Evaluating the Efficiency of Two Ecological Indices in Monitoring Forest Degradation in the Drylands of Sudan
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Collection and Analysis
Vegetation Indexes | Abbreviation | Formula | Reference |
---|---|---|---|
Normalized Difference Vegetation Index | NDVI | [50,51] | |
Soil adjusted and atmospheric resistant vegetation index | SARVI | RB = R − γ (B − R), L = 0.5, γ = 1.0 | [52,53] |
Indices | Characteristics |
---|---|
NDVI |
|
SARVI |
|
3. Results
3.1. Mapping the Distribution of Forest Cover in 2018
3.2. Spatiotemporal Trend of Forest Cover Degradation for Selected Forests
3.3. Trend of Forest Condition During Study Time
3.4. The Relationship Between SARVI and NDVI
3.5. Comparison Between SARVI and NDVI in Different Aspects
3.6. Comparision and Temporal Trends of SARVI and NDVI in Selected Forest Sites (1988–2018)
3.7. Forest Threats and Causes of Forest Degradation in Study Area
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NDVI | Normalized Difference Vegetation Index |
SARVI | Soil adjusted and atmospheric resistant vegetation index |
UNEP | United Nation Environment Program |
FAO | Food and Agriculture Organization |
GFW | Global Forest Watch |
TM | Thematic Mapper |
OLI | Operational Land Imager |
RS | Remote Sensing |
Appendix A. Survey Questions for Evaluating Occurrence of Threats Inside the Forests
No. | Threats/Risk | Ranking | ||||
Not Present | Rare | Common | High | Extremely High | ||
1 | Deforestation/Illegal trees felling | |||||
2 | Farming/Agricultural Activities | |||||
3 | Grazing | |||||
4 | Pests and Disease | |||||
5 | Soil Erosion/Transformation | |||||
6 | Drought | |||||
7 | Flooding | |||||
8 | Fire | |||||
9 | Invasive Species | |||||
10 | Human Settlements |
References
- GFW (Global Forest Watch). Global Forest Monitoring Dashboard; World Resources Institute: Washington, DC, USA, 2021; Available online: https://www.globalforestwatch.org/dashboards/global/ (accessed on 26 April 2025).
- Ygorra, B.; Frappart, F.; Wigneron, J.P.; Moisy, C.; Catry, T.; Baup, F.; Hamunyela, E.; Riazanoff, S. Monitoring Loss of Tropical Forest Cover from Sentinel-1 Time-Series: A CuSum-Based Approach. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102532. [Google Scholar] [CrossRef]
- FAO. State of the World’s Forests 2022: Forest Pathways for Green Recovery and Building Inclusive, Resilient and Sustainable Economies; FAO: Rome, Italy, 2022; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/8f599970-661d-45f5-a598-2ea46ca1605f/content/src/html/deforestation-land-degradation.html (accessed on 26 April 2025).
