Mapping Subtidal Marine Forests in the Mediterranean Sea Using Copernicus Contributing Mission
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Earth Observation Data
2.3. Analysis Workflow
- (a)
- Cystoseira s.l. forests;
- (b)
- Shallow soft bottoms (<15 m depth);
- (c)
- Rocky reefs with other cover;
- (d)
- Seagrass;
- (e)
- Deep soft bottoms (>15 m depth).
2.4. Evaluation Approach
- -
- High-resolution Google Earth Pro images;
- -
- Aerial imagery from the Greek Cadastral Office;
- -
- September 2024 field campaign.
3. Results
3.1. Mapping Subtidal Marine Forests and Related Seascapes
Hard Classification Products
3.2. Fraction Mapping of the Target Habitats
3.3. Product Validation
4. Discussion
4.1. Capability of Earth Observation to Map Coastal Seascapes with Emphasis on Cystoseira s.l. Forests
4.2. Performance of PlanetLabs SuperDove Data
4.3. Limitations in Mapping Cystoseira s.l. Forests and the Role of Copernicus Sentinel-2
- Dominance of Cystoseira s.l. canopy algae.
- More than 80% cover at the pixel scale of PlanetLabs imagery.
- Minimal interference from other species.
- Homogenous patches of at least 3 × 3 pixels (~9 × 9 m)—the central pixel to be used for training to avoid adjacency effects.
- Avoidance of steep slopes (>30° within a pixel) and areas where landscape features cast shadows.
- At least 20 pure pixels for independent validation, avoiding mixed-habitat edges.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johansen, E. The Role of the Oceans in Regulating the Earth’s Climate: Legal Perspectives. In The Law of the Sea and Climate Change: Solutions and Constraints; Johansen, E., Busch, S.V., Jakobsen, I.U., Eds.; Cambridge University Press: Cambridge, UK, 2020; pp. 1–21. [Google Scholar]
- Prada, F.; Caroselli, E.; Mengoli, S.; Brizi, L.; Fantazzini, P.; Capaccioni, B.; Pasquini, L.; Fabricius, K.E.; Dubinsky, Z.; Falini, G.; et al. Ocean warming and acidification synergistically increase coral mortality. Sci. Rep. 2017, 7, 40842. [Google Scholar] [CrossRef]
- Guild, R.; Wang, X.; Quijón, P. Climate change impacts on coastal ecosystems. Environ. Res. Clim. 2025, 3, 042006. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, H.; Lu, Y.; Wang, Q.; Loh, Y.C.; Li, Z. Impact of climate change on coastal ecosystem: A comparative analysis among four largest coastline covering countries. Environ. Res. 2024, 250, 118405. [Google Scholar] [CrossRef] [PubMed]
- Cinner, J.E.; Caldwell, I.R.; Thiault, L.; Ben, J.; Blanchard, J.L.; Coll, M.; Diedrich, A.; Eddy, T.D.; Everett, J.D.; Folberth, C.; et al. Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities. Nat. Commun. 2022, 13, 3530. [Google Scholar] [CrossRef]
- Cuttelod, A.; García, N.; Abdul Malak, D.; Temple, H.; Katariya, V. The Mediterranean: A biodiversity hotspot under threat. In The 2008 Review of The IUCN Red List of Threatened Species; Vié, J.-C., Hilton-Taylor, C., Stuart, S.N., Eds.; IUCN Gland: Gland, Switzerland, 2008. [Google Scholar]
- Malak, D. An Assessment of Marine Biodiversity Protection in the Mediterranean Sea: A Threatened Global Biodiversity Hotspot. 2022. Available online: https://planbleu.org/wp-content/uploads/2023/01/An_assessment_of_marine_biodiversity_protection_in_the_Mediterranean_Sea__3_.pdf (accessed on 31 January 2025).
