Landslide Hazard Assessment Under Record-Breaking Extreme Rainfall: Integration of SBAS-InSAR and Machine Learning Models
Abstract
1. Introduction
2. Overview of Regional Geological Background
2.1. Regional Geological Overview
2.2. Meteorological and Extreme Rainfall Characteristics
2.3. Landslide Inventory and Classification
3. Methodology
3.1. SBAS-InSAR Processing Workflow
3.2. Selection of Evaluation Factors
3.3. Analysis and Validation of Regional Geological Hazard Risk Under Extreme Rainfall Conditions
4. Results
4.1. Model Evaluation Results
4.2. Factor Contribution Under Extreme Rainfall Conditions
4.3. Field Validation of Typical Cases
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Shan, X.; Gong, W.; Zhang, G.; Qu, C.; Li, T. Strain Accommodation and Seismic Hazards of the Kalpin Fold-And-Thrust Belt, Southwestern Tian Shan Foreland, China: Insights From the 2020 Mw 6.0 Kalpin Earthquake. J. Geophys. Res. Solid Earth 2023, 128, e2022JB025328. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Sharma, M.; Kite, J.S.; Donaldson, K.A.; Thompson, J.A.; Bell, M.L.; Maynard, S.M. Slope failure prediction using random forest machine learning and LiDAR in an eroded folded mountain belt. Remote Sens. 2020, 12, 486. [Google Scholar] [CrossRef]
- Kumar, A.; Asthana, A.; Priyanka, R.S.; Jayangondaperumal, R.; Gupta, A.K.; Bhakuni, S. Assessment of landslide hazards induced by extreme rainfall event in Jammu and Kashmir Himalaya, northwest India. Geomorphology 2017, 284, 72–87. [Google Scholar] [CrossRef]
- Zhao, Y.; Meng, X.; Qi, T.; Chen, G.; Li, Y.; Yue, D.; Qing, F. Modeling the spatial distribution of debris flows and analysis of the controlling factors: A machine learning approach. Remote Sens. 2021, 13, 4813. [Google Scholar] [CrossRef]
- Abbate, A.; Longoni, L.; Ivanov, V.I.; Papini, M. Wildfire impacts on slope stability triggering in mountain areas. Geosciences 2019, 9, 417. [Google Scholar] [CrossRef]
- Huggel, C.; Clague, J.J.; Korup, O. Is climate change responsible for changing landslide activity in high mountains? Earth Surf. Process. Landf. 2012, 37, 77–91. [Google Scholar] [CrossRef]
- Pregnolato, M.; Ford, A.; Glenis, V.; Wilkinson, S.; Dawson, R. Impact of climate change on disruption to urban transport networks from pluvial flooding. J. Infrastruct. Syst. 2017, 23, 04017015. [Google Scholar] [CrossRef]
- Wood, J.; Harrison, S.; Reinhardt, L.; Taylor, F. Landslide databases for climate change detection and attribution. Geomorphology 2020, 355, 107061. [Google Scholar] [CrossRef]
- Dore, M.H. Climate change and changes in global precipitation patterns: What do we know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef]
- Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.; Gergis, J. Water cycle changes. In Climate Change 2021–The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 1055–1210. [Google Scholar] [CrossRef]
- Duan, R.; Huang, G.; Zhou, X.; Lu, C.; Tian, C. Record-Breaking heavy rainfall around Henan Province in 2021 and future projection of extreme conditions under climate change. J. Hydrol. 2023, 625, 130102. [Google Scholar] [CrossRef]
- Yuan, X.; Wei, Y.; Wang, B.; Mi, Z. Risk management of extreme events under climate change. J. Clean. Prod. 2017, 166, 1169–1174. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef]
- Luo, R.; Zhang, M.; Ma, G. Regional Representativeness Analysis of Ground-Monitoring PM2.5 Concentration Based on Satellite Remote Sensing Imagery and Machine Learning Techniques. Remote Sens. 2023, 15, 3040. [Google Scholar] [CrossRef]
