The Bright Decade of Ocean Salinity from Space
Abstract
1. Sea Surface Salinity: Background and Ongoing Efforts
1.1. Ocean Salinity Relevance in Oceanography and Water Cycle
1.2. Satellite SSS Sensors and Measurement Principles/Challenges (SMOS, Aquarius, SMAP)
1.2.1. SMOS
1.2.2. Aquarius
1.2.3. SMAP
1.3. Features of the Current Version of the Satellite Salinity Mission Processors
1.4. Mission Supporting Field Campaigns
1.5. Pi-MEP Salinity—Validation Strategies and Metrics
1.6. Additional Operational Production Chains
1.7. Climate Data Records
2. Research Advances in the Last Decade
- Climate Applications,
- Science Applications, and
- Operational Applications.
2.1. Climate Applications
2.2. Science Applications
2.2.1. The Freshwater Domain
2.2.2. The Buoyancy Domain
2.2.3. The Bio-Geo-Chemistry Domain
2.3. Operational Applications
2.3.1. Data Assimilation
2.3.2. Prognostic
2.3.3. Dedicated Regional Datasets
3. Missions in the Upcoming Decade
3.1. Short-Term Developments of Ongoing Missions
3.2. The CIMR Mission: Rationale and Multifrequency Capabilities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barale, V. Half-a-Century of Oceans from Space: Features & Futures. Remote Sens. 2023, 15, 4064. [Google Scholar] [CrossRef]
- Barale, V.; Gower, J.F.R.; Alberotanza, L. (Eds.) Oceans from Space, Venice 2000, Abstracts; EUR 19661 EN; Publication Office of the European Union: Luxemburg, 2010; p. 282. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC20666 (accessed on 19 June 2025).
- Lagerloef, G.; Font, J. SMOS and Aquarius/SAC-D Missions: The Era of Space Borne Salinity Measurements is About to Begin. In Oceanography from Space, Revisited; Barale, V., Gower, J.F.R., Alberotanza, L., Eds.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; London, UK; New York, NY, USA, 2010; pp. 35–58. [Google Scholar] [CrossRef]
- Barale, V.; Gower, J.F.R.; Alberotanza, L. (Eds.) Proceedings “Oceans from Space” V, Venice 2022; NSA GROUP: Roma, Italy, 2022; p. 252. [Google Scholar] [CrossRef]
- Durack, P.J. Ocean salinity and the global water cycle. Oceanography 2015, 28, 20–31. [Google Scholar] [CrossRef]
- Roemmich, D.; Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr. 2009, 82, 81–100. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Suess, M.; Matos, P.; Gutierrez, A.; Zundo, M.; Martín-Neira, M. Processing of SMOS level 1C data onto a discrete global grid. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2004), Anchorage, AK, USA, 20–24 September 2004; Volume 3, pp. 1914–1917. [Google Scholar]
- Daganzo-Eusebio, E.; Oliva, R.; Kerr, Y.H.; Nieto, S.; Richaume, P.; Mecklenburg, S.M. SMOS Radiometer in the 1400–1427-MHz Passive Band: Impact of the RFI Environment and Approach to Its Mitigation and Cancellation. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4999–5007. [Google Scholar] [CrossRef]
- Boutin, J.; Martin, N.; Yin, X.; Font, J.; Reul, N.; Spurgeon, P. First Assessment of SMOS Data Over Open Ocean: Part II—Sea Surface Salinity. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1662–1675. [Google Scholar] [CrossRef]
- Yueh, S.H.; Chaubell, J. Sea surface salinity and wind retrieval using combined passive and active L-band microwave observations. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1022–1032. [Google Scholar] [CrossRef]