- Vasilakopoulos, P.; Raitsos, D.E.; Tzanatos, E.; Maravelias, C.D. Resilience and regime shifts in a marine biodiversity hotspot. Sci. Rep. 2017, 7, 13647. [Google Scholar] [CrossRef] [PubMed]
- Coll, M.; Piroddi, C.; Albouy, C.; Ben Rais Lasram, F.; Cheung, W.W.L.; Christensen, V.; Karpouzi, V.S.; Guilhaumon, F.; Mouillot, D.; Paleczny, M.; et al. The Mediterranean Sea under siege: Spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 2012, 21, 465–480. [Google Scholar] [CrossRef]
- Lloret, J. Human health benefits supplied by Mediterranean marine biodiversity. Mar. Pollut. Bull. 2010, 60, 1640–1646. [Google Scholar] [CrossRef]
- Bianchi, C.N.; Morri, C. Marine Biodiversity of the Mediterranean Sea: Situation, Problems and Prospects for Future Research. Mar. Pollut. Bull. 2000, 40, 367–376. [Google Scholar] [CrossRef]
- Garrabou, J.; Gómez-Gras, D.; Medrano, A.; Cerrano, C.; Ponti, M.; Schlegel, R.; Bensoussan, N.; Turicchia, E.; Sini, M.; Gerovasileiou, V.; et al. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Glob. Change Biol. 2022, 28, 5708–5725. [Google Scholar] [CrossRef]
- Katsanevakis, S.; Coll, M.; Piroddi, C.; Steenbeek, J.; Ben Rais Lasram, F.; Zenetos, A.; Cardoso, A.C. Invading the Mediterranean Sea: Biodiversity patterns shaped by human activities. Front. Mar. Sci. 2014, 1, 32. [Google Scholar] [CrossRef]
- Mineur, F.; Arenas, F.; Assis, J.; Davies, A.J.; Engelen, A.H.; Fernandes, F.; Malta, E.; Thibaut, T.; Van Nguyen, T.; Vaz-Pinto, F.; et al. European Seaweeds under Pressure: Consequences for Communities and Ecosystem Functioning. J. Sea Res. 2015, 98, 91–108. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication, University of Galway. Available online: https://www.algaebase.org (accessed on 31 January 2025).
- Sellam, L.N.; Blanfuné, A.; Boudouresque, C.F.; Thibaut, T.; Zahaf, C.R.; Verlaque, M. Cystoseira montagnei J. Agardh and C. spinosa Sauvageau (Phaeophyceae, Sargassaceae): A Taxonomic Reappraisal of Misused Names, with the Proposal of Cystoseira michaelae Verlaque et al. nom. et stat. nov. Cryptogam. Algol. 2017, 38, 133–157. [Google Scholar] [CrossRef]
- Bianchelli, S.; Danovaro, R. Impairment of microbial and meiofaunal ecosystem functions linked to algal forest loss. Sci. Rep. 2020, 10, 19970. [Google Scholar] [CrossRef] [PubMed]
- Lipej, L.; Ivajnšič, D.; Pitacco, V.; Trkov, D.; Mavrič, B.; Orlando-Bonaca, M. Coastal Fish Fauna in the Cystoseira s.l. Algal Belts: Experiences from the Northern Adriatic Sea. J. Mar. Sci. Eng. 2023, 11, 888. [Google Scholar] [CrossRef]
- Smith, C.J.; Verdura, J.; Papadopoulou, N.; Fraschetti, S.; Cebrian, E.; Fabbrizzi, E.; Monserrat, M.; Drake, M.; Bianchelli, S.; Danovaro, R.; et al. A decision-support framework for the restoration of Cystoseira sensu lato forests. Front. Mar. Sci. 2023, 10, 1159262. [Google Scholar] [CrossRef]
- Cimini, J.; Asnaghi, V.; Chiantore, M.; Kaleb, S.; Onida, A.; Falace, A. Can thermal anomalies impair the restoration of Cystoseira s.l. forests? Mar. Environ. Res. 2024, 198, 106537. [Google Scholar] [CrossRef]
- Mancuso, F.P.; Sarà, G.; Mannino, A.M. Conserving Marine Forests: Assessing the Effectiveness of a Marine Protected Area for Cystoseira sensu lato Populations in the Central Mediterranean Sea. Plants 2024, 13, 162. [Google Scholar] [CrossRef]
- Reeforest.eu. Available online: https://reeforest.eu/mapping-cystoseira (accessed on 9 March 2025).
- Promoting Biodiversity Enhancement by Restoration of Cystoseira POPulations, Reference: LIFE16 NAT/IT/000816|Acronym: ROC-POP-LIFE. Available online: https://webgate.ec.europa.eu/life/publicWebsite/project/LIFE16-NAT-IT-000816/promoting-biodiversity-enhancement-by-restoration-of-cystoseira-populations (accessed on 31 January 2025).
