | 0.42 | 0.44 | 0.42 | |
CSI | V06-NS | 0.49 | 0.45 | 0.39 | 0.47 |
V06-HS | 0.49 | 0.45 | 0.38 | 0.44 | |
V06-MS | 0.49 | 0.46 | 0.42 | 0.46 | |
V07-FS | 0.49 | 0.45 | 0.40 | 0.45 | |
V07-HS | 0.36 | 0.33 | 0.31 | 0.33 |
DPR SVCs | CC | RB (%) | RMSE(mm/h) | POD | FAR | CSI | |
---|---|---|---|---|---|---|---|
Spring | V06-NS | 0.84 | 29.37 | 2.01 | 0.63 | 0.27 | 0.51 |
V06-HS | 0.88 | 9.70 | 1.61 | 0.60 | 0.21 | 0.51 | |
V06-MS | 0.88 | 45.77 | 2.04 | 0.65 | 0.27 | 0.52 | |
V07-FS | 0.84 | 31.43 | 2.04 | 0.65 | 0.29 | 0.51 | |
V07-HS | 0.88 | 26.25 | 1.62 | 0.47 | 0.41 | 0.36 | |
Summer | V06-NS | 0.81 | 18.19 | 2.73 | 0.65 | 0.30 | 0.51 |
V06-HS | 0.87 | 13.21 | 2.14 | 0.61 | 0.25 | 0.51 | |
V06-MS | 0.85 | 40.88 | 2.64 | 0.66 | 0.31 | 0.51 | |
V07-FS | 0.81 | 18.26 | 2.75 | 0.67 | 0.30 | 0.51 | |
V07-HS | 0.87 | 21.80 | 2.28 | 0.61 | 0.25 | 0.50 | |
Autumn | V06-NS | 0.86 | 24.41 | 1.56 | 0.55 | 0.29 | 0.44 |
V06-HS | 0.91 | 7.61 | 1.39 | 0.51 | 0.23 | 0.44 | |
V06-MS | 0.90 | 33.92 | 1.45 | 0.57 | 0.29 | 0.45 | |
V07-FS | 0.86 | 25.00 | 1.60 | 0.57 | 0.30 | 0.45 | |
V07-HS | 0.91 | 10.05 | 1.44 | 0.53 | 0.25 | 0.44 | |
Winter | V06-NS | 0.88 | 30.44 | 0.86 | 0.37 | 0.43 | 0.28 |
V06-HS | 0.92 | 2.50 | 0.77 | 0.35 | 0.29 | 0.30 | |
V06-MS | 0.91 | 42.81 | 0.82 | 0.39 | 0.40 | 0.30 | |
V07-FS | 0.88 | 35.31 | 0.85 | 0.40 | 0.47 | 0.28 | |
V07-HS | 0.92 | 6.32 | 0.77 | 0.38 | 0.35 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Zhang, H.; Lyu, Y.; Wu, H.; Zhang, F.; Ma, X.; Yong, B. Beyond Algorithm Updates: A Systematic Validation of GPM DPR-V07 over China’s Multiscale Topography. Remote Sens. 2025, 17, 2410. https://doi.org/10.3390/rs17142410
Song J, Zhang H, Lyu Y, Wu H, Zhang F, Ma X, Yong B. Beyond Algorithm Updates: A Systematic Validation of GPM DPR-V07 over China’s Multiscale Topography. Remote Sensing. 2025; 17(14):2410. https://doi.org/10.3390/rs17142410
Chicago/Turabian StyleSong, Jia, Haiwei Zhang, Yi Lyu, Hao Wu, Fei Zhang, Xu Ma, and Bin Yong. 2025. "Beyond Algorithm Updates: A Systematic Validation of GPM DPR-V07 over China’s Multiscale Topography" Remote Sensing 17, no. 14: 2410. https://doi.org/10.3390/rs17142410
APA StyleSong, J., Zhang, H., Lyu, Y., Wu, H., Zhang, F., Ma, X., & Yong, B. (2025). Beyond Algorithm Updates: A Systematic Validation of GPM DPR-V07 over China’s Multiscale Topography. Remote Sensing, 17(14), 2410. https://doi.org/10.3390/rs17142410