Flood and Rice Damage Mapping for Tropical Storm Talas in Vietnam Using Sentinel-1 SAR Data
Abstract
1. Introduction
2. Case Study Description
3. Methodology
3.1. Input Data
3.2. Flood Area Mapping
3.3. Flood Depth Mapping
3.4. Rice Damage Estimation
4. Results
4.1. Estimates of Flooded Rice Area
4.2. Flood Depth and Rice Damage
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Liu, J.; Baek, J.-W.; Fong, C.; Fu, M. Impact-Based Forecasting for Improving the Capacity of Typhoon-Related Disaster Risk Reduction in Typhoon Committee Region. Trop. Cyclone Res. Rev. 2022, 11, 163–173. [Google Scholar] [CrossRef]
- Nguyen, K.-A.; Liou, Y.-A.; Terry, J.P. Vulnerability of Vietnam to Typhoons: A Spatial Assessment Based on Hazards, Exposure and Adaptive Capacity. Sci. Total Environ. 2019, 682, 31–46. [Google Scholar] [CrossRef]
- Toan, D.V.; Trinh, N.Q.; Tien, P.V.; Toan, L.T.; Trung, L.T.; Tien, N.N. A statistical analysis of typhoons in the period 1951–2013 in vietnam’s coastal zones. Vietnam J. Mar. Sci. Technol. 2014, 14, 176–186. [Google Scholar] [CrossRef]
- Luu, C.; Von Meding, J. Analyzing Flood Fatalities in Vietnam Using Statistical Learning Approach and National Disaster Database. In Resettlement Challenges for Displaced Populations and Refugees; Asgary, A., Ed.; Sustainable Development Goals Series; Springer International Publishing: Cham, Switzerland, 2019; pp. 197–205. ISBN 978-3-319-92497-7. [Google Scholar]
- Phan, A.; Ha, D.N.; Man, C.D.; Nguyen, T.T.; Bui, H.Q.; Nguyen, T.T.N. Rapid Assessment of Flood Inundation and Damaged Rice Area in Red River Delta from Sentinel 1A Imagery. Remote Sens. 2019, 11, 2034. [Google Scholar] [CrossRef]
- Chau, V.N.; Cassells, S.; Holland, J. Economic Impact upon Agricultural Production from Extreme Flood Events in Quang Nam, Central Vietnam. Nat. Hazards 2015, 75, 1747–1765. [Google Scholar] [CrossRef]
- Kooshki Forooshani, M.; Van Den Homberg, M.; Kalimeri, K.; Kaltenbrunner, A.; Mejova, Y.; Milano, L.; Ndirangu, P.; Paolotti, D.; Teklesadik, A.; Turner, M.L. Towards a Global Impact-Based Forecasting Model for Tropical Cyclones. Nat. Hazards Earth Syst. Sci. 2024, 24, 309–329. [Google Scholar] [CrossRef]
- IFRC. Philippines: Typhoon Early Action Protocol Summary; Reliefweb: New York, NY, USA, 2021. [Google Scholar]
- Ninh, N.H.; Trung, V.K.; Hop, H.T.B. Country Assessment: Closer Look on the Current State of L&D in Southeast Asia; Asia-Pacific Network for Global Change Research: Kobe, Japan, 2020. [Google Scholar]
- Van Den Homberg, M.; Monné, R.; Spruit, M. Bridging the Information Gap of Disaster Responders by Optimizing Data Selection Using Cost and Quality. Comput. Geosci. 2018, 120, 60–72. [Google Scholar] [CrossRef]
- Shrestha, B.B.; Perera, E.D.P.; Kudo, S.; Miyamoto, M.; Yamazaki, Y.; Kuribayashi, D.; Sawano, H.; Sayama, T.; Magome, J.; Hasegawa, A.; et al. Assessing Flood Disaster Impacts in Agriculture under Climate Change in the River Basins of Southeast Asia. Nat. Hazards 2019, 97, 157–192. [Google Scholar] [CrossRef]
- Munawar, H.S.; Hammad, A.W.A.; Waller, S.T. Remote Sensing Methods for Flood Prediction: A Review. Sensors 2022, 22, 960. [Google Scholar] [CrossRef]
- European Space Agency. S1 Mission. Available online: https://sentiwiki.copernicus.eu/web/s1-mission#Sentinel-1-Mission (accessed on 10 June 2025).