- Fobert, M.-A.; Singhroy, V.; Spray, J.G. InSAR monitoring of landslide activity in Dominica. Remote Sens. 2021, 13, 815. [Google Scholar] [CrossRef]
- Yang, Z.; Xi, W.; Yang, Z.; Shi, Z.; Qian, T. Monitoring and prediction of glacier deformation in the meili snow mountain based on InSAR technology and GA-BP neural network algorithm. Sensors 2022, 22, 8350. [Google Scholar] [CrossRef]
- Du, J.; Li, Z.; Song, C.; Zhu, W.; Ji, Y.; Zhang, C.; Chen, B.; Su, S. InSAR-based active landslide detection and characterization along the upper reaches of the Yellow River. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3819–3830. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Li, J.; Xing, X.; Ou, J. Locating and characterizing potential rainfall-induced landslides on a regional scale based on SBAS-InSAR technique. Bull. Eng. Geol. Environ. 2023, 82, 329. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Jiang, M.; Zhang, S.; Wu, Y.; Zhong, Y. Extreme rainfall-related accelerations in landslides in Danba County, Sichuan Province, as detected by InSAR. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103109. [Google Scholar] [CrossRef]
- Dong, J.; Niu, R.; Li, B.; Xu, H.; Wang, S. Potential landslides identification based on temporal and spatial filtering of SBAS-InSAR results. Geomat. Nat. Hazards Risk 2023, 14, 52–75. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geod. Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Zhao, P.; Wen, G.; He, Z.; Wang, G.; Chen, L.; Shen, X.; Wang, K.; Tang, H. Shallow landslide susceptibility assessment in Jinsha River basin based on machine learning models. Water Resour. Hydropower Eng. 2024, 55, 53–70. [Google Scholar] [CrossRef]
- Alcantara-Ayala, I. Hazard assessment of rainfall-induced landsliding in Mexico. Geomorphology 2004, 61, 19–40. [Google Scholar] [CrossRef]
- Bogaard, T.A.; Greco, R. Landslide hydrology: From hydrology to pore pressure. Wiley Interdiscip. Rev. Water 2016, 3, 439–459. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alves, L.M.; Ambrizzi, T.; Young, A.; Barreto, N.J.; Ramos, A.M. Trends in extreme rainfall and hydrogeometeorological disasters in the Metropolitan Area of São Paulo: A review. Ann. N. Y. Acad. Sci. 2020, 1472, 5–20. [Google Scholar] [CrossRef]
- Shou, K.-J.; Lin, J.-F. Evaluation of the extreme rainfall predictions and their impact on landslide susceptibility in a sub-catchment scale. Eng. Geol. 2020, 265, 105434. [Google Scholar] [CrossRef]
- Huang, F.; Chen, J.; Liu, W.; Huang, J.; Hong, H.; Chen, W. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology 2022, 408, 108236. [Google Scholar] [CrossRef]
- Achu, A.; Thomas, J.; Aju, C.; Vijith, H.; Gopinath, G. Redefining landslide susceptibility under extreme rainfall events using deep learning. Geomorphology 2024, 448, 109033. [Google Scholar] [CrossRef]
- Peng, J.; Shen, Y.; Jin, Z.; Liu, T.; Li, Y.; Zhuang, J.; Wang, Z.; Yu, C.; Cheng, Y.; Ma, P.; et al. Key thoughts on the study of eco-geological environment system in Qinling Mountains. Acta Ecol. Sin. 2023, 43, 4344–4358. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Zhao, F.; Li, H.; Liu, H. Research on risk assessment of geological hazards in Qinling-Daba mountain area, south Shaanxi Province. J. Geomech. 2019, 25, 544–553. [Google Scholar] [CrossRef]
- Zheng, W.; Cao, Y.; Fan, W.; Liang, X.; Yuan, S.; Guo, Q.; Zhang, J. Influence of faults on landslide formation and distribution: Insights from the Hanwang Fault Zone in the Qinling-Daba Mountains, China. Geomorphology 2025, 472, 109603. [Google Scholar] [CrossRef]
