Assessment of the October 2024 Cut-Off Low Event Floods Impact in Valencia (Spain) with Satellite and Geospatial Data
Abstract
1. Introduction
1.1. Study Area
1.2. The Event of 29 October 2024
2. Materials and Methods
2.1. Data and Software
2.2. Satellite Image Processing
2.2.1. Sentinel-1
2.2.2. Sentinel-2 and Landsat 8
2.3. Impact Analysis with Geospatial Data
3. Results
3.1. Flood Extent
3.2. Flood Impact Analysis
3.3. Validation
4. Discussion
4.1. Socio-Economic Impact Assessment
4.2. Comparative Analysis with Other Mediterranean Flood Events
4.3. Limitations and Future Research
4.4. Policy and Management Recommendations
5. Conclusions
- The developed workflow effectively combined Sentinel-1 SAR data, Sentinel-2, and Landsat 8 optical imagery, and high-resolution socio-economic datasets to accurately map flood extent and assess exposure across the metropolitan region.
- A total flooded area of approximately 199 km2 was identified, with the most severely affected zones located in the southern and western peri-urban sectors, particularly in low-lying agricultural and residential areas.
- Critical infrastructure was significantly impacted, including portions of the primary road network, public transportation hubs, and health centers; exposure analysis revealed that around 7.8% of the metropolitan population resided in inundated areas.
- The integration of flood mapping with population density and land use data allowed the identification of vulnerability hotspots, illustrating the compounded risk faced by highly urbanized and economically active zones.
- The proposed methodology demonstrates the value of combining radar and optical satellite observations to enhance flood detection under adverse weather conditions, offering a transferable and scalable framework for flood impact assessment in Mediterranean urban contexts.
- Findings underscore the urgent need to incorporate detailed spatial exposure assessments into urban planning and flood mitigation strategies to enhance resilience against increasingly frequent and intense extreme weather events.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEMET | Spanish Meteorological Agency |
AOI | Area of Interest |
BOA | Bottom-of-Atmosphere |
CEMS | Copernicus Emergency Management Service |
CLC | CORINE Land Cover |
CLMS | Copernicus Land Monitoring Service |
DANA | Depresión Aislada en Niveles Altos |
DEM | Digital Elevation Model |
ESA | European Space Agency |
FMI | Flood Mud Index |
GIS | Geographic Information System |
GRD | Ground Range Detected |
IW | Interferometric Wide Swath |
L2A | Level-2 A |
MMU | Minimum Mapping Unit |
MMW | Mapping Minimum Width |
MNDWI | Modified Normalized Difference Water Index |
MSI | MultiSpectral Imager |
NASA | National Aeronautics and Space Administration |
NDWI | Normalized Difference Water Index |
NIR | Near Infrared |
OLI | Operational Land Imager |
OSM | OpenStreetMap |
SAR | Synthetic Aperture Radar |
SRTM | Shuttle Radar Topography Mission |
SWIR | Short-Wave Infrared |
TIRS | Thermal InfraRed Sensor |
UAV | Unmanned Aerial Vehicle |
USGS | United States Geological Survey |
VV | Vertical–Vertical |
References
- Steinhausen, M.; Paprotny, D.; Dottori, F.; Sairam, N.; Mentaschi, L.; Alfieri, L.; Lüdtke, S.; Kreibich, H.; Schröter, K. Drivers of future fluvial flood risk change for residential buildings in Europe. Glob. Environ. Chang. 2022, 76, 102559. [Google Scholar] [CrossRef]
- Tramblay, Y.; Arnaud, P.; Artigue, G.; Lang, M.; Paquet, E.; Neppel, L.; Sauquet, E. Changes in Mediterranean flood processes and seasonality. Hydrol. Earth Syst. Sci. 2023, 27, 2973–2987. [Google Scholar] [CrossRef]
- Ciampa, F.; Seifollahi-Aghmiuni, S.; Kalantari, Z.; Santos Ferreira, C.S. Flood mitigation in Mediterranean coastal regions: Problems, solutions, and stakeholder involvement. Sustainability 2021, 13, 10474. [Google Scholar] [CrossRef]
- Lekkas, E.; Mavroulis, S.; Mavrouli, M.; Gogou, M. The late October 2024 Valencia (Spain) extreme weather events and floods. In Newsletter of the Environmental, Disaster and Crises Management Strategies; National and Kapodistrian University of Athens: Athens, Greece, 2024; Available online: https://edcm.edu.gr/en/newsletter-en/newsletter-31-the-late-october-2024-valencia-spain-extreme-weather-events-and-floods-eng (accessed on 6 March 2025).