- Reul, N.; Fournier, S.; Boutin, J.; Hernandez, O.; Maes, C.; Chapron, B.; Alory, G.; Quilfen, Y.; Tenerelli, J.; Morisset, S.; et al. Sea Surface Salinity Observations from Space with the SMOS Satellite: A New Means to Monitor the Marine Branch of the Water Cycle. Surv. Geophys. 2014, 35, 681–722. [Google Scholar] [CrossRef]
- Boutin, J.; Vergely, J.-L.; Dinnat, E.P.; Waldteufel, P.; D’Amico, F.; Reul, N.; Supply, A.; Thouvenin-Masson, C. Correcting sea surface temperature spurious effects in salinity retrieved from spaceborne L-band radiometer measurements. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7256–7269. [Google Scholar] [CrossRef]
- Yin, X.; Boutin, J.; Dinnat, E.; Song, Q.; Martin, A. Roughness and foam signature on SMOS-MIRAS brightness temperatures: A semi-theoretical approach. Remote Sens. Environ. 2016, 180, 221–233. [Google Scholar] [CrossRef]
- Spurgeon, P.; Font, J.; Boutin, J.; Reul, N.; Tenerelli, J.; Vergely, J.L.; Gabarro, C.; Yin, X.; Lavender, S.; Chuprin, A.; et al. Ocean salinity retrieval approaches for the SMOS satellite. In Proceedings of the ESA Living Planet Symposium, Bergen, Norway, 28 June–2 July 2010. [Google Scholar]
- Martín-Neira, M.; Oliva, R.; Corbella, I.; Torres, F.; Duffo, N.; Durán, I.; Kainulainen, J.; Closa, J.; Zurita, A.; Cabot, F.; et al. Lessons learnt from SMOS after 7 years in orbit. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 255–258. [Google Scholar]
- Font, J.; Camps, A.; Borges, A.; Martín-Neira, M.; Boutin, J.; Reul, N.; Kerr, Y.H.; Hahne, A.; Mecklenburg, S. SMOS: The challenging sea surface salinity measurement from space. Proc. IEEE 2009, 98, 649–665. [Google Scholar] [CrossRef]
- Lagerloef, G.; Colomb, F.R.; Le Vine, D.; Wentz, F.; Yueh, S.; Ruf, C.; Lilly, J.; Gunn, J.; Chao, Y.; de Charon, A.; et al. The Aquarius/SAC-D mission—Designed to meet the salinity remote sensing challenge. Oceanogr. Mag. 2008, 21, 68–81. [Google Scholar] [CrossRef]
- Le Vine, D.M.; Matthaeis, P.d. Aquarius active/passive RFI environment at L-band. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1747–1751. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Piepmeier, J.R.; Focardi, P.; Horgan, K.A.; Knuble, J.; Ehsan, N.; Lucey, J.; Brambora, C.; Brown, P.R.; Hoffman, P.J.; French, R.T.; et al. SMAP L-Band Microwave Radiometer: Instrument Design and First Year on Orbit. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1954–1966. [Google Scholar] [CrossRef]
- Mohammed, P.N.; Aksoy, M.; Piepmeier, J.R.; Johnson, J.T.; Bringer, A. SMAP L-band microwave radiometer: RFI mitigation prelaunch analysis and first year on-orbit observations. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6035–6047. [Google Scholar] [CrossRef]
- Olmedo, E.; Martínez, J.; Turiel, A.; Ballabrera-Poy, J.; Portabella, M. Debiased non-Bayesian retrieval: A novel approach to SMOS sea surface salinity. Remote Sens. Environ. 2017, 193, 103–126. [Google Scholar] [CrossRef]
- Mecklenburg, S.; Drusch, M.; Kaleschke, L.; Rodriguez-Fernandez, N.; Reul, N.; Kerr, Y.; Font, J.; Martin-Neira, M.; Oliva, R.; Daganzo-Eusebio, E.; et al. ESA’s Soil Moisture and Ocean Salinity mission: From science to operational applications. Remote Sens. Environ. 2016, 180, 3–18. [Google Scholar] [CrossRef]