- Delgado-Moreno, D.; Gao, Y. Forest Degradation Estimation Through Trend Analysis of Annual Time Series NDVI, NDMI and NDFI (2010–2020) Using Landsat Images. In Advances in Geospatial Data Science; Tapia-McClung, R., Sánchez-Siordia, O., González-Zuccolotto, K., Carlos-Martínez, H., Eds.; Lecture Notes in Geoinformation and Cartography; Springer: Cham, Switzerland, 2022; pp. 149–159. [Google Scholar] [CrossRef]
- Siddig, A.A.; Magid, T.D.A.; El-Nasry, H.M.; Hano, A.I.; Mohammed, A.A. Biodiversity in Sudan. In Global Biodiversity (Vol. 3); Pullaiah, T., Ed.; Apple Academic Press: Waretown, NJ, USA, 2018; pp. 275–294. [Google Scholar] [CrossRef]
- Yasin, E.H.E.; Siddig, A.A.H.; Kornel, C. Forests at the Crossroads: Biodiversity Conservation in the Era of Climate Change. In Sustainable Forest Management—Surpassing Climate Change and Land Degradation; Kulshreshtha, S.N., Ed.; IntechOpen: London, UK, 2024; pp. 119–139. [Google Scholar] [CrossRef]
- FAO. Trees, Forests and Land Use in Drylands: The First Global Assessment; FAO: Rome, Italy, 2016. [Google Scholar]
- Bastin, J.F.; Berrahmouni, N.; Grainger, A.; Maniatis, D.; Mollicone, D.; Moore, R.; Picard, N.; Sparrow, B.; Abraham, E.M.; Aloui, K.; et al. The extent of forest in dryland biomes. Science 2017, 356, 635–638. [Google Scholar] [CrossRef]
- Osewe, E.O.; Popa, B.; Vacik, H.; Osewe, I.; Abrudan, I.V. Review of forest ecosystem services evaluation studies in East Africa. Front. Ecol. Evol. 2024, 12, 1385351. [Google Scholar] [CrossRef]
- Yasin, E.H.E.; Mulyana, B. Spatial distribution of tree species composition and carbon stock in Tozi tropical dry forest, Sinnar State, Sudan. Biodiversitas 2022, 23, 2359–2368. [Google Scholar] [CrossRef]
- Yasin, E.H.; Kornel, C.; Hemida, M. Assessment and Mapping of Forest Cover Change in Dryland, Sudan Using Remote Sensing. In Conservation, Exploitation and Restoration of Mountain Ecosystem; Zhang, L., Wang, S., Liu, L., Eds.; IntechOpen: London, UK, 2023; pp. 65–79. [Google Scholar] [CrossRef]
- Ren, B.; Xiao, Y.; Liu, B.; Geng, J.; Wu, W.; Qin, D. Exploring the Transmission Process of Carbon Sequestration Services and Its Applications: A Case Study of Hainan. Forests 2025, 16, 136. [Google Scholar] [CrossRef]
- Siddig, A.A. Why is biodiversity data-deficiency an ongoing conservation dilemma in Africa? J. Nat. Conserv. 2019, 50, 125719. [Google Scholar] [CrossRef]
- Elzubair, A.E.M.; Fadual, S.M.; Elkarium, M.A. Participatory forest management as an approach to forest management and conservation: A case study of Al-Dalu and Al-Tomama Natural Forests in Sharg Al-Neel Locality, Khartoum State, Sudan. Int. For. Rev. 2024, 26, 444–453. [Google Scholar] [CrossRef]
- Gurashi, N.A.; Yasin, E.H.; Czimber, K. Assessment of Tree Species Availability Based on Sawmilling and Timber Markets Survey in Sinnar State, Sudan. Acta Silv. Lign. Hung. 2024, 20, 39–51. [Google Scholar] [CrossRef]
- Eltohami, A.B.E.S.A. Threats to green gum arabic production in Sudan. Biomed. J. Sci. Tech. Res. 2018, 3, 3526–3530. [Google Scholar] [CrossRef]
- Yasin, E.H.; Siddig, A.A.; Deiab, E.E.; Kornel, C.; Hasoba, A.; Osman, A. Forest Degradation in Dryland Ecosystems of Sudan: Review of the Causes, Consequences, Assessment Methods, and Potential Solutions. In Conservation, Exploitation and Restoration of Mountain Ecosystem; Zhang, L., Wang, S., Liu, L., Eds.; IntechOpen: London, UK, 2023; pp. 37–63. [Google Scholar] [CrossRef]
- Niles, J.O.; Brown, S.; Pretty, J.; Ball, A.S.; Fay, J. Potential Carbon Mitigation and Income in Developing Countries from Changes in Use and Management of Agricultural and Forest Lands. Philos. Trans. R. Soc. A 2002, 360, 1621–1639. [Google Scholar] [CrossRef]
