Enhanced RT-DETR with Dynamic Cropping and Legendre Polynomial Decomposition Rockfall Detection on the Moon and Mars
Abstract
1. Introduction
2. Materials and Methods
2.1. Datasets
- (a)
- The original image displays the raw grayscale input preserving the original textural features of the lunar and Martian surface. Annotations are explicitly marked with blue bounding boxes, where category labels are anchored at the top of each box.
- (b)
- Enhanced boulder: Local contrast is amplified using CLAHE [27] (), coupled with bilateral filtering () for noise suppression. A spatial weighting matrix with Gaussian attenuation () focuses on regions through weighted fusion (0.7:0.3), accentuating potential boulder structures.
- (c)
- Boulder detection: Adaptive thresholding with dynamic parameters (, ) generates binarized images. Morphological gradients () enhance edges, followed by contour filling after area filtering ().
- (d)
- High-pass trace: A custom high-pass kernel () amplifies gradient responses of linear features. Multi-scale morphological gradients () preserve traces of varying thicknesses. Sobel operators [28] () compute gradient magnitudes, with percentile thresholding (P85) extracting candidate regions.
- (e)
- Trace detection: Wolf binarization [29] () optimizes thin-line features, complemented by morphological closing () to connect fragmented segments. Dynamic line parameters (, ) ensure trace continuity, while skeletonization improves morphological representation.
- (f)
- Integrated results: Red contours denote the detected boulder, while green regions indicate trace distributions. The validation mechanism calculates real-time feature coverage (boulder: 0.5–3.0%, trace: 0.1–2.0%).
2.2. Object Detection Model
2.3. Training, Validation, and Test Datasets
- Coordinate space normalization
- 2.
- Logarithmic scaling
- 3.
- Boundary-constrained
2.4. Structure of Enhanced Object Detect Model
2.5. Experimental Process
3. Results
3.1. Experiment I
3.2. Experiment II
4. Discussion
- (1)
- Limited spatial resolution obscures micro-scale rockfall targets within complex geological backgrounds, particularly in regions with static mega clasts (e.g., Martian debris cones and aeolian tails) that exhibit morphological similarities to rockfall features [17];
- (2)
- Grayscale inputs lack multispectral discriminability, combined with low-illumination dust mantling common in extraterrestrial environments, further reducing target background contrast [40];
- (3)
- (1)
- (2)
- (3)
- Legendre polynomial decomposition: the KANC3 module enhances sensitivity to texture signatures under grayscale ambiguity, which explains the 1% improvement over its baseline [38].
5. Conclusions
- (1)
- Developing multimodal fusion integrating high-resolution imagery with digital elevation models (DEMs) to enable concurrent detection;
- (2)
- Implementing a morphology-adaptive cropping strategy based on rock dimension parameters to optimize region-of-interest selection;
- (3)
- Adopting defect detection-inspired approaches combining background suppression (using wavelet decomposition) and texture enhancement (through Retinex-based processing) to address small-target detection in low-quality planetary imagery.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; et al. Lunar Reconnaissance Orbiter Camer (LROC) Instrument Overview. Space Sci. Rev. 2010, 150, 81–124. [Google Scholar] [CrossRef]
- McEwen, A.S.; Eliason, E.M.; Bergstrom, J.W.; Bridges, N.T.; Hansen, C.J.; Delamere, W.A.; Grant, J.A.; Gulick, V.C.; Herkenhoff, K.E.; Keszthelyi, L.; et al. Mars Reconnaissance Orbiter’s High Resolution Science Experiment (HiRISE). J. Geophys. Res. Planets 2007, 112, E05S02. [Google Scholar] [CrossRef]
- Lobinson, Y.; Brylow, Y.; Hschimmel, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Bickel, V.T.; Conway, S.J.; Tesson, P.-A.; Manconi, A.; Loew, S.; Mall, U. Deep Learning-Driven Detection and Mapping of Rockfalls on Mars. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2831–2841. [Google Scholar] [CrossRef]
- Bickel, V.T.; Aaron, J.; Manconi, A.; Loew, S. Global Drivers Transport Mechanisms of Lunar Rockfalls. J. Geophys. Res. Planets 2021, 126, e2021JE006824. [Google Scholar] [CrossRef]
- Hörz, F.; Basilevsky, A.T.; Head, J.W.; Cintala, M.J. Erosion of lunar surface rocks by impact processes: A synthesis. Planet. Space Sci. 2020, 194, 105105. [Google Scholar] [CrossRef] [PubMed]
- Tesson, P.-A.; Conway, S.J.; Mangold, N.; Ciazela, J.; Lewis, S.R.; Mège, D. Evidence for thermal-stress-induced rockfalls on Mars impact cracter slopes. Icarus 2020, 342, 113503. [Google Scholar] [CrossRef]
- Molaro, J.; Byrne, S. Rates of Temperature Change of Airless Landscapes and Implications for Thermal Stress Weathering. J. Geophys. Rev. Planets 2012, 117, E10011. [Google Scholar] [CrossRef]
- Varga, P.; Grafarend, E. Influence of Tidal Force on the Triggering of Seismic Events. Pure Appl. Geophys. 2018, 175, 1649–1657. [Google Scholar] [CrossRef]