- Nieto Ferreira, R. Cut-Off Lows and Extreme Precipitation in Eastern Spain: Current and Future Climate. Atmosphere 2021, 12, 835. [Google Scholar] [CrossRef]
- Degeai, J.-P.; Blanchemanche, P.; Tavenne, L.; Tillier, M.; Bohbot, H.; Devillers, B.; Dezileau, L. River flooding on the French Mediterranean coast and its relation to climate and land use change over the past two millennia. Catena 2022, 219, 106623. [Google Scholar] [CrossRef]
- Llasat, M.C.F. Martín, and A. Barrera, 2007: From the concept of ‘‘Kaltlufttropfen’’ (cold air pool) to the cut-off low. The case of September 1971 in Spain as an example of their role in heavy rainfalls. Meteor. Atmos. Phys. 2006, 96, 43–60. [Google Scholar] [CrossRef]
- Muñoz, C.; Schultz, D.; Vaughan, G. A Midlatitude Climatology and Interannual Variability of 200- and 500-hPa Cut-Off Lows. J. Clim. 2021, 33, 2201–2222. [Google Scholar] [CrossRef]
- Wang, M.; Fu, X.; Zhang, D.; Chen, F.; Liu, M.; Zhou, S.; Su, J.; Tan, S.K. Assessing Urban Flooding Risk in Response to Climate Change and Urbanization Based on Shared Socio-Economic Pathways. Sci. Total Environ. 2023, 880, 163470. [Google Scholar] [CrossRef]
- Rentschler, J.; Avner, P.; Marconcini, M.; Su, R.; Strano, E.; Vousdoukas, M.; Hallegatte, S. Global Evidence of Rapid Urban Growth in Flood Zones since 1985. Nature 2023, 622, 87–92. [Google Scholar] [CrossRef]
- Ramiaramanana, F.N.; Teller, J. Urbanization and Floods in Sub-Saharan Africa: Spatiotemporal Study and Analysis of Vulnerability Factors—Case of Antananarivo Agglomeration (Madagascar). Water 2021, 13, 149. [Google Scholar] [CrossRef]
- Camarasa-Belmonte, A.M.; Soriano-García, J. Flood Risk Assessment and Mapping in Peri-Urban Mediterranean Environments Using Hydrogeomorphology. Application to Ephemeral Streams in the Valencia Region (Eastern Spain). Landsc. Urban Plan. 2012, 104, 189–200. [Google Scholar] [CrossRef]
- Eguibar, M.Á.; Porta-García, R.; Torrijo, F.J.; Garzón-Roca, J. Flood Hazards in Flat Coastal Areas of the Eastern Iberian Peninsula: A Case Study in Oliva (Valencia, Spain). Water 2021, 13, 2975. [Google Scholar] [CrossRef]
- Lekkas, E.; Nastos, P.; Cartalis, C.; Diakakis, M.; Gogou, M.; Mavroulis, S.; Spyrou, N.-I.; Kotsi, E.; Vassilakis, E.; Katsetsiadou, K.-N.; et al. Impact of Medicane “IANOS” (September 2020). In Newsletter of the Environmental, Disaster and Crises Management Strategies. 2020. Available online: https://edcm.edu.gr/images/docs/newsletters/Newsletter_20_2020_Ianos.pdf (accessed on 6 March 2025).
- Lekkas, E.; Diakakis, M.; Mavroulis, S.; Filis, C.; Bantekas, Y.; Gogou, M.; Katsetsiadou, K.-N.; Mavrouli, M.; Giannopoulos, V.; Sarantopoulou, A.; et al. The Early September 2023 Daniel Storm in Thessaly Region (Central Greece). In Newsletter of the Environmental, Disaster and Crises Management Strategies. 2024. Available online: https://edcm.edu.gr/images/docs/newsletters/Newsletter_30_2024_Daniel_Thessaly.pdf (accessed on 3 March 2025).