- Ram Kumar, K.C.; Mahato, D.B.; Yadav, N.K.; Poudel, P. Mapping Deforestation and Forest Degradation Using CLASlite Approach (A Case Study from Maya Devi Collaborative Forest of Kapilvastu District, Nepal). Int. J. Environ. Sci. Nat. Resour. 2020, 23, 166–174. [Google Scholar] [CrossRef]
- Chongtham, I.R.; Shahi, S.; Chikkanjegowda, M. The Impact of Shifting from Subsistence to Cash Crops on the Livelihoods of the Soliga Tribe in India. Curr. Agric. Res. J. 2024, 12, 1106–1115. [Google Scholar] [CrossRef]
- Birch, J.C.; Thapa, I.; Balmford, A.; Bradbury, R.B.; Brown, C.; Butchart, S.H.; Thomas, D.H. What Benefits Do Community Forests Provide, and to Whom? A Rapid Assessment of Ecosystem Services from a Himalayan Forest, Nepal. Ecosyst. Serv. 2014, 8, 118–127. [Google Scholar] [CrossRef]
- Rexhepi, B.; Abdija, X.; Bajrami, A.; Iseni, G. Ecological, Socio-Cultural, and Economic Importance of Non-Timber Forest Products in Shar Mountain (North Macedonia). Acad. J. Interdiscip. Stud. 2025, 14, 145–156. [Google Scholar] [CrossRef]
- Siddig, A.A.; Ellison, A.M.; Ochs, A.; Villar-Leeman, C.; Lau, M.K. How Do Ecologists Select and Use Indicator Species to Monitor Ecological Change? Insights from 14 Years of Publication in Ecological Indicators. Ecol. Indic. 2016, 60, 223–230. [Google Scholar] [CrossRef]
- Knutzen, F.; Averbeck, P.; Barrasso, C.; Bouwer, L.M.; Gardiner, B.; Grünzweig, J.M.; Gliksman, D. Impacts on and Damage to European Forests from the 2018–2022 Heat and Drought Events. Nat. Hazards Earth Syst. Sci. 2025, 25, 77–117. [Google Scholar] [CrossRef]
- Sayer, J.A.; Vanclay, J.K.; Byron, N. The Technologies for Sustainable Forest Management: Challenges for the 21st Century; CIFOR Occasional Paper No. 12; Center for International Forestry Research: Bogor, Indonesia, 1997. [Google Scholar]
- Ali, G.; Mijwil, M.M.; Adamopoulos, I.; Ayad, J. Leveraging the Internet of Things, Remote Sensing, and Artificial Intelligence for Sustainable Forest Management. Babyl. J. Internet Things 2025, 2025, 1–65. [Google Scholar] [CrossRef]
- Marsh, C.J.; Turner, E.C.; Blonder, B.W.; Bongalov, B.; Both, S.; Cruz, R.S.; Hector, A. Tropical Forest Clearance Impacts Biodiversity and Function, Whereas Logging Changes Structure. Science 2025, 387, 171–175. [Google Scholar] [CrossRef]
- Hasoba, A.M.M.; Siddig, A.A.H.; Yagoub, Y.E. Exploring tree diversity and stand structure of savanna woodlands in southeastern Sudan. J. Arid Land 2020, 12, 609–617. [Google Scholar] [CrossRef]
- Persson, R.; Janz, K. Assessment and Monitoring of Forest and Tree Resources. In Proceedings of the XI World Forestry Congress, Ankara, Turkey, 13–22 October 1997; pp. 17–29. [Google Scholar]
- Yasin, E.H.; Kamil, O.H.; Mulyana, B. Multi-Temporal Satellite Images Analysis for Assessing and Mapping Deforestation in Um Hataba Forest, South Kordofan, Sudan. J. Sylva Indones. 2022, 5, 81–92. [Google Scholar] [CrossRef]
- Ferreira, L.; Bias, E.D.S.; Barros, Q.S.; Pádua, L.; Matricardi, E.A.T.; Sousa, J.J. Assessing the Impacts of Selective Logging on the Forest Understory in the Amazon Using Airborne LiDAR. Forests 2025, 16, 130. [Google Scholar] [CrossRef]
- Wardle, P. The Evolution of Forestry Statistics from 1945 to 2000. Unasylva 1995, 46, 69–75. [Google Scholar]
- Vergara Buitrago, P.; De Pellegrin Llorente, I. A Systematic Review of Ecosystem Services in the Rabanal Páramo (Colombia). Integr. Environ. Assess. Manag. 2025, 21, vjae029. [Google Scholar] [CrossRef] [PubMed]
- Gmoez, J.L. Climate Change and Environmental Migration: A Case Study of Darfur, Sudan. Master’s Thesis, Universita Ca’Foscari, Venezia, Italy, 2023; pp. 1–108. Available online: https://unitesi.unive.it/handle/20.500.14247/16397 (accessed on 13 May 2025).