- Lindstrom, E.J.; Bryan, F.; Schmitt, R. SPURS: Salinity processes in the upper-ocean regional study—The North Atlantic experiment. Oceanography 2015, 28, 14–19. [Google Scholar] [CrossRef]
- Lindstrom, E.J.; Edson, J.B.; Schanze, J.J.; Shcherbin, A.Y. SPURS-2: Salinity processes in the upper-ocean regional study 2. The eastern equatorial Pacific experiment. Oceanography 2019, 32, 15–19. [Google Scholar] [CrossRef]
- Gordon, A.L.; Giulivi, C.F.; Busecke, J.; Bingham, F.M. Differences among subtropical surface salinity patterns. Oceanography 2015, 28, 32–39. [Google Scholar] [CrossRef]
- Hernandez, O.; Boutin, J.; Kolodziejczyk, N.; Reverdin, G.; Martin, N.; Gaillard, F.; Reul, N.; Vergely, J.L. SMOS salinity in the subtropical North Atlantic salinity maximum: 1. Comparison with Aquarius and in situ salinity. J. Geophys. Res. Ocean. 2014, 119, 8878–8896. [Google Scholar] [CrossRef]
- Drushka, K.; Westbrook, E.; Bingham, F.M.; Gaube, P.; Dickinson, S.; Fournier, S.; Menezes, V.; Misra, S.; Pérez Valentín, J.; Rainville, E.J.; et al. Salinity and Stratification at the Sea Ice Edge (SASSIE): An oceanographic field campaign in the Beaufort Sea. Earth Syst. Sci. Data 2024, 16, 4209–4242. [Google Scholar] [CrossRef]
- Guimbard, S.; Reul, N.; Sabia, R.; Herlédan, S.; Khoury Hanna, Z.E.; Piollé, J.F.; Paul, F.; Lee, T.; Schanze, J.J.; Bingham FMLe Vine, D. The salinity pilot-mission exploitation platform (Pi-mep): A hub for validation and exploitation of satellite sea surface salinity data. Remote Sens. 2021, 13, 4600. [Google Scholar] [CrossRef]
- Boutin, J.; Reul, N.; Koehler, J.; Martin, A.; Catany, R.; Guimbard, S.; Rouffi, F.; Vergely, J.L.; Arias, M.; Chakroun, M.; et al. Satellite-based sea surface salinity designed for ocean and climate studies. J. Geophys. Res. Ocean. 2021, 126, e2021JC017676. [Google Scholar] [CrossRef]
- Guimbard, S.; Reul, N.; Díez-García, R.; Herlédan, S.; El Khoury Hanna, Z.; Lee, T.; Schanze, J.; Bingham, F.; Scipal, K. Advancing Sea Surface Salinity R&D: The Pi-MEP Initiative for Satellite Salinity Data Validation and Exploitation. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 14–19 April 2024; p. 12907. [Google Scholar]
- Boutin, J.; Chao, Y.; Asher, W.E.; Delcroix, T.; Drucker, R.; Drushka, K.; Kolodziejczyk, N.; Lee, T.; Reul, N.; Reverdin, G.; et al. Satellite and In Situ Salinity: Understanding Near-Surface Stratification and Subfootprint Variability. Bull. Am. Meteorol. Soc. 2016, 97, 1391–1407. [Google Scholar] [CrossRef]
- Tarot, S.; Boutin, J.; Kerr, Y.; Vergely, J.L.; Mialon, A.; Vandermarcq, O. CATDS: SMOS L3/L4 salinity products generation and dissemination. In Proceedings of the 7th Ocean Salinity Conference 2024, Noordwijk, The Netherlands, 13–16 May 2024. [Google Scholar]
- Hoareau, N.; Turiel, A.; Portabella, M.; Ballabrera-Poy JVogelzang, J. Singularity power spectra: A method to assess geophysical consistency of gridded products—Application to sea-surface salinity remote sensing maps. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5525–5536. [Google Scholar] [CrossRef]
- Olmedo, E.; González-Haro, C.; Hoareau, N.; Umbert, M.; González-Gambau, V.; Martínez, J.; Gabarró, C.; Turiel, A. Nine years of SMOS sea surface salinity global maps at the Barcelona Expert Center. Earth Syst. Sci. Data Discuss. 2020, 2020, 1–49. [Google Scholar] [CrossRef]
