Retrieval of Dissolved Oxygen Concentrations in Fishponds in the Guangdong–Hong Kong–Macao Greater Bay Area Using Satellite Imagery and Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Landsat Data Acquisition and Image Processing
2.3. Extraction of Fishponds Boundaries and Environmental Variables in the GBA
2.4. Field Data Collection
2.5. Empirical Mode Decomposition (EMD)
2.6. DO Retrieval Using Machine Learning Method
2.7. Model Validation
2.8. Spatial Patterns and Spatiotemporal Characteristics of Dissolved Oxygen in Fishponds
2.9. Lindeman, Merenda, and Gold (LMG)
3. Results
3.1. Model Performance and Limitations
3.2. Spatial Pattern of DO Levels Across the GBA
3.3. Interannual and Seasonal Variations in DO Concentrations
3.4. The Long-Term Variation of DO Concentration in GBA
4. Discussion
4.1. The Impact Factors of DO Concentration Changes
4.2. Analysis of Human Activity Intervention Intensity
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-Year Retrospective Review of Global Aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef] [PubMed]
- FAO—Food and Agriculture Organization of the United Nations. FAO Yearbook: Fishery and Aquaculture Statistics 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- Bureau of Fisheries, Ministry of Agriculture and Rural Affairs; National Fisheries Technology Extension Center; Chinese Society of Fisheries. China Fishery Statistical Yearbook (2021); China Agriculture Press: Beijing, China, 2021; ISBN 978-7-109-28300-8.
- Xu, Y.; Feng, L.; Fang, H.; Song, X.-P.; Gieseke, F.; Kariryaa, A.; Oehmcke, S.; Gibson, L.; Jiang, X.; Lin, R.; et al. Global Mapping of Human-Transformed Dike-Pond Systems. Remote Sens. Environ. 2024, 313, 114354. [Google Scholar] [CrossRef]
- Liu, X.; Shao, Z.; Cheng, G.; Lu, S.; Gu, Z.; Zhu, H.; Shen, H.; Wang, J.; Chen, X. Ecological Engineering in Pond Aquaculture: A Review from the Whole-process Perspective in China. Rev. Aquac. 2021, 13, 1060–1076. [Google Scholar] [CrossRef]
- Summerfelt, R.C. Water Quality Considerations for Aquaculture. Department of Animal Ecology, Iowa State University: Ames, IA, USA, 2000; pp. 2–7. [Google Scholar]
- Mallya, Y.J. The Effects of Dissolved Oxygen on Fish Growth in Aquaculture; The United Nations University Fisheries Training Programme, Final Project; The United Nations University: Reykjavik, Iceland, 2007. [Google Scholar]
- Topcu, H.; Brockmann, U. Seasonal Oxygen Depletion in the North Sea, a Review. Mar. Pollut. Bull. 2015, 99, 5–27. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Ding, F.; Liu, L.; Yin, F.; Hao, M.; Kang, T.; Zhao, C.; Wang, Z.; Jiang, D. Monitoring Water Quality Parameters in Urban Rivers Using Multi-Source Data and Machine Learning Approach. J. Hydrol. 2025, 648, 132394. [Google Scholar] [CrossRef]
- Cui, W.; Xia, L.; Xie, X.; Pan, C. A Model of Dissolved Oxygen in the Pearl River Estuary Based on Measured Spectrum. J. Guangzhou Univ. (Nat. Sci. Ed.) 2017, 16, 84–92. [Google Scholar]
- Pan, C.; Luo, Z.; Wei, Z.; Wang, L.; Wang, M.; Peng, Y.; Xia, L. Remote Sensing Inversion Technology for the Evaluation of Coastal Water Eutrophication with the Pressure-State-Response Framework. J. Clean. Prod. 2025, 514, 145771. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Melesse, A.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef]
- Dong, L.; Wang, D.; Song, L.; Gong, F.; Chen, S.; Huang, J.; He, X. Monitoring Dissolved Oxygen Concentrations in the Coastal Waters of Zhejiang Using Landsat-8/9 Imagery. Remote Sens. 2024, 16, 1951. [Google Scholar] [CrossRef]