- Siddig, A.A. Biodiversity of Sudan: Between the Harsh Conditions, Political Instability and Civil Wars. Biodivers. J. 2014, 5, 545–555. [Google Scholar]
- Osman, M.; Yasin, E.H.E. Fostering Environmental and Resources Management in Sudan through Geo-Information Systems: A Prospective Approach for Sustainability. J. Degrad. Min. Lands Manag. 2024, 11, 5647–5657. [Google Scholar] [CrossRef]
- Papa, C.C.; Clay, K.; Cooper, L.T.; Stark, S.C. Science-Based Communication and Education Needed to Improve Forest Carbon Science, Policy, and Management Outcomes. Environ. Res. Lett. 2025, 20, 024044. [Google Scholar] [CrossRef]
- Lambert, C.; Bonnet-Lebrun, A.S.; Grémillet, D. Bridging the Gap Between Lagrangian and Eulerian Species Distribution Models for Abundance Estimation—A Simulation Experiment. J. Biogeogr. 2025, 52, e15078. [Google Scholar] [CrossRef]
- Mwangi, J.G.; Mohammed, S.; Umar, K.M.; Haggar, J.; Santika, T. Towards the Sustainability of African Sandalwood: Understanding the Distribution and Environmental Requirements. Plants People Planet 2024, 7, 1–13. [Google Scholar] [CrossRef]
- Bezeng, B.S.; Ameka, G.; Angui, C.M.V.; Atuah, L.; Azihou, F.; Bouchenak-Khelladi, Y.; Savolainen, V. An African Perspective to Biodiversity Conservation in the Twenty-First Century. Philos. Trans. R. Soc. B 2025, 380, 20230443. [Google Scholar] [CrossRef]
- Lillesand, T.K. Remote Sensing and Image Interpretation, 7th ed.; John Wiley: Chichester, UK, 2004. [Google Scholar]
- Schlickmann, M.B.; Bueno, I.T.; Valle, D.; Hammond, W.M.; Prichard, S.J.; Hudak, A.T.; Silva, C.A. Statewide Forest Canopy Cover Mapping of Florida Using Synergistic Integration of Spaceborne LiDAR, SAR, and Optical Imagery. Remote Sens. 2025, 17, 320. [Google Scholar] [CrossRef]
- Dzizyurova, V.; Dudov, S.; Petrenko, T.; Krestov, P.; Grishchenko, M.; Korznikov, K. A New Map of South Manchurian Mixed Forests Facilitates the Estimation of Their Area for Conservation Purposes. bioRxiv 2025. [Google Scholar] [CrossRef]
- Ochego, H. Application of Remote Sensing in Deforestation Monitoring: A Case Study of the Aberdares (Kenya). In Proceedings of the 2nd FIG Regional Conference, Marrakech, Morocco, 2–5 December 2003; pp. 1–10. [Google Scholar]
- Talha, M.O.M. Perception of Local Communities on the Role of Forest in Livelihoods Support and the Challenge Confronting the Vegetation Cover in Lagawa Circle, West Kordofan State, Sudan. Master’s Thesis, Faculty of Forestry, University of Khartoum, Khartoum, Sudan, 2014. [Google Scholar]
- Starbase. Office of the UN Resident and Humanitarian Coordinator for the Sudan, Sudan Transition and Recovery Database, Report on West Kordofan State, the New Presidential Decree, UN Sudan. 2003, pp. 1–18. Available online: https://sudanarchive.net/?a=d&d=SLPD20030701-01 (accessed on 11 June 2025).