- Dundas, C.M.; Bramson, A.M.; Ojha, L.; Wray, J.J.; Mellon, M.T.; Byrne, S.; McEwen, A.S.; Putzig, N.E.; Viola, D.; Sutton, S.; et al. Exposed Subsurface Ice Sheets in the Martian Mid-Latitudes. Science 2018, 359, 199–201. [Google Scholar] [CrossRef]
- Shoemaker, E.M. The Geology of the Moon. Sci. Am. 1964, 211, 38–47. [Google Scholar] [CrossRef]
- Chuang, F.C.; Beyer, R.A.; McEwen, A.S.; Thomson, B.J. HiRISE Observations of Slope Streaks on Mars. Geophys. Res. Lett. 2007, 34, L20204. [Google Scholar] [CrossRef]
- Senthil Kumar, P.; Sruthi, U.; Krishna, N.; Lakshmi, K.J.P.; Menon, R.; Amitabh; Gopala Krishna, B.; Kring, D.A.; Head, J.W.; Goswami, J.N.; et al. Recent Shallow Moonquake and Impact-Triggered Boulder Falls on the Moon: New Insights from the Schrödinger Basin. J. Geophys. Res. Planets 2016, 121, 147–179. [Google Scholar] [CrossRef]
- Kokelaar, B.P.; Bahia, R.S.; Joy, K.H.; Viroulet, S.; Gray, J.M.N.T. Granular Avalanches on the Moon: Mass-Wasting Conditions, Processes, and Features. J. Geophys. Res. Planets 2017, 122, 1893–1925. [Google Scholar] [CrossRef]
- Bickel, V.T.; Honniball, C.I.; Martinez, S.N.; Rogaski, A.; Sargeant, H.M.; Bell, S.K.; Czaplinski, E.C.; Farrant, B.E.; Harrington, E.M.; Tolometti, G.D.; et al. Analysis of Lunar Boulder Tracks: Implications for Trafficability of Pyroclastic Deposits. J. Geophys. Res. Planets 2019, 124, 1296–1314. [Google Scholar] [CrossRef]
- Bickel, V.T.; Mandrake, L.; Doran, G. Analyzing Multi-Domain Learning for Enhanced Rockfall Mapping in Known and Unknown Planetary Domains. ISPRS J. Photogramm. Remote Sens. 2021, 182, 1–13. [Google Scholar] [CrossRef]
- Bickel, V.T.; Lanaras, C.; Manconi, A.; Loew, S.; Mall, U. Automated Detection of Lunar Rockfalls Using a Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3501–3511. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Perko, H.A.; Nelson, J.D.; Sadeh, W.Z. Surface Cleanliness Effect on Lunar Soil Shear Strength. J. Geotech. Geoenviron. Eng. 2001, 127, 371–383. [Google Scholar] [CrossRef]
- Bickel, V.T.; Aaron, J.; Manconi, A.; Loew, S.; Mall, U. Impacts Drive Lunar Rockfalls over Billions of Years. Nat. Commun. 2020, 11, 2862. [Google Scholar] [CrossRef]
- Colwell, J.E.; Batiste, S.; Horányi, M.; Robertson, S.; Sture, S. Lunar Surface: Dust Dynamics and Regolith Mechanics. Rev. Geophys. Rev. 2007, 45. [Google Scholar] [CrossRef]
- Tsige, M.; Ruiz, J.; del Río, I.A.; Jiménez-Díaz, A. Modeling of Landslides in Valles Marineris, Mars, and Implications for Initiation Mechanism. Earth Moon Planets 2016, 118, 15–26. [Google Scholar] [CrossRef]
- Roberts, G.P.; Matthews, B.; Bristow, C.; Guerrieri, L.; Vetterlein, J. Possible Evidence of Paleomarsquakes from Fallen Boulder Populations, Cerberus Fossae, Mars. J. Geophys. Res. Planets 2012, 117, E02009. [Google Scholar] [CrossRef]
- Zoumpekas, T.; Puig, A.; Salamó, M.; García-Sellés, D.; Blanco Nuñez, L.; Guinau, M. An Intelligent Framework for End-to-End Rockfall Detection. Int. J. Intell. Syst. 2021, 36, 6471–6502. [Google Scholar] [CrossRef]
- Rajasekhar, K.; Rashmitha, M.; Priyanka, S.; Uma Mahesh, S. Rockfall Detection on Moon and Mars Using Deep Learning Models. In Proceedings of Fifth Doctoral Symposium on Computational Intelligence; Springer Nature: Singapore, 2024; pp. 361–374. [Google Scholar] [CrossRef]
- Bickel, V.T.; Mandrake, L.; Doran, G. A Labeled Image Dataset for Deep Learning-Driven Rockfall Detection on the Moon and Mars. Front. Remote Sens. 2021, 2, 640034. [Google Scholar] [CrossRef]
- Mishra, A. Contrast Limited Adaptive Histogram Equalization (CLAHE) Approach for Enhancement of the Microstructures of Friction Stir Welded Joints. arXiv 2021, arXiv:2109.00886. [Google Scholar] [CrossRef]
- Duda, R.O.; Hart, P.E. Use of the Hough Transformation to Detect Lines and Curves in Pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Wolf, C.; Jolion, J.-M.; Chassaing, F. Text Localization, Enhancement and Binarization in Multimedia Documents. In Proceedings of the 2002 International Conference on Pattern Recognition, Montreal, QC, Canada, 11–15 August 2002; Volume 2, pp. 1037–1040. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2016, arXiv:1506.02640. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, D.; Krähenbühl, P.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; et al. Objects as Points. arXiv 2019, arXiv:1904.07850. [Google Scholar] [CrossRef]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillow, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. arXiv 2020, arXiv:2005.12872. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar] [CrossRef]
- Zhao, Y.; Lv, W.; Xu, S.; Wei, J.; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. DETRs Beat YOLOs ON Real-Time Object Detection. arXiv 2024, arXiv:2304.08069. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.S. TorchKAN: Simplified KAN Model with Variations. GitHub Repositories. 2024. Available online: https://github.com/1ssb/torchkan/ (accessed on 27 June 2025).