- Kim, Y.H.; Son, S.; Kim, H.-C.; Kim, B.; Park, Y.-G.; Nam, J.; Ryu, J. Application of Satellite Remote Sensing in Monitoring Dissolved Oxygen Variabilities: A Case Study for Coastal Waters in Korea. Environ. Int. 2020, 134, 105301. [Google Scholar] [CrossRef]
- Feng, Y.; He, Y. Assessing Dissolved Oxygen Dynamics in the North Mainstream of the Dongjiang River, China Using Remote Sensing and Field Measurements. Environ. Monit. Assess. 2025, 197, 704. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, J.A.; Tucker, C.S. Measuring Dissolved Oxygen Concentration in Aquaculture; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2002. [Google Scholar]
- Mishra, D.R.; Ogashawara, I.; Gitelson, A.A. Bio-Optical Modeling and Remote Sensing of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Wang, Y.; Wu, H.; Lin, J.; Zhu, J.; Zhang, W.; Li, C. Phytoplankton Blooms off a High Turbidity Estuary: A Case Study in the Changjiang River Estuary. J. Geophys. Res. Ocean. 2019, 124, 8036–8059. [Google Scholar] [CrossRef]
- Tao, H.; Song, K.; Wen, Z.; Liu, G.; Shang, Y.; Fang, C.; Wang, Q. Remote Sensing of Total Suspended Matter of Inland Waters: Past, Current Status, and Future Directions. Ecol. Inform. 2025, 86, 103062. [Google Scholar] [CrossRef]
- Salas, E.A.L.; Kumaran, S.S.; Partee, E.B.; Willis, L.P.; Mitchell, K. Potential of Mapping Dissolved Oxygen in the Little Miami River Using Sentinel-2 Images and Machine Learning Algorithms. Remote Sens. Appl. Soc. Environ. 2022, 26, 100759. [Google Scholar] [CrossRef]
- Chatziantoniou, A.; Spondylidis, S.C.; Stavrakidis-Zachou, O.; Papandroulakis, N.; Topouzelis, K. Dissolved Oxygen Estimation in Aquaculture Sites Using Remote Sensing and Machine Learning. Remote Sens. Appl. Soc. Environ. 2022, 28, 100865. [Google Scholar] [CrossRef]
- Guo, H.; Huang, J.J.; Zhu, X.; Wang, B.; Tian, S.; Xu, W.; Mai, Y. A Generalized Machine Learning Approach for Dissolved Oxygen Estimation at Multiple Spatiotemporal Scales Using Remote Sensing. Environ. Pollut. 2021, 288, 117734. [Google Scholar] [CrossRef]
- Luo, X.; Li, N.; Zhang, Y.; Zhang, Y.; Shi, K.; Qin, B.; Zhu, G.; Jeppesen, E.; Brookes, J.D.; Sun, X. Real-Time Monitoring of Dissolved Oxygen Using a Novel Ground-Based Hyperspectral Proximal Sensing System. ACS EST Water 2025, 5, 825–837. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Shen, W. A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Appl. Sci. 2022, 12, 8654. [Google Scholar] [CrossRef]
- Schonlau, M.; Zou, R.Y. The Random Forest Algorithm for Statistical Learning. Stata J. 2020, 20, 3–29. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, K.; Woolway, R.I.; Wang, X.; Zhang, Y. Climate Warming and Heatwaves Accelerate Global Lake Deoxygenation. Sci. Adv. 2025, 11, eadt5369. [Google Scholar] [CrossRef]
- Luan, S.; Pan, H.; Shen, R.; Xia, X.; Duan, H.; Yuan, W.; Wei, J. High Resolution Water Quality Dataset of Chinese Lakes and Reservoirs from 2000 to 2023. Sci. Data 2025, 12, 572. [Google Scholar] [CrossRef] [PubMed]
- Tiyasha, T.; Tung, T.M.; Bhagat, S.K.; Tan, M.L.; Jawad, A.H.; Mohtar, W.H.M.W.; Yaseen, Z.M. Functionalization of Remote Sensing and On-Site Data for Simulating Surface Water Dissolved Oxygen: Development of Hybrid Tree-Based Artificial Intelligence Models. Mar. Pollut. Bull. 2021, 170, 112639. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Fu, B.; Li, S.; Lao, Z.; Deng, T.; He, W.; He, H.; Chen, Z. Monitoring Multi-Water Quality of Internationally Important Karst Wetland through Deep Learning, Multi-Sensor and Multi-Platform Remote Sensing Images: A Case Study of Guilin, China. Ecol. Indic. 2023, 154, 110755. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Oba, L.; Lubecke, V.M. Empirical Mode Decomposition (EMD) for Platform Motion Compensation in Remote Life Sensing Radar. In Proceedings of the 2022 IEEE Radio and Wireless Symposium (RWS), Las Vegas, NV, USA, 16–19 January 2022; pp. 41–44. [Google Scholar]