- Harrison, M.N.; Jackson, J.K. Ecological Classification of Vegetation of the Sudan; Forestry Bulletin, No. 2; Forest Department, Ministry of Agriculture: Khartoum, Sudan, 1958.
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zhen, Z.; Chen, S.; Yin, T.; Gastellu-Etchegorry, J.P. 2023. Improving crop mapping by using bidirectional reflectance distribution function (BRDF) signatures with Google Earth Engine. Remote Sens. 2023, 15, 2761. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, Goddard Space Flight Center, Washington, DC, USA, 10–14 December 1973; NASA SP-351. NASA: Washington, DC, USA, 1973; pp. 309–317. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.; Van Leeuwen, W. A Comparison of Vegetation Indices over a Global Set of TM Images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Hano, A.I. Assessment of Impacts of Changes in Land Use Patterns on Land Degradation/Desertification in the Semi-Arid Zone of White Nile State, Sudan, by Means of Remote Sensing and GIS. Ph.D. Thesis, Faculty of Environmental Science, TU Dresden, Dresden, Germany, 2013. [Google Scholar]
- Huete, A.R.; Liu, H.Q. An Error and Sensitivity Analysis of the Atmospheric and Soil-Correcting Variants of the NDVI for the MODIS-LOS. IEEE Trans. Geosci. Remote Sens. 1994, 32, 897–905. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. In Proceedings of the IGARSS ’92 International Geoscience and Remote Sensing Symposium, Houston, TX, USA, 26–29 May 1992; IEEE: New York, NY, USA, 1992; pp. 261–270. [Google Scholar] [CrossRef]
Satellite/Sensor | Acquisition Date | Spectral Bands | Resolution (m) |
---|---|---|---|
Landsat 5 TM | 28 January 1988 | 1, 2, 3, 4 | 30 |
Landsat 5 TM | 26 January 1998 | 1, 2, 3, 4 | 30 |
Landsat 5 TM | 15 January 2008 | 1, 2, 3, 4 | 30 |
OLI 8 | 01 January 2018 | 2, 3, 4, 5 | 30, 15 |
Forest name | Dense (ha) | % | M. Dense (ha) | % | Low Dense (ha) | % | Bareland (ha) | % | Semi-Bareland (ha) | % |
---|---|---|---|---|---|---|---|---|---|---|
Alban Gadeid | 6.48 | 8.14 | 22.95 | 28.85 | 29.79 | 37.44 | - | - | 20.34 | 25.57 |
Alghara | 36 | 10.42 | 98.1 | 28.39 | 129.51 | 37.47 | 81.99 | 23.72 | - | - |
Alkoua | 151.56 | 15.26 | 316.44 | 31.86 | 359.73 | 36.22 | 165.42 | 16.66 | - | - |
Ladi | 29.52 | 13.26 | 67.86 | 30.49 | 77.22 | 34.69 | 47.97 | 21.55 | - | - |
Mehaila | 41.67 | 14.44 | 82.08 | 28.44 | 102.51 | 35.52 | - | - | 62.37 | 21.61 |
Shag Addoban | 60.75 | 9.52 | 194.49 | 30.47 | 274.14 | 42.95 | 108.9 | 17.06 | - | - |
Shingil Shariq | 12.06 | 16.81 | 23.85 | 33.25 | 22.05 | 30.74 | - | - | 13.77 | 19.2 |
Shingil Gharib | 14.04 | 3.26 | 85.95 | 19.93 | 179.01 | 41.51 | - | - | 152.28 | 35.31 |
Shingil Gharib Forest | ||||||||
---|---|---|---|---|---|---|---|---|
Class Name | 1988 | 1998 | 2008 | 2018 | ||||