- Melnichenko, O.; Hacker, P.; Potemra, J.; Meissner, T.; Wentz, F. A New Multi-Mission Sea Surface Salinity Optimum Interpolation (OISSS) Analysis for Ocean Research and Applications. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–28 April 2023; p. EGU-3755. [Google Scholar]
- Vinogradova, N.; Lee, T.; Boutin, J.; Drushka, K.; Fournier, S.; Sabia, R.; Stammer, D.; Bayler, E.; Reul, N.; Gordon, A.; et al. Satellite Salinity Observing System: Recent Discoveries and the Way Forward. Front. Mar. Sci. 2019, 6, 243. [Google Scholar] [CrossRef]
- Reul, N.; Grodsky, S.A.; Arias, M.; Boutin, J.; Catany, R.; Chapron, B.; D’amico, F.; Dinnat, E.; Donlon, C.; Fore, A.; et al. Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019). Remote Sens. Environ. 2020, 242, 111769. [Google Scholar]
- Boutin, J.; Yueh, S.; Bindlish, R.; Chan, S.; Entekhabi, D.; Kerr, Y.; Kolodziejczyk, N.; Lee, T.; Reul, N.; Zribi, M. Soil Moisture and Sea Surface Salinity Derived from Satellite-Borne Sensors. Surv. Geophys. 2023, 44, 1449–1487. [Google Scholar] [CrossRef]
- Hasson, A.; Delcroix, T.; Boutin, J.; Dussin, R.; Ballabrera-Poy, J. Analyzing the 2010–2011 La Niña signature in the tropical Pacific sea surface salinity using in situ data, SMOS observations, and a numerical simulation. J. Geophys. Res. Ocean. 2014, 119, 3855–3867. [Google Scholar] [CrossRef]
- Qu, T.; Yu, J.Y. ENSO indices from sea surface salinity observed by Aquarius and Argo. J. Oceanogr. 2014, 70, 367–375. [Google Scholar] [CrossRef]
- Akhil, V.P.; Vialard, J.; Lengaigne, M.; Keerthi, M.G.; Boutin, J.; Vergely, J.L.; Papa, F. Bay of Bengal Sea surface salinity variability using a decade of improved SMOS re-processing. Remote Sens. Environ. 2020, 248, 111964. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y. Satellite and argo observed surface salinity variations in the tropical indian ocean and their association with the Indian Ocean dipole mode. J. Clim. 2015, 28, 695–713. [Google Scholar] [CrossRef]
- Da, N.D.; Foltz, G.R. Interannual variability and multiyear trends of sea surface salinity in the Amazon-Orinoco plume region from satellite observations and an ocean reanalysis. J. Geophys. Res. Ocean. 2022, 127, e2021JC018366. [Google Scholar] [CrossRef]
- Lee, T.; Lagerloef, G.; Gierach, M.M.; Kao, H.-Y.; Yueh, S.; Dohan, K. Aquarius reveals salinity structure of tropical instability waves. Geophys. Res. Lett. 2012, 39, L12610. [Google Scholar] [CrossRef]
- Olivier, L.; Reverdin, G.; Hasson, A.; Boutin, J. Tropical Instability Waves in the Atlantic Ocean: Investigating the Relative Role of Sea Surface Salinity and Temperature From 2010 to 2018. J. Geophys. Res. Ocean. 2020, 125, e2020JC016641. [Google Scholar] [CrossRef]
- Lee, T.; Fournier, S.; Gordon, A.L.; Sprintall, J. Maritime Continent water cycle regulates low-latitude chokepoint of global ocean circulation. Nat. Commun. 2019, 10, 2103. [Google Scholar] [CrossRef]
- Thouvenin-Masson, C.; Boutin, J.; Vergely, J.-L.; Reverdin, G.; Martin, A.C.H.; Guimbard, S.; Reul, N.; Sabia, R.; Catany, R.; Fanton-d’Andon, O.H. Satellite and In Situ Sampling Mismatches: Consequences for the Estimation of Satellite Sea Surface Salinity Uncertainties. Remote Sens. 2022, 14, 1878. [Google Scholar] [CrossRef]