- Yu, Z.; An, Q.; Liu, W.; Wang, Y. Analysis and Evaluation of Surface Water Changes in the Lower Reaches of the Yangtze River Using Sentinel-1 Imagery. J. Hydrol. Reg. Stud. 2022, 41, 101074. [Google Scholar] [CrossRef]
- Cohen, S.; Raney, A.; Munasinghe, D.; Loftis, J.D.; Molthan, A.; Bell, J.; Rogers, L.; Galantowicz, J.; Brakenridge, G.R.; Kettner, A.J.; et al. The Floodwater Depth Estimation Tool (FwDET v2.0) for Improved Remote Sensing Analysis of Coastal Flooding. Nat. Hazards Earth Syst. Sci. 2019, 19, 2053–2065. [Google Scholar] [CrossRef]
- Betterle, A.; Salamon, P. Water Depth Estimate and Flood Extent Enhancement for Satellite-Based Inundation Maps. Nat. Hazards Earth Syst. Sci. 2024, 24, 2817–2836. [Google Scholar] [CrossRef]
- Poterek, Q.; Caretto, A.; Braun, R.; Clandillon, S.; Huber, C.; Ceccato, P. INterpolated FLOod Surface (INFLOS), a Rapid and Operational Tool to Estimate Flood Depths from Earth Observation Data for Emergency Management. Remote Sens. 2025, 17, 329. [Google Scholar] [CrossRef]
- Giang, P.Q.; Vy, T.T. Will Climate Change Exacerbate the Economic Damage of Flood to Agricultural Production? A Case Study of Rice in Ha Tinh Province, Vietnam. Front. Environ. Sci. 2021, 9, 643947. [Google Scholar] [CrossRef]
- Viet Nam Disaster and Dyke Management Authority. (Phong Chong Thien Tai) Phụ Lục TỔNG HỢP THIỆT HẠI DO THIÊN TAI NĂM 2017. Available online: http://phongchongthientai.mard.gov.vn/FileUpload/2019-08/u4fxaVGl-kKJ8YgF2017-00.%20THIET%20HAI%20NAM%202017_tinh,%20tp_ngay%2031.12.2017.pdf (accessed on 12 March 2025).
- UNOSAT; UNITAR. Tropical Cyclone Talas-17: Path and Wind Speed Zones; UNITAR: Geneva, Switzerland, 2017. [Google Scholar]
- ESCAP/WMO; Typhoon Committee. Member Report Socialist Republic of Viet Nam; 10/2017; ESCAP/WMO Typhoon Committee: Hanoi, Vietnam, 2017. [Google Scholar]
- Google for Developers. Sentinel-1 SAR GRD: C-Band Synthetic Aperture Radar Ground Range Detected, Log Scaling. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD#description (accessed on 12 March 2025).
- Rubel, O.; Lukin, V.; Rubel, A.; Egiazarian, K. Selection of Lee Filter Window Size Based on Despeckling Efficiency Prediction for Sentinel SAR Images. Remote Sens. 2021, 13, 1887. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, M. Application Research of Sentinel-1 SAR in Flood Range Extraction and Polarization Analysis. J. Geo-Inf. Sci. 2021, 23, 1063–1070. [Google Scholar] [CrossRef]
- Phan, D.C.; Trung, T.H.; Truong, V.T.; Sasagawa, T.; Vu, T.P.T.; Bui, D.T.; Hayashi, M.; Tadono, T.; Nasahara, K.N. First Comprehensive Quantification of Annual Land Use/Cover from 1990 to 2020 across Mainland Vietnam. Sci. Rep. 2021, 11, 9979. [Google Scholar] [CrossRef]
- Neal, J.; Hawker, L. FABDEM V1-2; University of Bristol: Bristol, UK, 2023. [Google Scholar]
- Hawker, L.; Uhe, P.; Paulo, L.; Sosa, J.; Savage, J.; Sampson, C.; Neal, J. A 30 m Global Map of Elevation with Forests and Buildings Removed. Environ. Res. Lett. 2022, 17, 024016. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Z.; Luo, Y.; Cao, J.; Zhang, L.; Cheng, F.; Zhuang, H.; Zhang, J.; Tao, F. NESEA-Rice10: High-Resolution Annual Paddy Rice Maps for Northeast and Southeast Asia from 2017 to 2019. Earth Syst. Sci. Data 2021, 13, 5969–5986. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Motohashi, K.; Kitagami, T.; Tjahjono, B.; Dewayani, S.; Hidayat, D.; Hongo, C. Flooded area extraction of rice paddy field in indonesia using Sentinel-1 SAR data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 73–76. [Google Scholar] [CrossRef]
- Chi, V.T.; Quang, D.N.; Tinh, N.X.; Tanaka, H. Estimation of Floodwater Depth in Quang Tri Province Using Sentinel-1 Data. Tohoku J. Nat. Disaster Sci. 2022, 58, 99–104. [Google Scholar]
- Cian, F.; Marconcini, M.; Ceccato, P.; Giupponi, C. Flood Depth Estimation by Means of High-Resolution SAR Images and Lidar Data. Nat. Hazards Earth Syst. Sci. 2018, 18, 3063–3084. [Google Scholar] [CrossRef]
- Peter, B.G.; Cohen, S.; Lucey, R.; Munasinghe, D.; Raney, A.; Brakenridge, G.R. Google Earth Engine Implementation of the Floodwater Depth Estimation Tool (FwDET-GEE) for Rapid and Large Scale Flood Analysis. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1501005. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Vietnam Rice Area, Yield and Production. Available online: https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=VM&crop=Rice (accessed on 1 November 2024).