- Tian, P.; Cao, X.; Liang, J.; Zhang, L.; Yi, N.; Wang, L.; Cheng, X. Improved Empirical Mode Decomposition Based Denoising Method for Lidar Signals. Opt. Commun. 2014, 325, 54–59. [Google Scholar] [CrossRef]
- Lei, Y.; Lin, J.; He, Z.; Zuo, M.J. A Review on Empirical Mode Decomposition in Fault Diagnosis of Rotating Machinery. Mech. Syst. Signal Process. 2013, 35, 108–126. [Google Scholar] [CrossRef]
- Zampiron, A.; Cameron, S.M.; Nikora, V. On Application of Empirical Mode Decomposition for Turbulence Analysis in Open-Channel Flows. J. Hydraul. Res. 2023, 61, 788–795. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Wu, Y.-N. Application of Empirical Mode Decomposition for Decoding Perception of Faces Using Magnetoencephalography. Sensors 2021, 21, 6235. [Google Scholar] [CrossRef]
- Barbosh, M.; Singh, P.; Sadhu, A. Empirical Mode Decomposition and Its Variants: A Review with Applications in Structural Health Monitoring. Smart Mater. Struct. 2020, 29, 093001. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, Y.; Wu, Z.; Zheng, Z.; Li, J. Spatial Pattern of Urban Heat Island and Multivariate Modeling of Impact Factors in the Guangdong-Hong Kong-Macao Greater Bay Area. Resour. Sci. 2019, 41, 1154–1166. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, H.; Wu, Z. Landscape Ecological Security Assessment Based on Projection Pursuit: A Case Study of Nine Cities in the Pearl River Delta. Acta Ecol. Sin. 2010, 30, 5894–5903. [Google Scholar]
- Wang, F.; Wu, N.; Huang, J.; Xu, H.; Huang, O. Analysis on the Current Situation and Trend of the Watershed Comprehensive Improvement Project of Typical Urban in the Guangdong-Hong Kong-Macao Greater Bay Area. Water Wastewater Eng. 2023, 59, 60–67. [Google Scholar] [CrossRef]
- Mao, Y. The Theoretical Basis and System Innovation of the Construction of Guangdong-Hong Kong-Macao Greater Bay Area. J. Sun-Yatsen Univ. 2019, 59, 173–182. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2022. [Google Scholar]
- Zhong, G. The “Mulberry-Dike Fish Pond” of the Pearl River Delta—An Artificial Ecosystem of Land-Water Interaction. Acta Geogr. Sin. 1980, 35, 200–209. [Google Scholar]
- Guo, S.; Situ, S. The Value and Utilization of Mulberry-Dike-Fish-Pond in the Pearl River Delta in Perspective of the Agricultural Heritage. Trop. Geogr. 2010, 30, 452–458. [Google Scholar]
- Gross, G.; Helder, D.; Begeman, C.; Leigh, L.; Kaewmanee, M.; Shah, R. Initial Cross-Calibration of Landsat 8 and Landsat 9 Using the Simultaneous Underfly Event. Remote Sens. 2022, 14, 2418. [Google Scholar] [CrossRef]
- Qin, Y.; Brando, V.E.; Dekker, A.G.; Blondeau-Patissier, D. Validity of SeaDAS Water Constituents Retrieval Algorithms in Australian Tropical Coastal Waters. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Pahlevan, N.; Mangin, A.; Balasubramanian, S.V.; Smith, B.; Alikas, K.; Arai, K.; Barbosa, C.; Bélanger, S.; Binding, C.; Bresciani, M.; et al. ACIX-Aqua: A Global Assessment of Atmospheric Correction Methods for Landsat-8 and Sentinel-2 over Lakes, Rivers, and Coastal Waters. Remote Sens. Environ. 2021, 258, 112366. [Google Scholar] [CrossRef]