- Stammer, D.; Martins, M.S.; Köhler, J.; Köhl, A. How well do we know ocean salinity and its changes? Prog. Oceanogr. 2021, 190, 102478. [Google Scholar] [CrossRef]
- Sammartino, M.; Aronica, S.; Santoleri, R.; Buongiorno Nardelli, B. Retrieving Mediterranean Sea surface salinity distribution and interannual trends from multi-sensor satellite and in situ data. Remote Sens. 2022, 14, 2502. [Google Scholar] [CrossRef]
- Fournier, S.; Lee, T.; Gierach, M.M. Seasonal and interannual variations of sea surface salinity associated with the Mississippi River plume observed by SMOS and Aquarius. Remote Sens. Environ. 2016, 180, 431–439. [Google Scholar] [CrossRef]
- Grodsky, S.A.; Reverdin, G.; Carton, J.A.; Coles, V.J. Year-to-Year Salinity Changes in the Amazon Plume: Contrasting 2011 and 2012 Aquarius/SAC-D and SMOS Satellite Data. Remote Sens. Environ. 2014, 140, 14–22. [Google Scholar] [CrossRef]
- Boutin, J.; Martin, N.; Reverdin, G.; Morisset, S.; Yin, X.; Centurioni, L.; Reul, N. Sea surface salinity under rain cells: SMOS satellite and in situ drifters observations, Journal of Geophysical Research. Oceans 2014, 119, 5533–5545. [Google Scholar]
- Supply, A.; Boutin, J.; Vergely, J.-L.; Martin, N.; Hasson, A.; Reverdin, G.; Mallet, C.; Viltard, N. Precipitation estimates from SMOS sea-surface salinity. Q. J. R. Meteorol. Soc. 2018, 144 (Suppl. S1), 103–119. [Google Scholar] [CrossRef]
- Drushka, K.; Asher, W.; Jessup, A.; Thompson, E.; Iyer, S.; Clark, D. Capturing fresh layers with the surface salinity profile. Oceanography 2019, 32, 76–85. [Google Scholar] [CrossRef]
- Santos-Garcia, A.; Jacob, M.M.; Jones, W.L.; Asher, W.E.; Hejazin, Y.; Ebrahimi, H.; Rabolli, M. Investigation of rain effects on Aquarius Sea Surface Salinity measurements. J. Geophys. Res. Ocean. 2014, 119, 7605–7624. [Google Scholar] [CrossRef]
- Supply, A.; Boutin, J.; Reverdin, G.; Vergely, J.-L.; Bellenger, H. Variability of Satellite Sea Surface Salinity Under Rainfall. In Satellite Precipitation Measurement: Volume 2; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Anderson, J.; Riser, S. Near-surface variability of temperature and salinity in the near-tropical ocean: Observations from profiling floats. J. Geophys. Res. Ocean. 2014, 119, 2169–9275. [Google Scholar] [CrossRef]
- Reverdin, G.; Morisset, S.; Boutin, J.; Martin, N.; Sena-Martins, M.; Gaillard, F.; Blouch, P.; Rolland, J.; Font, J.; Salvador, J.; et al. Validation of salinity data from surface drifters. J. Atmos. Ocean. Technol. 2014, 31, 967–983. [Google Scholar] [CrossRef]
- Ribas-Ribas, M.; Hamizah Mustaffa, N.I.; Rahlff, J.; Stolle, C.; Wurl, O. Sea surface scanner (s 3): A catamaran for high-resolution measurements of biogeochemical properties of the sea surface microlayer. J. Atmos. Ocean. Technol. 2017, 34, 1433–1448. [Google Scholar] [CrossRef]
- Guimbard, S.; Reul, N.; Chapron, B.; Umbert, M.; Maes, C. Seasonal and interannual variability of the Eastern Tropical Pacific Fresh Pool. J. Geophys. Res. Ocean. 2017, 122, 1749–1771. [Google Scholar] [CrossRef]
- Bingham, F.M.; Busecke, J.; Gordon, A.L.; Giulivi, C.F.; Li, Z. The North Atlantic subtropical surface salinity maximum as observed by Aquarius. J. Geophys. Res. Ocean. 2014, 119, 7741–7755. [Google Scholar] [CrossRef]