- Capdevila, P.; Hereu, B.; Riera, J.L.; Linares, C. Unravelling the natural dynamics and resilience patterns of underwater Mediterranean forests: Insights from the demography of the brown alga Cystoseira zosteroides. J. Ecol. 2016, 104, 1799–1808. [Google Scholar] [CrossRef]
- Felline, S.; Del Coco, L.; Kaleb, S.; Guarnieri, G.; Fraschetti, S.; Terlizzi, A.; Fanizzi, F.P.; Falace, A. The response of the algae Fucus virsoides (Fucales, Ochrophyta) to Roundup® solution exposure: A metabolomics approach. Environ. Pollut. (Barking Essex 1987) 2019, 254, 112977. [Google Scholar] [CrossRef]
- Darmaraki, S.; Denaxa, D.; Theodorou, I.; Livanou, E.; Rigatou, D.; Raitsos, E.D.; Stavrakidis-Zachou, O.; Dimarchopoulou, D.; Bonino, G.; McAdam, R.; et al. Marine Heatwaves in the Mediterranean Sea: A Literature Review. Mediterr. Mar. Sci. 2024, 25, 586–620. [Google Scholar] [CrossRef]
- Schoenrock, K.M.; Chan, K.M.; O’Callaghan, T.; O’CAllaghan, R.; Golden, A.; Krueger-Hadfield, S.A.; Power, A.M. A review of subtidal kelp forests in Ireland: From first descriptions to new habitat monitoring techniques. Ecol. Evol. 2020, 10, 6819–6832. [Google Scholar] [CrossRef] [PubMed]
- Davies, B.F.R.; Oiry, S.; Rosa, P.; Zoffoli, M.L.; Sousa, A.I.; Thomas, O.R.; Smale, D.A.; Austen, M.C.; Biermann, L.; Attrill, M.J.; et al. A sentinel watching over inter-tidal seagrass phenology across Western Europe and North Africa. Commun. Earth Environ. 2024, 5, 382. [Google Scholar] [CrossRef]
- Hill, V.J.; Zimmerman, R.C.; Byron, D.A.; Heck, K.L., Jr. Mapping Seagrass Distribution and Abundance: Comparing Areal Cover and Biomass Estimates Between Space-Based and Airborne Imagery. Remote Sens. 2024, 16, 4351. [Google Scholar] [CrossRef]
- Poursanidis, D.; Mylonakis, K.; Christofilakos, S.; Barnias, A. Mind the gap in data poor Natura 2000 sites and how to tackle them using Earth Observation and scientific diving surveys. Mar. Pollut. Bull. 2023, 188, 114595. [Google Scholar] [CrossRef] [PubMed]
- Cavanaugh, K.C.; Bell, T.; Costa, M.; Eddy, N.E.; Gendall, L.; Gleason, M.G.; Hessing-Lewis, M.; Martone, R.; McPherson, M.; Pontier, O.; et al. A Review of the Opportunities and Challenges for Using Remote Sensing for Management of Surface-Canopy Forming Kelps. Front. Mar. Sci. 2021, 8, 753531. [Google Scholar] [CrossRef]
- Mora-Soto, A.; Palacios, M.; Macaya, E.C.; Gómez, I.; Huovinen, P.; Pérez-Matus, A.; Young, M.; Golding, N.; Toro, M.; Yaqub, M.; et al. A High-Resolution Global Map of Giant Kelp (Macrocystis pyrifera) Forests and Intertidal Green Algae (Ulvophyceae) with Sentinel-2 Imagery. Remote Sens. 2020, 12, 694. [Google Scholar] [CrossRef]
- Bell, T.W.; Cavanaugh, K.C.; Saccomanno, V.R.; Cavanaugh, K.C.; Houskeeper, H.F.; Eddy, N.; Schuetzenmeister, F.; Rindlaub, N.; Gleason, M.; Pérez-Matus, A. Kelpwatch: A new visualization and analysis tool to explore kelp canopy dynamics reveals variable response to and recovery from marine heatwaves. PLoS ONE 2023, 18, e0271477. [Google Scholar] [CrossRef]
- Nikolaou, A.; Tsirintanis, K.; Rilov, G.; Katsanevakis, S. Invasive Fish and Sea Urchins Drive the Status of Canopy Forming Macroalgae in the Eastern Mediterranean. Biology 2023, 12, 763. [Google Scholar] [CrossRef]
- ActiveCaptain Map by Garmin. Available online: https://activecaptain.garmin.com/el-GR/Map (accessed on 9 March 2025).