- Feng, L.; Hou, X.; Li, J.; Zheng, Y. Exploring the Potential of Rayleigh-Corrected Reflectance in Coastal and Inland Water Applications: A Simple Aerosol Correction Method and Its Merits. ISPRS J. Photogramm. Remote Sens. 2018, 146, 52–64. [Google Scholar] [CrossRef]
- Xu, H. Extraction of Urban Built-up Land Features from Landsat Imagery Using a Thematicoriented Index Combination Technique. Photogramm. Eng. Remote Sens. 2007, 73, 1381–1391. [Google Scholar] [CrossRef]
- Li, L.; Yang, Y. A Comparison Study on the Classification Accuracy of 11 Common Water Indices Based on Landsat 8 OLI Images. J. Univ. Chin. Acad. Sci. 2023, 41, 755–765. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, Z.; Qiu, J.; Park, E.; Ran, L.; Xie, X.; Yang, X. Spatiotemporal Changes in Mulberry-Dyke-Fish Ponds in the Guangdong-Hong Kong-Macao Greater Bay Area over the Past 40 Years. Water 2021, 13, 2953. [Google Scholar] [CrossRef]
- Zhou, T.; Yang, X.; Cai, S.; Yang, Q.; Zhang, W.; Li, Z.; Ran, L. Long-Term Monitoring of Total Suspended Matter Concentration in Fishponds in the Guangdong-Hong Kong-Macao Greater Bay Area. Environ. Monit. Assess. 2025, 197, 154. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yang, X.; Zhou, T.; Cai, S.; Zhang, W.; Mao, K.; Ou, H.; Ran, L.; Yang, Q.; Wang, Y. Monitoring Chlorophyll-a Concentration Variation in Fish Ponds from 2013 to 2022 in the Guangdong-Hong Kong-Macao Greater Bay Area, China. Remote Sens. 2024, 16, 2033. [Google Scholar] [CrossRef]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring Inland Water Quality Using Remote Sensing: Potential and Limitations of Spectral Indices, Bio-Optical Simulations, Machine Learning, and Cloud Computing. Earth-Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Rilling, G.; Flandrin, P. One or Two Frequencies? The Empirical Mode Decomposition Answers. IEEE Trans. Signal Process. 2007, 56, 85–95. [Google Scholar] [CrossRef]
- Huang, Y.; Schmitt, F.G. Time Dependent Intrinsic Correlation Analysis of Temperature and Dissolved Oxygen Time Series Using Empirical Mode Decomposition. J. Mar. Syst. 2014, 130, 90–100. [Google Scholar] [CrossRef]
- Rilling, G.; Flandrin, P.; Goncalves, P. On Empirical Mode Decomposition and Its Algorithms. In Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, Grado, Italy, 8–11 June 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 3, pp. 8–11. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Shen, M.; Duan, H.; Cao, Z.; Xue, K.; Qi, T.; Ma, J.; Liu, D.; Song, K.; Huang, C.; Song, X. Sentinel-3 OLCI Observations of Water Clarity in Large Lakes in Eastern China: Implications for SDG 6.3. 2 Evaluation. Remote Sens. Environ. 2020, 247, 111950. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R.; Awad, M.; Khanna, R. Support Vector Regression. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Apress: Berkeley, CA, USA, 2015; pp. 67–80. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Cao, Z.; Ma, R.; Melack, J.M.; Duan, H.; Liu, M.; Kutser, T.; Xue, K.; Shen, M.; Qi, T.; Yuan, H. Landsat Observations of Chlorophyll-a Variations in Lake Taihu from 1984 to 2019. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102642. [Google Scholar] [CrossRef]
- Ren, J.; Cui, J.; Dong, W.; Xiao, Y.; Xu, M.; Liu, S.; Wan, J.; Li, Z.; Zhang, J. Remote Sensing Inversion of Typical Offshore Water Quality Parameter Concentration Based on Improved SVR Algorithm. Remote Sens. 2023, 15, 2104. [Google Scholar] [CrossRef]