Area (ha) | % | Area (ha) | % | Area (ha) | % | Area (ha) | % | |
Dense | 90.09 | 20.89 | 70.74 | 16.40 | 92.34 | 21.41 | 14.04 | 3.26 |
Moderate Dense | 151.65 | 35.16 | 111.10 | 25.75 | 185.58 | 43.03 | 85.95 | 19.93 |
Low Dense | 134.10 | 31.09 | 149.90 | 34.77 | 118.08 | 27.38 | 197 | 41.51 |
Semi-Bare Land | 55.44 | 12.85 | 99.54 | 23.08 | 35.28 | 8.18 | 152.30 | 35.31 |
Ladi Forest | ||||||||
Dense | 36.09 | 16.22 | 23.58 | 10.59 | 46.44 | 20.87 | 29.52 | 13.26 |
Moderate Dense | 61.83 | 27.78 | 70.56 | 31.70 | 65.70 | 29.52 | 67.86 | 30.49 |
Low Dense | 77.67 | 34.90 | 81.63 | 36.68 | 63.99 | 78.75 | 77.22 | 34.69 |
Bare Land | 46.98 | 21.11 | 46.80 | 21.03 | 46.44 | 20.87 | 47.97 | 21.55 |
Shingil Shariq Forest | ||||||||
Dense | 10.8 | 15.06 | 6.75 | 9.41 | 8.82 | 12.30 | 12.06 | 16.81 |
Moderate Dense | 19.62 | 27.35 | 23.04 | 32.12 | 19.26 | 26.85 | 23.85 | 33.25 |
Low Dense | 20.25 | 28.23 | 25.20 | 35.13 | 25.74 | 35.88 | 22.05 | 30.74 |
Semi-Bare Land | 21.06 | 29.36 | 16.74 | 23.34 | 17.91 | 24.97 | 13.77 | 19.20 |
Shingil Gharib Forest | ||||||
---|---|---|---|---|---|---|
Class Name | 1988–1998 | 1998–2008 | 2008–2018 | |||
Area (ha) | % | Area (ha) | % | Area (ha) | % | |
Dense Forest (DF) | −19.35 | −4.49 | +21.6 | +5.01 | −78.3 | −18.16 |
Moderate Dense Forest (MDF) | −40.59 | −9.41 | −74.52 | −17.28 | −99.63 | −23.10 |
Low Dense Forest (LDF) | +15.84 | +3.67 | −31.86 | −7.39 | −60.93 | −14.13 |
Semi-Bare Land (SBL) | +44.1 | +10.23 | −64.26 | −14.90 | +117 | +27.13 |
Ladi Forest | ||||||
Dense Forest (DF) | −12.51 | −5.65 | +22.86 | +10.27 | −16.92 | −7.60 |
Moderate Dense Forest (MDF) | +8.73 | +3.92 | −4.86 | −2.18 | +2.16 | +0.97 |
Low Dense Forest (LDF) | +3.96 | +1.78 | −17.64 | −7.93 | +13.23 | +5.94 |
Bare Land (BL) | −0.18 | −0.08 | −0.36 | −0.16 | +1.53 | +0.69 |
Shingil Shariq Forest | ||||||
Dense Forest (DF) | −4.05 | −5.65 | +2.07 | +2.89 | +3.24 | +4.52 |
Moderate Dense Forest (MDF) | +3.42 | +4.77 | −3.78 | −5.27 | +4.59 | +6.40 |
Low Dense Forest (LDF) | +4.95 | +6.90 | +0.54 | +0.75 | −3.69 | −5.14 |
Semi-Bare Land (SBL) | −4.32 | −6.02 | +1.17 | +1.63 | −4.14 | −5.77 |
No. | Aspect | SARVI | NDVI |
---|---|---|---|
1 | Technical effort | More complex to compute due to additional corrections (blue band use); requires higher processing effort. | Simple calculation with fewer bands; computationally less demanding. |
2 | RS data required | Requires satellite sensors with a blue band and preferably medium to high spatial resolution; generally no ground truthing needed. | Works with all sensors providing red and near-infrared bands; often requires ground truthing for accuracy. |
3 | Sensors Compatibility | Limited to sensors that include the blue spectral band (e.g., Landsat, Sentinel-2). | Compatible with a wide range of satellite sensors lacking blue band (e.g., MODIS, AVHRR). |