- Sales, M.; Ballesteros, E. Seasonal dynamics and annual production of Cystoseira crinita (Fucales: Ochrophyta)-dominated assemblages from the northwestern Mediterranean. Sci. Mar. 2012, 76, 391–401. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Daily metre-scale mapping of water turbidity using CubeSat imagery. Opt. Express 2019, 27, A1372–A1399. [Google Scholar] [CrossRef] [PubMed]
- Vanhellemont, Q. Evaluation of eight band SuperDove imagery for aquatic applications. Opt. Express 2023, 31, 13851–13874. [Google Scholar] [CrossRef] [PubMed]
- Castagna, A.; Vanhellemont, Q. A generalised physics-based correction for adjacency effects. Appl. Opt. 2025, 64, 2719. [Google Scholar] [CrossRef]
- Jakimow, B.; Janz, A.; Thiel, F.; Okujeni, A.; Hostert, P.; van der Linden, S. EnMAP-Box: Imaging spectroscopy in QGIS. SoftwareX 2023, 23, 101507. [Google Scholar] [CrossRef]
- Pons, X.; Cristóbal, J.; Sanjurjo-Vílchez, J. Some notes on the divergence and transformed divergence formulae in the remote sensing literature. Remote Sens. Lett. 2024, 15, 1187–1194. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for Land Cover Classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, D.; Chen, B.; Liu, X.; Ye, X.; Jiang, Q. Mapping the Seagrass Conservation and Restoration Priorities: Coupling Habitat Suitability and Anthropogenic Pressures. Ecol. Indic. 2021, 129, 107960. [Google Scholar] [CrossRef]
- Poursanidis, D.; Traganos, D.; Teixeira, L.; Shapiro, A.; Muaves, L. Cloud-native seascape mapping of Mozambique’s Quirimbas National Park with Sentinel-2. Remote Sens. Ecol. Conserv. 2021, 7, 275–291. [Google Scholar] [CrossRef]
- Traganos, D.; Lee, C.B.; Blume, A.; Poursanidis, D.; Čižmek, H.; Deter, J.; Mačić, V.; Montefalcone, M.; Pergent, G.; Pergent-Martini, C.; et al. Spatially Explicit Seagrass Extent Mapping Across the Entire Mediterranean. Front. Mar. Sci. 2022, 9, 871799. [Google Scholar] [CrossRef]
- Okujeni, A.; van der Linden, S.; Tits, L.; Somers, B.; Hostert, P. Support vector regression and synthetically mixed training data for quantifying urban land cover. Remote Sens. Environ. 2013, 137, 184–197. [Google Scholar] [CrossRef]
- Okujeni, A.; van der Linden, S.; Suess, S.; Hostert, P. Ensemble learning from synthetically mixed training data for quantifying urban land cover with support vector regression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1640–1650. [Google Scholar] [CrossRef]
- Okujeni, A.; Jänicke, C.; Cooper, S.; Frantz, D.; Hostert, P.; Clark, M.; Segl, K.; van der Linden, S. Multi-season unmixing of vegetation class fractions across diverse Californian ecoregions using simulated spaceborne imaging spectroscopy data. Remote Sens. Environ. 2021, 264, 112558. [Google Scholar] [CrossRef]
- Stehman, S.V. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. Int. J. Remote Sens. 2014, 35, 4923–4939. [Google Scholar] [CrossRef]
- Senf, C.; Laštovička, J.; Okujeni, A.; Heurich, M.; van der Linden, S. A generalized regression-based unmixing model for mapping forest cover fractions throughout three decades of Landsat data. Remote Sens. Environ. 2020, 240, 111691. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Ha, N.T.; Nguyen, H.Q.; Pham, T.D.; Hoang, C.-T.; Hawes, I. Superpixel for seagrass mapping: A novel method using PlanetScope imagery and machine learning in Tauranga harbour. N. Z. Environ. Earth Sci. 2023, 82, 154. [Google Scholar] [CrossRef]
- Krause, J.R.; Hinojosa-Corona, A.; Gray, A.B.; Burke Watson, E. Emerging Sensor Platforms Allow for Seagrass Extent Mapping in a Turbid Estuary and from the Meadow to Ecosystem Scale. Remote Sens. 2021, 13, 3681. [Google Scholar] [CrossRef]