- Celeghini, E.; Gadella, M.; del Olmo, M.A. Image processing and Legendre Polynomials. arXiv 2023, arXiv:2312.17743v1. Available online: https://arxiv.org/abs/2312.17743v1 (accessed on 27 June 2025).
- Liu, Z.; Xang, J.; Duan, J. A low illumination target detection method based on a dynamic gradient gain allocation strategy. arXiv 2024, arXiv:2404.19756. [Google Scholar] [CrossRef]
Parameter | Specification |
---|---|
Operating system | Windows10 |
Deep learning framework | PyTorch 1.10 |
Programming language | Python 3.10 |
GPU | NVIDIA GeForce RTX 4090 |
CPU | 16 vCPU |
Image size | 320 × 320 |
Initial learning | 0.0001 |
Batch size | 16 |
Epoch | 130 |
Optimizer | AdamW |
Model | Dataset | Size | Precision | Recall | mAP50 | mAP50-95 |
---|---|---|---|---|---|---|
Original-R18 | Val | 320 | 0.332 | 0.231 | 0.196 | 0.0746 |
Test | 0.285 | 0.227 | 0.171 | 0.0626 | ||
Original-R18 | Val | 640 | 0.435 | 0.356 | 0.321 | 0.125 |
Test | 0.334 | 0.343 | 0.264 | 0.0939 | ||
Original-R18 | Val | 1024 | 0.537 | 0.408 | 0.414 | 0.174 |
Test | 0.302 | 0.244 | 0.162 | 0.0579 | ||
Cropped-R18 | Val | 320 | 0.971 | 0.949 | 0.957 | 0.858 |
Test | 0.977 | 0.955 | 0.953 | 0.759 |
Model | Dataset | Precision | Recall | mAP50 | mAP50-95 |
---|---|---|---|---|---|
R18 | Val | 0.971 | 0.949 | 0.957 | 0.858 |
Test | 0.977 | 0.955 | 0.953 | 0.759 | |
R18-KANC3 | Val | 0.978 | 0.959 | 0.967 | 0.866 |
Test | 0.982 | 0.955 | 0.964 | 0.775 | |
YOLOv8 | Val | 0.883 | 0.719 | 0.847 | 0.592 |
Test | 0 | 0 | 0 | 0 | |
YOLOv10 | Val | 0.525 | 0.468 | 0.511 | 0.335 |
Test | 0 | data | 0 | 0 | |
YOLO11 | Val | 0.944 | 0.853 | 0.926 | 0.666 |
Test | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, P.; He, J.; Yang, Y.; Li, Y.; Zhang, H. Enhanced RT-DETR with Dynamic Cropping and Legendre Polynomial Decomposition Rockfall Detection on the Moon and Mars. Remote Sens. 2025, 17, 2252. https://doi.org/10.3390/rs17132252
Zang P, He J, Yang Y, Li Y, Zhang H. Enhanced RT-DETR with Dynamic Cropping and Legendre Polynomial Decomposition Rockfall Detection on the Moon and Mars. Remote Sensing. 2025; 17(13):2252. https://doi.org/10.3390/rs17132252
Chicago/Turabian StyleZang, Panpan, Jinxin He, Yongbin Yang, Yu Li, and Hanya Zhang. 2025. "Enhanced RT-DETR with Dynamic Cropping and Legendre Polynomial Decomposition Rockfall Detection on the Moon and Mars" Remote Sensing 17, no. 13: 2252. https://doi.org/10.3390/rs17132252
APA StyleZang, P., He, J., Yang, Y., Li, Y., & Zhang, H. (2025). Enhanced RT-DETR with Dynamic Cropping and Legendre Polynomial Decomposition Rockfall Detection on the Moon and Mars. Remote Sensing, 17(13), 2252. https://doi.org/10.3390/rs17132252