- Schanze, J.J.; Schmitt, R.W.; Yu, L.L. The global oceanic freshwater cycle: A state-of-the-art quantification. J. Mar. Res. 2010, 68, 569–595. [Google Scholar] [CrossRef]
- Yu, L. A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res. 2011, 116, C10025. [Google Scholar] [CrossRef]
- Skliris, N.; Zika, J.D.; Nurser, G.; Josey, S.A.; Marsh, R. Global water cycle amplifying at less than the Clausius-Clapeyron rate. Sci. Rep. 2016, 6, 752. [Google Scholar] [CrossRef] [PubMed]
- Reul, N.; Chapron, B.; Zabolotskikh, E.; Donlon, C.; Quilfen, Y.; Guimbard, S.; Piolle, J.F. A revised L-band radio-brightness sensitivity to extreme winds under Tropical Cyclones: The five year SMOS-storm database. Remote Sens. Environ. 2016, 180, 274–291. [Google Scholar] [CrossRef]
- Grodsky, S.A.; Reul, N.; Lagerloef, G.; Reverdin, G.; Carton, J.A.; Chapron, B.; Quilfen, Y.; Kudryavtsev, V.N.; Kao, H.-Y. Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations. Geophys. Res. Lett. 2012, 39, L20603. [Google Scholar] [CrossRef]
- Olmedo, E.; Turiel, A.; González-Gambau, V.; Gonzalez-Haro, C.; Garcia-Espriu, A.; Gabarrò, C.; Portabella, M.; Corbella, I.; Martin-Neira, M.; Arias, M.; et al. Increasing stratification as observed by satellite sea surface salinity measurements. Sci. Rep. 2022, 12, 6279. [Google Scholar] [CrossRef]
- Felton, C.S.; Subrahmanyam, B.; Murty, V.S.N.; Shriver, J.F. Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity. J. Geophys. Res. Ocean. 2014, 119, 4200–4213. [Google Scholar] [CrossRef]
- Kolodziejczyk, N.; Reverdin, G.; Boutin, J.; Hernandez, O. Observation of the surface horizontal thermohaline variability at mesoscale to submesoscale in the north-eastern subtropical Atlantic Ocean. J. Geophys. Res. Ocean. 2015, 120, 2588–2600. [Google Scholar] [CrossRef]
- Sabia, R.; Klockmann, M.; Fernández-Prieto, D.; Donlon, C. A first estimation of SMOS-based ocean surface T-S diagrams. J. Geophys. Res. Ocean. 2014, 119, 7357–7371. [Google Scholar] [CrossRef]
- Piracha, A.; Sabia, R.; Klockmann, M.; Castaldo, L.; Fernandez, D. Satellite-driven estimates of water mass formation and their spatio-temporal evolution. Front. Mar. Sci. 2019, 6, 589. [Google Scholar] [CrossRef]
- Piracha, A.; Olmedo, E.; Turiel, A.; Portabella, M.; González-Haro, C. Using satellite observations of ocean variables to improve estimates of water mass (trans) formation. Front. Mar. Sci. 2023, 10, 1020153. [Google Scholar] [CrossRef]
- Alory, G.; Maes, C.; Delcroix, T.; Reul, N.; Illig, S. Seasonal dynamics of sea surface salinity off Panama: The far Eastern Pacific Fresh Pool. J. Geophys. Res. 2012, 117, C04028. [Google Scholar] [CrossRef]
- Awo, F.M.; Rouault, M.; Ostrowski, M.; Tomety, F.S.; Da-Allada, C.Y.; Jouanno, J. Seasonal cycle of sea surface salinity in the Angola upwelling system. J. Geophys. Res. Ocean. 2022, 127, e2022JC018518. [Google Scholar] [CrossRef]
- Brown, C.W.; Boutin, J.; Merlivat, L. New insights of pCO2 variability in the tropical eastern Pacific Ocean using SMOS SSS. Biogeosci. Discuss. 2015, 12, 4595–4625. [Google Scholar] [CrossRef]
- Umbert, M.; Gabarro, C.; Olmedo, E.; Gonçalves-Araujo, R.; Guimbard, S.; Martinez, J. Using remotely sensed sea surface salinity and colored detrital matter to characterize freshened surface layers in the kara and laptev seas during the ice-free season. Remote Sens. 2021, 13, 3828. [Google Scholar] [CrossRef]