- Castro-Melgar, I.; Gatsios, T.; Prudencio, J.; Ibanez, J.M.; Lekkas, E.; Parcharidis, I. Volcano Monitoring: Using SAR Interferometry for the Pre-Unrest of La Palma and the Post-Unrest of Santorini. In Remote Sensing for Geophysicists, 1st ed.; Gupta, M., Ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2025; p. 526. ISBN 9781003485278. [Google Scholar] [CrossRef]
- Kalavrezou, I.E.; Castro-Melgar, I.; Nika, D.; Gatsios, T.; Lalechos, S.; Parcharidis, I. Application of time series INSAR (SBAS) method using sentinel-1 for monitoring ground deformation of the Aegina Island (Western Edge of Hellenic Volcanic Arc). Land 2024, 13, 485. [Google Scholar] [CrossRef]
- Castro-Melgar, I.; Tsagkou, A.; Zacharopoulou, M.; Basiou, E.; Athinelis, I.; Katris, E.A.; Kalavrezou, I.-E.; Parcharidis, I. Wildfires During Early Summer in Greece (2024): Burn Severity and Land Use Dynamics Through Sentinel-2 Data. Forests 2025, 16, 268. [Google Scholar] [CrossRef]
- Thomas, M.; Tellman, E.; Osgood, D.E.; DeVries, B.; Islam, A.S.; Steckler, M.S.; Billah, M. A Framework to Assess Remote Sensing Algorithms for Satellite-Based Flood Index Insurance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2589–2604. [Google Scholar] [CrossRef]
- Albertini, C.; Gioia, A.; Iacobellis, V.; Manfreda, S. Detection of Surface Water and Floods with Multispectral Satellites. Remote Sens. 2022, 14, 6005. [Google Scholar] [CrossRef]
- Amiri, A.; Soltani, K.; Ebtehaj, I.; Bonakdari, H. A Novel Machine Learning Tool for Current and Future Flood Susceptibility Mapping by Integrating Remote Sensing and Geographic Information Systems. J. Hydrol. 2024, 632, 130936. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Alcaras, E. Flood Mud Index (FMI): A Rapid and Effective Tool for Mapping Muddy Areas After Floods—The Valencia Case. Remote Sens. 2025, 17, 770. [Google Scholar] [CrossRef]
- Amen, A.R.; Mustafa, A.; Kareem, D.A.; Hameed, H.M.; Mirza, A.A.; Szydłowski, M.; Saleem, B.K. Mapping of Flood-Prone Areas Utilizing GIS Techniques and Remote Sensing: A Case Study of Duhok, Kurdistan Region of Iraq. Remote Sens. 2023, 15, 1102. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, F.; Liang, D.; Tian, B.; Yang, A. Use of Sentinel-1 GRD SAR images to delineate flood extent in Pakistan. Sustainability 2020, 12, 5784. [Google Scholar] [CrossRef]
- Peng, X.; Chen, S.; Miao, Z.; Xu, Y.; Ye, M.; Lu, P. Automatic Flood Monitoring Method with SAR and Optical Data Using Google Earth Engine. Water 2025, 17, 177. [Google Scholar] [CrossRef]
- Gašparović, M.; Klobučar, D. Mapping floods in lowland forest using sentinel-1 and sentinel-2 data and an object-based approach. Forests 2021, 12, 553. [Google Scholar] [CrossRef]
- De Paz, J.-M.; Sánchez, J.; Visconti, F. Combined Use of GIS and Environmental Indicators for Assessment of Chemical, Physical and Biological Soil Degradation in a Spanish Mediterranean Region. J. Environ. Manag. 2006, 79, 150–162. [Google Scholar] [CrossRef]
- City Population. Available online: https://www.citypopulation.de (accessed on 12 February 2025).
- Romero-Aloy, M.J.; Almenar-Muñoz, M.; Fullana-Serra, V. En Torno a la Riada de 1957 en la Ciudad de Valencia. Scr. Nova-Rev. Electron. Geogr. Cienc. Soc. 2019, 23, 622. [Google Scholar] [CrossRef]
- Esteban Chapapría, V.; Serra Peris, J. Vulnerability of Coastal Areas Due to Infrastructure: The Case of Valencia Port (Spain). Land 2021, 10, 1344. [Google Scholar] [CrossRef]
- Torró Segura, M.; Camarasa Belmonte, A.; Pitarch Garrido, M.D. Percepción del Riesgo de Inundación en el Municipio de Ontinyent (Comunitat Valenciana). Cuad. Geogr. 2019, 103, 117–170. [Google Scholar] [CrossRef]
- Agencia Estatal de Meteorología. Estudio sobre la Situación de Lluvias Intensas Localmente Torrenciales y Persistentes, en la Península Ibérica y Baleares entre los Días 28 de Octubre y 4 de Noviembre de 2024. 2024. Available online: https://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/estudios/estudio_28_oct_4_nov_2024.pdf (accessed on 8 March 2025).