- Fan, W.; Lv, J.; Cao, Y.; Shen, M.; Deng, L.; Wei, Y. Characteristics and block kinematics of a fault-related landslide in the Qinba Mountains, western China. Eng. Geol. 2019, 249, 162–171. [Google Scholar] [CrossRef]
- Li, G.; Chen, J. New progresses in the research of heavy rain vortices formed over the southwest China. Torrential Rain Disasters 2018, 37, 293–302. [Google Scholar]
- Li, L.; Zhang, R.; Wen, M. Genesis of southwest vortices and its relation to Tibetan Plateau vortices. Q. J. R. Meteorol. Soc. 2017, 143, 2556–2566. [Google Scholar] [CrossRef]
- Fu, S.; Mai, Z.; Sun, J.; Li, W.; Ding, Y.; Wang, Y. Impacts of convective activity over the Tibetan Plateau on plateau vortex, southwest vortex, and downstream precipitation. J. Atmos. Sci. 2019, 76, 3803–3830. [Google Scholar] [CrossRef]
- Zheng, W.; Cao, Y.; Fan, W.; Liang, X.; Yuan, S.; Gao, W.; Zhang, J. Formation processes and mechanisms of a fault-controlled colluvial landslide in the Qinling-Daba Mountains, China. Sci. Rep. 2024, 14, 19167. [Google Scholar] [CrossRef]
- Song, Y.; Fan, W.; Li, J.; Du, X. Risk assessment of property loss caused by unstable slopes under different rainfall conditions—A case study of Xinglong Town of Zhenba County. J. Eng. Geol. 2020, 28, 401–411. [Google Scholar] [CrossRef]
- Sun, D. Machine Learning-Based Landslide Susceptibility Zonation and Study on Rainfall-Induced Landslide Prediction and Early Warning; East China Normal University: Shanghai, China, 2019. [Google Scholar]
- Wu, C. Zhenba Sheet I-48-XXXV1 1:200,000 Regional Geological Survey Report; National Geological Archives: Nottinghamshire, UK, 1958. [Google Scholar]
- Liu, Z. The Regional Tectonic Characteristic and Their Evolution of Zhenba-Ziyang, Southern Shaanxi; Chang’an University: Xi’an, China, 2008. [Google Scholar]
- Wu, G.; Chen, H.; Tian, M.; Shi, W.; Gao, W. Study on Jurassic superposed deformation in Yudu area located in the middle of Dabashan tectonic belt. J. Earth Sci. Environ. 2010, 32, 130–136. [Google Scholar]
- Guo, X. Yanshanian Superposed Structural Characteristics of West Margin of Foreland Fold Belt of South Dabashan; Northwest University: Xi’an, China, 2009. [Google Scholar]
- Zhang, Z. Superposed buckle folding at the upper structural levels in western Dabashan: Example from the Jianchi area in Zhenba County. Earth Sci. Front. 2019, 26, 1–15. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Liu, S.; Tong, K.; Ye, Y.; Ran, B.; Han, C. Magnetic fabrics of the South Dabashan Belt at the north margin of South China: Constraint on the origin of the arcuate trace of Chengkou Fault. J. Struct. Geol. 2020, 140, 104149. [Google Scholar] [CrossRef]
- Hughes, M.; Hall, A.; Fovell, R.G. Blocking in areas of complex topography, and its influence on rainfall distribution. J. Atmos. Sci. 2009, 66, 508–518. [Google Scholar] [CrossRef]
- Nseka, D.; Kakembo, V.; Bamutaze, Y.; Mugagga, F. Analysis of topographic parameters underpinning landslide occurrence in Kigezi highlands of southwestern Uganda. Nat. Hazards 2019, 99, 973–989. [Google Scholar] [CrossRef]
- Wicki, A.; Lehmann, P.; Hauck, C.; Stähli, M. Impact of topography on in situ soil wetness measurements for regional landslide early warning—A case study from the Swiss Alpine Foreland. Nat. Hazards Earth Syst. Sci. 2023, 23, 1059–1077. [Google Scholar] [CrossRef]
- Shrestha, N. Detecting multicollinearity in regression analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Kim, J.H. Multicollinearity and misleading statistical results. Korean J. Anesthesiol. 2019, 72, 558–569. [Google Scholar] [CrossRef]
- Lin, J.; Chen, W.; Qi, X.; Hou, H. Risk assessment and its influencing factors analysis of geological hazards in typical mountain environment. J. Clean. Prod. 2021, 309, 127077. [Google Scholar] [CrossRef]