- Ding, Y.; Gong, X.; Xing, Z.; Cai, H.; Zhou, Z.; Zhang, D.; Sun, P.; Shi, H. Attribution of Meteorological, Hydrological and Agricultural Drought Propagation in Different Climatic Regions of China. Agric. Water Manag. 2021, 255, 106996. [Google Scholar] [CrossRef]
- Zhao, Z.; Hao, X.; Fan, X.; Zhang, J.; Zhang, S.; Li, X. Actual Evapotranspiration Dominates Drought in Central Asia. Remote Sens. 2023, 15, 4557. [Google Scholar] [CrossRef]
- Rajwa-Kuligiewicz, A.; Bialik, R.J.; Rowiński, P.M. Dissolved Oxygen and Water Temperature Dynamics in Lowland Rivers over Various Timescales. J. Hydrol. Hydromech. 2015, 63, 353–363. [Google Scholar] [CrossRef]
- Yue, Z. Analysis of Factors Influencing Dissolved Oxygen in Offshore Watersheds. China Resour. Compr. Util. 2023, 41, 111–113. [Google Scholar]
- Antanasijević, D.; Pocajt, V.; Perić-Grujić, A.; Ristić, M. Modelling of Dissolved Oxygen in the Danube River Using Artificial Neural Networks and Monte Carlo Simulation Uncertainty Analysis. J. Hydrol. 2014, 519, 1895–1907. [Google Scholar] [CrossRef]
- Heddam, S.; Kisi, O. Modelling Daily Dissolved Oxygen Concentration Using Least Square Support Vector Machine, Multivariate Adaptive Regression Splines and M5 Model Tree. J. Hydrol. 2018, 559, 499–509. [Google Scholar] [CrossRef]
- Zang, C.; Huang, S.; Wu, M.; Du, S.; Scholz, M.; Gao, F.; Lin, C.; Guo, Y.; Dong, Y. Comparison of Relationships between pH, Dissolved Oxygen and Chlorophyll a for Aquaculture and Non-Aquaculture Waters. Water Air Soil Pollut. 2011, 219, 157–174. [Google Scholar] [CrossRef]
- Mustapha, M.K. Comparative Assessment of the Water Quality of Four Types of Aquaculture Ponds under Different Culture Systems. Adv. Res. Life Sci. 2017, 1, 104–110. [Google Scholar] [CrossRef]
- Wetzel, R. Limnology: Lake and River Ecosystems; Academic Press: Cambridge, MA, USA, 2001; Volume 1. [Google Scholar]
- Tadesse, I.; Green, F.; Puhakka, J. Seasonal and Diurnal Variations of Temperature, pH and Dissolved Oxygen in Advanced Integrated Wastewater Pond System® Treating Tannery Effluent. Water Res. 2004, 38, 645–654. [Google Scholar] [CrossRef]
- Baxa, M.; Musil, M.; Kummel, M.; Hanzlík, P.; Tesařová, B.; Pechar, L. Dissolved Oxygen Deficits in a Shallow Eutrophic Aquatic Ecosystem (Fishpond)–Sediment Oxygen Demand and Water Column Respiration Alternately Drive the Oxygen Regime. Sci. Total Environ. 2021, 766, 142647. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Zhang, C.; Lv, Z.; Zhang, Z.; Chu, Y.; Shang, D.; Chen, Y.; Chen, C. Analysis of Changes in Nutrient Salts and Other Water Quality Indexes in the Pond Water for Largemouth Bass (Micropterus Salmoides) Farming. Heliyon 2024, 10, e24996. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wen, Z.-Y.; Zou, Y.-C.; Qin, C.-J.; Yuan, D.-Y. Largemouth Bass Pond Culture in China: A Review. Int. J. Vet. Sci. Res. 2017, 3, 014–017. [Google Scholar] [CrossRef]
- Atmomarsono, M.; Tampangallo, B.; Nurbaya; Kamariah, K. Effect of Bacteria Probiotics on Maintaining Water Quality in the Super Alkaline Shrimp Pond Water. IOP Conf. Ser. Earth Environ. Sci. 2022, 1119, 012059. [Google Scholar] [CrossRef]
- Díaz, F.; Re, A.D.; González, R.A.; Sánchez, L.N.; Leyva, G.; Valenzuela, F. Temperature Preference and Oxygen Consumption of the Largemouth Bass Micropterus Salmoides (Lacépède) Acclimated to Different Temperatures. Aquac. Res. 2007, 38, 1387–1394. [Google Scholar] [CrossRef]
- Johansen, J.L.; Akanyeti, O.; Liao, J.C. Oxygen Consumption of Drift-Feeding Rainbow Trout: The Energetic Tradeoff between Locomotion and Feeding in Flow. J. Exp. Biol. 2020, 223, jeb220962. [Google Scholar] [CrossRef]