- EL PAÍS. Paiporta, Dos Meses Después de la Dana: Cronología de la Tragedia que Acabó con la Vida de 46 de sus Vecinos. Available online: https://elpais.com/expres/2024-12-29/paiporta-dos-meses-despues-de-la-dana-cronologia-de-la-tragedia-que-acabo-con-la-vida-de-46-de-sus-vecinos.html (accessed on 12 March 2025).
- EFE. Available online: https://efe.com/economia/2024-11-05/gobierno-y-generalitat-estiman-en-2-600-millones-el-coste-de-restaurar-infraestructuras/ (accessed on 28 April 2025).
- Freshfruitportal. Available online: https://www.freshfruitportal.com/news/2024/11/08/damages-in-valencias-ag-exceed-1089-million-euros-after-floods/ (accessed on 28 April 2025).
- Surinenglish. Available online: https://www.surinenglish.com/spain/the-government-deploys-further-3746-billion-for-20241112075646-nt.html (accessed on 28 April 2025).
- Garcia-Ayllon, S.; Radke, J. Geostatistical Analysis of the Spatial Correlation Between Territorial Anthropization and Flooding Vulnerability: Application to the DANA Phenomenon in a Mediterranean Watershed. Appl. Sci. 2021, 11, 809. [Google Scholar] [CrossRef]
- Alonso-Sarria, F.; Valdivieso-Ros, C.; Molina-Pérez, G. Detecting Flooded Areas Using Sentinel-1 SAR Imagery. Remote Sens. 2025, 17, 1368. [Google Scholar] [CrossRef]
- Copernicus Data Space Ecosystem. Available online: https://dataspace.copernicus.eu/ (accessed on 1 November 2024).
- Pahlevan, N.; Sarkar, S.; Franz, B.A.; Balasubramanian, S.V.; He, J. Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic science applications: Demonstrations and validations. Remote Sens. Environ. 2017, 201, 47–56. [Google Scholar] [CrossRef]
- Sentinel-2 User Handbook; European Space Agency: Paris, France, 2015; Available online: https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook (accessed on 10 December 2024).
- Chignell, S.M.; Anderson, R.S.; Evangelista, P.H.; Laituri, M.J.; Merritt, D.M. Multi-Temporal Independent Component Analysis and Landsat 8 for Delineating Maximum Extent of the 2013 Colorado Front Range Flood. Remote Sens. 2015, 7, 9822–9843. [Google Scholar] [CrossRef]
- USGS. Earth Explorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 15 November 2024).
- Corine Land Cover 2018. Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/en/products/corine-land-cover/clc2018 (accessed on 5 November 2024).
- European Environment Agency. CORINE Land Cover 2018 (Vector), Europe, 6-Yearly—Version 2020_20u1; European Environment Agency: Copenhagen, Denmark, 2020. [Google Scholar] [CrossRef]
- OpenStreetMap. Available online: https://www.openstreetmap.org/ (accessed on 5 November 2024).
- Geofabrik. Available online: https://download.geofabrik.de/ (accessed on 5 November 2024).
- EU-Hydro. Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/en/products/eu-hydro (accessed on 30 January 2025).
- European Environment Agency. EU-Hydro River Network Database 2006-2012 (Vector), Europe—Version 1.3, Nov. 2020; European Commission: Brussels, Belgium, 2020. [Google Scholar] [CrossRef]
- WorldPop (School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Département de Géographie, Université de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University. Global High Resolution Population Denominators Project—Funded by The Bill and Melinda Gates Foundation (OPP1134076). 2018. Available online: https://hub.worldpop.org/doi/10.5258/SOTON/WP00674 (accessed on 8 December 2024).