- Fine, R.A.; Willey, D.A.; Millero, F.J. Global variability and changes in ocean total alkalinity from Aquarius satellite data. Geophys. Res. Lett. 2017, 44, 261–267. [Google Scholar] [CrossRef]
- Gregor, L.; Gruber, N. OceanSODA-ETHZ: A global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification. Earth Syst. Sci. Data 2021, 13, 777–808. [Google Scholar] [CrossRef]
- Tranchant, B.; Remy, E.; Greiner, E.; Legalloudec, O. Data assimilation of Soil Moisture and Ocean Salinity (SMOS) observations into the Mercator Ocean operational system: Focus on the El Niño 2015 event. Ocean Sci. 2019, 15, 543. [Google Scholar] [CrossRef]
- Martin, M.; King, R.R.; While, J.; Aguiar, A. Assimilating satellite sea surface salinity data from SMOS, Aquarius and SMAP into a global ocean forecasting system. Q. J. R. Meteorol. Soc. 2018, 145, 705–726. [Google Scholar] [CrossRef]
- Kohl, A.; Martins, M.S.; Stammer, D. Impact of assimilating surface salinity from SMOS on ocean circulation estimates. J. Geophys. Res. Ocean. 2014, 119, 5449–5464. [Google Scholar] [CrossRef]
- Hackert, E.; Kovach, R.M.; Molod, A.; Vernieres, G.; Borovikov, A.; Marshak, J.; Chang, Y. Satellite Sea Surface Salinity Observations Impact on El Niño/Southern Oscillation Predictions: Case Studies from the NASA GEOS Seasonal Forecast System. J. Geophys. Res. Ocean. 2020, 125, e2019JC015788. [Google Scholar] [CrossRef]
- Bayler, E.; Chang, P.S.; De La Cour, J.L.; Helfrich, S.R.; Ignatov, A.; Key, J.; Lance, V.; Leuliette, E.W.; Byrne, D.A.; Liu, Y.; et al. Satellite Oceanography in NOAA: Research, Development, Applications, and Services Enabling Societal Benefits from Operational and Experimental Missions. Remote Sens. 2024, 16, 2656. [Google Scholar] [CrossRef]
- Nardelli, B.; Droghei, R.; Santoleri, R. Multi-dimensional interpolation of SMOS sea surface salinity with surface temperature and in situ salinity data. Remote Sens. Environ. 2016, 180, 392–402. [Google Scholar] [CrossRef]
- Li, L.; Schmitt, R.W.; Ummenhofer, C.C.; Karnauskas, K.B. Implications of North Atlantic Sea surface salinity for summer precipitation over the U.S. Midwest: Mechanisms and predictive value. J. Clim. 2016, 29, 3143–3159. [Google Scholar] [CrossRef]
- Liu, T.; Schmitt, R.W.; Li, L. Global search for autumn-lead sea surface salinity predictors of winter precipitation in southwestern United States. Geophys. Res. Lett. 2018, 45, 8445–8454. [Google Scholar] [CrossRef]
- Olmedo, E.; Gabarró, C.; González-Gambau, V.; Martínez, J.; Ballabrera-Poy, J.; Turiel, A.; Portabella, M.; Fournier, S.; Tong, L. Seven years of SMOS sea surface salinity at high latitudes: Variability in Arctic and sub-Arctic regions. Remote Sens. 2018, 10, 1772. [Google Scholar] [CrossRef]
- González Gambau, V.; Silvano, A.; Olmedo, E.; González-Haro, C.; García Espriu, A.; Turiel, A.; Gabarró, C.; Catany, R.; Naveira-Garabato, A.; Allen, B.; et al. SO-FRESH project: First satellite regional Sea Surface Salinity maps for further understanding of the Southern Ocean dynamics. In Proceedings of the EC-ESA Joint Earth System Science Initiative Workshop, Frascati, Rome, Italy, 22–24 November 2023; Available online: https://hdl.handle.net/10261/369261 (accessed on 19 June 2025).