- New, M.B. Farming Freshwater Prawns: A Manual for the Culture of the Giant River Prawn (Macrobrachium Rosenbergii); Food & Agriculture Organization: Rome, Italy, 2002. [Google Scholar]
- Yang, J.; Huang, X. 30 m Annual Land Cover and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data Discuss. 2021, 2021, 1–29. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, A. Response Space Relationship Research Between Landuse Distributing and Surface Water Quality in Beijing. Environ. Monit. China 2012, 28, 58–62. [Google Scholar]
- Kang, W.; Hong, C.; Lin, G.; Wu, Y.; Wang, Y. Influences of Landscape on River Quality under Different Geomorphological Conditions. Acta Ecol. Sin. 2020, 40, 1031–1043. [Google Scholar] [CrossRef]
DO Value (mg/L) | Minimum | Maximum | Mean | Median | Standard Deviation | Number |
---|---|---|---|---|---|---|
Training set | 5.68 | 9.97 | 7.34 | 7.06 | 1.03 | 51 |
Testing set | 6.15 | 9.81 | 7.29 | 6.99 | 1.07 | 23 |
Validation set | 6.1 | 8.91 | 7.49 | 7.44 | 0.79 | 24 |
Model | Hyperparameters |
---|---|
SVR | C = 10, gamma = 0.01, kernel = ‘rbf’ |
RF | Max depth = 10, min samples split = 2, n estimators = 200 |
XGBoost | Max depth = 7, learning rate = 0.1, n estimators = 200 |
Statistical Indicator | Minimum | Maximum | Mean | Median | Standard Deviation |
---|---|---|---|---|---|
DO Value (mg/L) | 6.80 | 8.45 | 7.44 | 7.43 | 0.259 |
Study Area | WT-DO Correlation (r) | p-Value | WT-DO Contribution Rate (%) | |
---|---|---|---|---|
Previous Studies | Guangdong coastal river (China) | −0.69 | <0.05 | - |
Eastern Yellow Sea (Korea) | −0.74 | <0.05 | - | |
Lake Huron (North America) | −0.71 | <0.05 | - | |
Zhejiang coastal waters (China) | −0.8 | <0.05 | - | |
Our Study: Fishponds | FS | 0.28 | <0.05 | 5 |
HK | 0.57 | <0.05 | 21 | |
HZ | −0.31 | <0.05 | 8 | |
ZS | −0.33 | <0.05 | 11 |
Land Use | Statistics | DO (mg/L) | TSM (mg/L) | Chl-a (μg/L) |
---|---|---|---|---|
Cropland | Median: | 7.485 | 42.185 | 53.329 |
Std: | 0.237 | 29.454 | 7.760 | |
Forest | Median: | 7.628 | 22.405 | 54.777 |
Std: | 0.271 | 22.014 | 8.235 | |
Building | Median: | 7.296 | 62.122 | 53.820 |
Std: | 0.217 | 41.630 | 9.128 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, K.; Wang, D.; Cai, S.; Zhou, T.; Zhang, W.; Yang, Q.; Li, Z.; Yang, X.; Picco, L. Retrieval of Dissolved Oxygen Concentrations in Fishponds in the Guangdong–Hong Kong–Macao Greater Bay Area Using Satellite Imagery and Machine Learning. Remote Sens. 2025, 17, 2277. https://doi.org/10.3390/rs17132277
Mao K, Wang D, Cai S, Zhou T, Zhang W, Yang Q, Li Z, Yang X, Picco L. Retrieval of Dissolved Oxygen Concentrations in Fishponds in the Guangdong–Hong Kong–Macao Greater Bay Area Using Satellite Imagery and Machine Learning. Remote Sensing. 2025; 17(13):2277. https://doi.org/10.3390/rs17132277
Chicago/Turabian StyleMao, Keming, Dakang Wang, Shirong Cai, Tao Zhou, Wenxin Zhang, Qianqian Yang, Zikang Li, Xiankun Yang, and Lorenzo Picco. 2025. "Retrieval of Dissolved Oxygen Concentrations in Fishponds in the Guangdong–Hong Kong–Macao Greater Bay Area Using Satellite Imagery and Machine Learning" Remote Sensing 17, no. 13: 2277. https://doi.org/10.3390/rs17132277
APA StyleMao, K., Wang, D., Cai, S., Zhou, T., Zhang, W., Yang, Q., Li, Z., Yang, X., & Picco, L. (2025). Retrieval of Dissolved Oxygen Concentrations in Fishponds in the Guangdong–Hong Kong–Macao Greater Bay Area Using Satellite Imagery and Machine Learning. Remote Sensing, 17(13), 2277. https://doi.org/10.3390/rs17132277