- Hua, Y.; Wang, X.; Li, Y.; Xu, P.; Xia, W. Dynamic development of landslide susceptibility based on slope unit and deep neural networks. Landslides 2021, 18, 281–302. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Zhang, J.; Sun, D.; Zhou, X.; Mi, C.; Wen, H. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J. Environ. Manag. 2023, 332, 117357. [Google Scholar] [CrossRef]
- Sun, D.; Wu, X.; Wen, H.; Gu, Q. A LightGBM-based landslide susceptibility model considering the uncertainty of non-landslide samples. Geomat. Nat. Hazards Risk 2023, 14, 2213807. [Google Scholar] [CrossRef]
- Arabameri, A.; Pradhan, B.; Rezaei, K.; Lee, C.-W. Assessment of landslide susceptibility using statistical-and artificial intelligence-based FR–RF integrated model and multiresolution DEMs. Remote Sens. 2019, 11, 999. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Sterlacchini, S.; Ballabio, C.; Blahut, J.; Masetti, M.; Sorichetta, A. Spatial agreement of predicted patterns in landslide susceptibility maps. Geomorphology 2011, 125, 51–61. [Google Scholar] [CrossRef]
- Zêzere, J.L.; Pereira, S.; Melo, R.; Oliveira, S.; Garcia, R.A. Mapping landslide susceptibility using data-driven methods. Sci. Total Environ. 2017, 589, 250–267. [Google Scholar] [CrossRef] [PubMed]
- Cantarino, I.; Carrion, M.A.; Goerlich, F.; Martinez Ibañez, V. A ROC analysis-based classification method for landslide susceptibility maps. Landslides 2019, 16, 265–282. [Google Scholar] [CrossRef]
- Li, Z. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Comput. Environ. Urban Syst. 2022, 96, 101845. [Google Scholar] [CrossRef]
- Offenthaler, I.; Felderer, A.; Formayer, H.; Glas, N.; Leidinger, D.; Leopold, P.; Schmidt, A.; Lexer, M.J. Threshold or limit? precipitation dependency of Austrian landslides, an ongoing challenge for hazard mapping under climate change. Sustainability 2020, 12, 6182. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Fielding, E.J.; Sangha, S.S.; Bekaert, D.P. Landslide sensitivity and response to precipitation changes in wet and dry climates. Geophys. Res. Lett. 2022, 49, e2022GL099499. [Google Scholar] [CrossRef]
- Mallick, J.; Alqadhi, S.; Talukdar, S.; AlSubih, M.; Ahmed, M.; Khan, R.A.; Kahla, N.B.; Abutayeh, S.M. Risk assessment of resources exposed to rainfall induced landslide with the development of GIS and RS based ensemble metaheuristic machine learning algorithms. Sustainability 2021, 13, 457. [Google Scholar] [CrossRef]
- Ram, P.; Gupta, V. Landslide hazard, vulnerability, and risk assessment (HVRA), Mussoorie township, lesser himalaya, India. Environ. Dev. Sustain. 2022, 24, 473–501. [Google Scholar] [CrossRef]
- Roccati, A.; Paliaga, G.; Luino, F.; Faccini, F.; Turconi, L. GIS-based landslide susceptibility mapping for land use planning and risk assessment. Land 2021, 10, 162. [Google Scholar] [CrossRef]
- Kulsoom, I.; Hua, W.; Hussain, S.; Chen, Q.; Khan, G.; Shihao, D. SBAS-InSAR based validated landslide susceptibility mapping along the Karakoram Highway: A case study of Gilgit-Baltistan, Pakistan. Sci. Rep. 2023, 13, 3344. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, Y.; Liang, Y.; Sun, P.; Li, Y.; Su, X.; Wang, A.; Meng, X. Landslide risk assessment using a combined approach based on InSAR and random forest. Remote Sens. 2022, 14, 2131. [Google Scholar] [CrossRef]
- Zhong, J.; Li, Q.; Zhang, J.; Luo, P.; Zhu, W. Risk assessment of geological landslide hazards using D-InSAR and remote sensing. Remote Sens. 2024, 16, 345. [Google Scholar] [CrossRef]