4 | Accuracy | More accurate in areas with dense or sparse vegetation due to correction for soil background and atmospheric effects; better discrimination of vegetation types. | Performs well in dense, broadleaf vegetation but less accurate with sparse vegetation due to soil background influence and additive noise; limited ability to distinguish vegetation types. |
5 | Cost and Time | Cost-effective since many satellite images are freely available; however, more processing time is needed due to complexity. | Cost-effective and faster to process due to simpler computation. |
6 | Application and multidimensional | Effective for vegetation mapping without ground truth, aerosol and soil noise reduction, and monitoring dryland forest degradation with sparse vegetation. | Widely used for monitoring vegetation health, estimating crop yields, pasture performance, and rangeland carrying capacity; limited in correcting soil and atmospheric noise. |
No. | Forest Name | 2018 | 1988–2018 | ||
---|---|---|---|---|---|
SARVI | NDVI | SARVI | NDVI | ||
1 | Alban Gadeid | 0.048 | 0.118 | −0.136 | 0.074 |
2 | Alghara | 0.052 | 0.127 | −0.130 | 0.093 |
3 | Alkoua | 0.057 | 0.132 | −0.138 | 0.090 |
4 | Ladi | 0.042 | 0.125 | −0.141 | 0.099 |
5 | Mehaila | 0.045 | 0.119 | −0.148 | 0.079 |
6 | Shag Addoban | 0.052 | 0.143 | −0.113 | 0.091 |
7 | Shingil Shariq | 0.047 | 0.139 | −0.109 | 0.109 |
8 | Shingil Gharib | 0.062 | 0.128 | −0.162 | 0.086 |
No. | Forest Name | Threat Metric | % |
---|---|---|---|
1 | Ladi | 0.40 | 40 |
2 | Alkoua | 0.34 | 34 |
3 | Mehaila | 0.31 | 31 |
4 | Alban Gadeed | 0.35 | 35 |
5 | Alghora | 0.33 | 33 |
6 | Shingil Gharib | 0.31 | 31 |
7 | Shingil Shariq | 0.38 | 38 |
8 | Shag Aldoban | 0.33 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasin, E.H.E.; Siddig, A.A.H.; Diab, E.E.; Czimber, K. Evaluating the Efficiency of Two Ecological Indices in Monitoring Forest Degradation in the Drylands of Sudan. Remote Sens. 2025, 17, 2298. https://doi.org/10.3390/rs17132298
Yasin EHE, Siddig AAH, Diab EE, Czimber K. Evaluating the Efficiency of Two Ecological Indices in Monitoring Forest Degradation in the Drylands of Sudan. Remote Sensing. 2025; 17(13):2298. https://doi.org/10.3390/rs17132298
Chicago/Turabian StyleYasin, Emad H. E., Ahmed A. H. Siddig, Eiman E. Diab, and Kornel Czimber. 2025. "Evaluating the Efficiency of Two Ecological Indices in Monitoring Forest Degradation in the Drylands of Sudan" Remote Sensing 17, no. 13: 2298. https://doi.org/10.3390/rs17132298
APA StyleYasin, E. H. E., Siddig, A. A. H., Diab, E. E., & Czimber, K. (2025). Evaluating the Efficiency of Two Ecological Indices in Monitoring Forest Degradation in the Drylands of Sudan. Remote Sensing, 17(13), 2298. https://doi.org/10.3390/rs17132298