- Wicaksono, P.; Lazuardi, W. Assessment of PlanetScope images for benthic habitat and seagrass species mapping in a complex optically shallow water environment. Int. J. Remote Sens. 2018, 39, 5739–5765. [Google Scholar] [CrossRef]
- Frazier, A.E.; Hemingway, B.L. A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery. Remote Sens. 2021, 13, 3930. [Google Scholar] [CrossRef]
- Kim, M.; Park, S.; Anderson, C.; Stensaas, G.L. Chapter F of System characterization report on Planet’s SuperDove. In System Characterization of Earth Observation Sensors; Chandra, S.N.R., Ed.; Open-File Report 2021–1030; U.S. Geological Survey: Reston, VA, USA, 2022; p. 19. [Google Scholar] [CrossRef]
Class | Number of Polygons | Number of Annotated Pixels |
---|---|---|
Cystoseira spp. forests | 3 | 469 |
Deep soft bottoms | 7 | 15,809 |
Seagrass primarily composed of Posidonia oceanica | 26 | 26,561 |
Rocky reefs with other cover | 12 | 27,575 |
Shallow soft bottoms | 31 | 25,248 |
Class | vs. | Class | TD Value |
---|---|---|---|
Seagrass | - | Rocky reefs | 1.51 |
Cystoseira spp. | - | Rocky reefs | 1.69 |
Rocky reefs | - | Soft bottoms (shallow) | 1.81 |
Soft bottoms (deep) | - | Seagrass | 1.83 |
Soft bottoms (deep) | - | Rocky reefs | 1.89 |
Cystoseira spp. | - | Soft bottoms (shallow) | 1.93 |
Soft bottoms (deep) | - | Soft bottoms (shallow) | 1.95 |
Seagrass | - | Soft bottoms (shallow) | 1.96 |
Cystoseira spp. | - | Seagrass | 1.99 |
Cystoseira spp. | - | Soft bottoms (deep) | 1.99 |
Class | Areal Extent |
---|---|
Cystoseira s.l. | 25.83 |
Sand (shallow) | 336.92 |
Sand (deep) | 370.99 |
Posidonia oceanica | 922.96 |
Rocky bottoms (without Cystoseira) | 981.13 |
Cystoseira spp. | Soft Bottoms (Deep) | Seagrass | Rocky Reefs | Soft Bottoms (Shallow) | |
---|---|---|---|---|---|
Cystoseira spp. | 18 | 0 | 0 | 0 | 0 |
Soft bottons (deep) | 0 | 20 | 0 | 0 | 0 |
Seagrass | 0 | 0 | 20 | 3 | 0 |
Rocky reefs | 2 | 0 | 0 | 17 | 0 |
Soft bottons (shallow) | 0 | 0 | 0 | 0 | 20 |
User’s Accuracy (UA) | Producer’s Accuracy (PA) | F1 Score | |
---|---|---|---|
Cystoseira spp. | 1 | 0.9 | 0.94 |
Soft bottoms (deep) | 1 | 1 | 1 |
Seagrass | 0.87 | 1 | 0.93 |
Rocky reefs | 0.89 | 0.85 | 0.87 |
Soft bottoms (shallow) | 1 | 1 | 1 |
Cystoseira s.l. | Soft Bottoms (Deep) | Seagrass | Rocky Reefs | Soft Bottoms (Shallow) | |
---|---|---|---|---|---|
Mean absolute error (MAE) | 0.06 | 0.0052 | 0.04 | 0.097 | 0.007 |
Root MSE (RMSE) | 0.17 | 0.02 | 0.13 | 0.21 | 0.046 |
Ratio of performance to deviation (RPD) | 2.37 | 18.66 | 3.005 | 1.87 | 8.72 |
Mean error (ME) | −0.063 | 0 | 0.018 | 0.04 | −0.006 |
Mean squared error (MSE) | 0.029 | 0.0005 | 0.018 | 0.046 | 0.002 |
Median absolute error (MedAE) | 0 | 0 | 0 | 0 | 0 |
Squared Pearson correlation (r2) | 0.89 | 0.99 | 0.89 | 0.73 | 0.99 |
Explained variance score | 0.85 | 0.99 | 0.89 | 0.73 | 0.99 |
Coefficient of determination (R2) | 0.82 | 0.99 | 0.89 | 0.71 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poursanidis, D.; Katsanevakis, S. Mapping Subtidal Marine Forests in the Mediterranean Sea Using Copernicus Contributing Mission. Remote Sens. 2025, 17, 2398. https://doi.org/10.3390/rs17142398
Poursanidis D, Katsanevakis S. Mapping Subtidal Marine Forests in the Mediterranean Sea Using Copernicus Contributing Mission. Remote Sensing. 2025; 17(14):2398. https://doi.org/10.3390/rs17142398
Chicago/Turabian StylePoursanidis, Dimitris, and Stelios Katsanevakis. 2025. "Mapping Subtidal Marine Forests in the Mediterranean Sea Using Copernicus Contributing Mission" Remote Sensing 17, no. 14: 2398. https://doi.org/10.3390/rs17142398
APA StylePoursanidis, D., & Katsanevakis, S. (2025). Mapping Subtidal Marine Forests in the Mediterranean Sea Using Copernicus Contributing Mission. Remote Sensing, 17(14), 2398. https://doi.org/10.3390/rs17142398