- Gao, X.; Wang, S.; Gao, P. Active landslide identification with a combined method of D-InSAR and random forest model. Chin. J. Geol. Hazard Control 2022, 33, 102–108. [Google Scholar] [CrossRef]
- Romeo, S.; D’Angiò, D.; Fraccica, A.; Licata, V.; Vitale, V.; Chiessi, V.; Amanti, M.; Bonasera, M. Investigation and preliminary assessment of the Casamicciola landslide in the island of Ischia (Italy) on November 26, 2022. Landslides 2023, 20, 1265–1276. [Google Scholar] [CrossRef]
- Sadeghi, H.; Kiani, M.; Sadeghi, M.; Jafarzadeh, F. Geotechnical characterization and collapsibility of a natural dispersive loess. Eng. Geol. 2019, 250, 89–100. [Google Scholar] [CrossRef]
- Bordoni, M.; Meisina, C.; Valentino, R.; Lu, N.; Bittelli, M.; Chersich, S. Hydrological factors affecting rainfall-induced shallow landslides: From the field monitoring to a simplified slope stability analysis. Eng. Geol. 2015, 193, 19–37. [Google Scholar] [CrossRef]
- Mondini, A.C.; Guzzetti, F.; Chang, K.-T.; Monserrat, O.; Martha, T.R.; Manconi, A. Landslide failures detection and mapping using Synthetic Aperture Radar: Past, present and future. Earth-Sci. Rev. 2021, 216, 103574. [Google Scholar] [CrossRef]
- Mtibaa, S.; Tsunetaka, H. Revealing the relation between spatial patterns of rainfall return levels and landslide density. Earth Surf. Dyn. 2023, 11, 461–474. [Google Scholar] [CrossRef]
- Zhao, L.; Fan, W.; Chai, X. Study on the development regularity of geohazards in Qinling-Daba mountains: A case study of Zhenba County, Shaanxi Province. Geol. Resour. 2020, 29, 187–195. [Google Scholar] [CrossRef]
- Tsunetaka, H. Comparison of the return period for landslide-triggering rainfall events in Japan based on standardization of the rainfall period. Earth Surf. Process. Landf. 2021, 46, 2984–2998. [Google Scholar] [CrossRef]
- Westra, S.; Fowler, H.J.; Evans, J.P.; Alexander, L.V.; Berg, P.; Johnson, F.; Kendon, E.J.; Lenderink, G.; Roberts, N. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 2014, 52, 522–555. [Google Scholar] [CrossRef]
- Dong, Y.; Shi, X.; Sun, S.; Sun, J.; Hui, B.; He, D.; Chong, F.; Yang, Z. Co-evolution of the Cenozoic tectonics, geomorphology, environment and ecosystem in the Qinling Mountains and adjacent areas, Central China. Geosystems Geoenvironment 2022, 1, 100032. [Google Scholar] [CrossRef]
DNN | RF | XGBoost | LightGBM | |||||
---|---|---|---|---|---|---|---|---|
Kappa value | Training | Prediction | Training | Prediction | Training | Prediction | Training | Prediction |
0.833 | 0.812 | 0.763 | 0.741 | 0.815 | 0.801 | 0.807 | 0.791 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, W.; Fan, W.; Cao, Y.; Nan, Y.; Jing, P. Landslide Hazard Assessment Under Record-Breaking Extreme Rainfall: Integration of SBAS-InSAR and Machine Learning Models. Remote Sens. 2025, 17, 2265. https://doi.org/10.3390/rs17132265
Zheng W, Fan W, Cao Y, Nan Y, Jing P. Landslide Hazard Assessment Under Record-Breaking Extreme Rainfall: Integration of SBAS-InSAR and Machine Learning Models. Remote Sensing. 2025; 17(13):2265. https://doi.org/10.3390/rs17132265
Chicago/Turabian StyleZheng, Wenbo, Wen Fan, Yanbo Cao, Yalin Nan, and Pengxu Jing. 2025. "Landslide Hazard Assessment Under Record-Breaking Extreme Rainfall: Integration of SBAS-InSAR and Machine Learning Models" Remote Sensing 17, no. 13: 2265. https://doi.org/10.3390/rs17132265
APA StyleZheng, W., Fan, W., Cao, Y., Nan, Y., & Jing, P. (2025). Landslide Hazard Assessment Under Record-Breaking Extreme Rainfall: Integration of SBAS-InSAR and Machine Learning Models. Remote Sensing, 17(13), 2265. https://doi.org/10.3390/rs17132265