- Vo, T.; Gilleski, S. Grain and Feed Update; U.S. Department of Agriculture: Hanoi, Vietnam, 2021.
- Masutomi, Y.; Iizumi, T.; Takahashi, K.; Yokozawa, M. Estimation of the Damage Area Due to Tropical Cyclones Using Fragility Curves for Paddy Rice in Japan. Environ. Res. Lett. 2012, 7, 014020. [Google Scholar] [CrossRef]
- Tran, K.H.; Menenti, M.; Jia, L. Surface Water Mapping and Flood Monitoring in the Mekong Delta Using Sentinel-1 SAR Time Series and Otsu Threshold. Remote Sens. 2022, 14, 5721. [Google Scholar] [CrossRef]
- Zhang, B.; Wdowinski, S.; Gann, D.; Hong, S.-H.; Sah, J. Spatiotemporal Variations of Wetland Backscatter: The Role of Water Depth and Vegetation Characteristics in Sentinel-1 Dual-Polarization SAR Observations. Remote Sens. Environ. 2022, 270, 112864. [Google Scholar] [CrossRef]
- Huizinga, J.; de Moel, H.; Szewczyk, W. Global Flood Depth-Damage Functions: Methodology and the Database with Guidelines; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
Province | Reported Flooded Rice Area (km2) | Estimated Flooded Rice Area (km2) | Difference (%) |
---|---|---|---|
Nam Dinh | 214 | 255 | +19 |
Ninh Binh | - | 86 | - |
Ha Tinh | 81 | 26 | −68 |
Nghe An | 61 | 17 | −72 |
Ha Nam | 43 | 35 | −19 |
Thanh Hoa | 28 | 56 | +100 |
Hoa Binh | 2 | 2 | 0 |
Total | 428 | 475 | +11 |
Province | Reported Rice Damage (Million USD) | Estimated Rice Damage Flood Depth (m) | Flood Depth + 0.2 (m) | Flood Depth + 0.3 (m) |
---|---|---|---|---|
Nam Dinh | 9.5–14.4 | 0.07 | 10.3 | 10.3 |
Ninh Binh | - | 0.1 | 3.8 | 3.8 |
Ha Tinh | 2.9–4.8 | 0.1 | 1.6 | 1.6 |
Nghe An | 1.2–2.0 | 0.1 | 1.1 | 1.1 |
Ha Nam | 1.5–2.5 | 0.01 | 1.4 | 1.5 |
Thanh Hoa | 1.0–1.6 | 0.3 | 2.7 | 2.8 |
Hoa Binh | 0.06–0.09 | 0.01 | 0.1 | 0.1 |
Total | 16.2–25.4 | 0.07 | 20.9 | 21.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Rutten, P.; Benito Lazaro, I.; Muis, S.; Teklesadik, A.; van den Homberg, M. Flood and Rice Damage Mapping for Tropical Storm Talas in Vietnam Using Sentinel-1 SAR Data. Remote Sens. 2025, 17, 2171. https://doi.org/10.3390/rs17132171
van Rutten P, Benito Lazaro I, Muis S, Teklesadik A, van den Homberg M. Flood and Rice Damage Mapping for Tropical Storm Talas in Vietnam Using Sentinel-1 SAR Data. Remote Sensing. 2025; 17(13):2171. https://doi.org/10.3390/rs17132171
Chicago/Turabian Stylevan Rutten, Pepijn, Irene Benito Lazaro, Sanne Muis, Aklilu Teklesadik, and Marc van den Homberg. 2025. "Flood and Rice Damage Mapping for Tropical Storm Talas in Vietnam Using Sentinel-1 SAR Data" Remote Sensing 17, no. 13: 2171. https://doi.org/10.3390/rs17132171
APA Stylevan Rutten, P., Benito Lazaro, I., Muis, S., Teklesadik, A., & van den Homberg, M. (2025). Flood and Rice Damage Mapping for Tropical Storm Talas in Vietnam Using Sentinel-1 SAR Data. Remote Sensing, 17(13), 2171. https://doi.org/10.3390/rs17132171