- Grodsky, S.; Reul, N.; Bentamy, A.; Vandemark, D.; Guimbard, S. Eastern Mediterranean salinification observed in satellite salinity from SMAP mission. J. Mar. Syst. 2019, 198, 103190. [Google Scholar] [CrossRef]
- Gonzalez-Gambau, V.; Olmedo, E.; Haro, C.G.; Turiel, A.; Garcia, A.; Gabarro, C.; Martinez, J.; Alenius, P.; Tuomi, L.; Roiha, P.; et al. First regional SMOS Sea Surface Salinity products over the Baltic Sea: Quality assessment and oceanographic added-value (No. EGU21-15254). In Proceedings of the Copernicus Meetings, Vienna, Austria, 19–30 April 2021. [Google Scholar]
- Olmedo, E.; González-Gambau, V.; Turiel, A.; González-Haro, C.; García-Espriu, A.; Gregoire, M.; Álvera-Azcárate, A.; Buga, L.; Rio, M.H. New SMOS SSS maps in the framework of the Earth Observation data For Science and Innovation in the Black Sea. Earth Syst. Sci. Data Discuss. 2021, 2021, 1–40. [Google Scholar]
- Xie, J.; Raj, R.P.; Bertino, L.; Martínez, J.; Gabarró, C.; Catany, R. Assimilation of sea surface salinities from SMOS in an Arctic coupled ocean and sea ice reanalysis. Ocean Sci. 2023, 19, 269–287. [Google Scholar] [CrossRef]
- Boutin, J.; Vergely, J.-L.; Khvorostyanov, D. De-Biased SMOS SSS L3 V9 Maps Generated by LOCEAN/ACRI-ST Expertise Center. SEANOE. 2024. Available online: https://www.seanoe.org/data/00417/52804/ (accessed on 19 June 2025).
- Johnson, J.T.; Jezek, K.C.; Macelloni, G.; Brogioni, M.; Tsang, L.; Dinnat, E.P.; Walker, J.P.; Ye, N.; Misra, S.; Piepmeier, J.R.; et al. Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4894–4914. [Google Scholar] [CrossRef]
- Jiménez, C.; Tenerelli, J.; Prigent, C.; Kilic, L.; Lavergne, T.; Skarpalezos, S.; Høyer, J.L.; Reul, N.; Donlon, C. Ocean and Sea Ice Retrievals from an End-to-End Simulation of the Copernicus Imaging Microwave Radiometer (CIMR) 1.4–36.5 GHz Measurements. J. Geophys. Res. Ocean. 2021, 126, e2021JC017610. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabia, R.; Boutin, J.; Reul, N.; Lee, T.; Yueh, S.H. The Bright Decade of Ocean Salinity from Space. Remote Sens. 2025, 17, 2261. https://doi.org/10.3390/rs17132261
Sabia R, Boutin J, Reul N, Lee T, Yueh SH. The Bright Decade of Ocean Salinity from Space. Remote Sensing. 2025; 17(13):2261. https://doi.org/10.3390/rs17132261
Chicago/Turabian StyleSabia, Roberto, Jacqueline Boutin, Nicolas Reul, Tong Lee, and Simon H. Yueh. 2025. "The Bright Decade of Ocean Salinity from Space" Remote Sensing 17, no. 13: 2261. https://doi.org/10.3390/rs17132261
APA StyleSabia, R., Boutin, J., Reul, N., Lee, T., & Yueh, S. H. (2025). The Bright Decade of Ocean Salinity from Space. Remote Sensing, 17(13), 2261. https://doi.org/10.3390/rs17132261