- WorldPop. The Spatial Distribution of Population Density in 2020, Spain. Available online: https://hub.worldpop.org/geodata/summary?id=43889 (accessed on 2 March 2025).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 2005RG000183. [Google Scholar] [CrossRef]
- NASA JPL. NASA Shuttle Radar Topography Mission Global 1 Arc Second 2013. Available online: https://www.earthdata.nasa.gov/data/catalog/lpcloud-srtmgl1-003 (accessed on 7 November 2024). [CrossRef]
- McVittie, A. Sentinel-1. Flood Mapping Tutorial; SkyWatch ESA: Paris, France, 2019. [Google Scholar]
- Zeng, L.; Schmitt, M.; Li, L.; Zhu, X.X. Analysing changes of the Poyang Lake water area using Sentinel-1 synthetic aperture radar imagery. Int. J. Remote Sens. 2017, 38, 7041–7069. [Google Scholar] [CrossRef]
- Dimitriou, E.; Efstratiadis, A.; Zotou, I.; Papadopoulos, A.; Iliopoulou, T.; Sakki, G.-K.; Mazi, K.; Rozos, E.; Koukouvinos, A.; Koussis, A.D.; et al. Post-Analysis of Daniel Extreme Flood Event in Thessaly, Central Greece: Practical Lessons and the Value of State-of-the-Art Water-Monitoring Networks. Water 2024, 16, 980. [Google Scholar] [CrossRef]
- Copernicus Emergency Management Service (CEMS)—Rapid Mapping EMSR773. Available online: https://rapidmapping.emergency.copernicus.eu/EMSR773/ (accessed on 3 May 2025).
- Ministerio para la Transición Ecológica y el Reto Demográfico. Gobierno de España. Peligrosidad por Inundación Fluvial T = 500 años. Available online: https://sig.mapama.gob.es/snczi/index.html?herramienta=DPHZI (accessed on 10 February 2025).
- Karambiri, H.; Tazen, F.; Bologo/Traore, M.; Mounirou, L.A.; Coulibaly, G.; Traore, K. Build Relationship Between Flood Depth and Likely Damage (Depth-Damage Curves). Available online: https://www.ceh.ac.uk/sites/default/files/2023-01/AMMA-2050-technical-support-5-damage-curves.pdf (accessed on 14 May 2025).
- Karagiannis, G.M.; Chondrogiannis, S.; Krausmann, E.; Turksezer, Z.I. Power Grid Recovery After Natural Hazard Impact; Joint Research Center: European Union: Brussels, Belgium, 2017. [Google Scholar]
- Cremonini, L.; Randi, P.; Fazzini, M.; Nardino, M.; Rossi, F.; Georgiadis, T. Causes and Impacts of Flood Events in Emilia-Romagna (Italy) in May 2023. Land 2024, 13, 1800. [Google Scholar] [CrossRef]
- Caumont, O.; Mandement, M.; Bouttier, F.; Eeckman, J.; Brossier, C.L.; Lovat, A.; Nuissier, O.; Laurantin, O. The Heavy Precipitation Event of 14–15 October 2018 in the Aude Catchment: A Meteorological Study Based on Operational Numerical Weather Prediction Systems and Standard and Personal Observations. Nat. Hazards Earth Syst. Sci. 2021, 21, 1135–1157. [Google Scholar] [CrossRef]
- PERILS. EUR 495M—PERILS Discloses Final Industry Loss Estimate for the Emilia-Romagna Floods of May 2023. 2024. Available online: https://www.perils.org/files/News/2023/Loss-Announcements/Emilia-Romagna-Floods/2024-05-22-PERILS-Press-Release-Emilia-Romagna-Floods-2-22-May-2023.pdf#:~:text=,industry%20at%20EUR%20495%20million (accessed on 5 March 2025).
- Chatzigeorgiadis, M.; Dogani, I.O.; Doganis, T. Thessaly Flood (Storm Daniel): A Multi-Temporal Analysis of the Flood Impact Using Sentinel-1 and Sentinel-2 Images. Available online: https://storymaps.arcgis.com/stories/e7dca3fe3d114860872f3108587c23db (accessed on 5 March 2025).
- Li, Z.; Demir, I. U-net-based semantic classification for flood extent extraction using SAR imagery and GEE platform: A case study for 2019 central US flooding. Sci. Total Environ. 2023, 869, 161757. [Google Scholar] [CrossRef]
- Katiyar, V.; Tamkuan, N.; Nagai, M. Near-real-time flood mapping using off-the-shelf models with SAR imagery and deep learning. Remote Sens. 2021, 13, 2334. [Google Scholar] [CrossRef]
- Ollera Ojeda, A.; González de Matauco, A.I.; Elso Huarte, J. El Territorio Fluvial y sus Dificultades de Aplicación. Geographicalia 2009, 56, 37–62. [Google Scholar] [CrossRef]
- Ollero Ojeda, A. Proyecto Gestión de Riesgos y de Cambios Ambientales en el Ebro Medio: Restauración Fluvial y Resiliencia Territorial. Geographicalia 2023, 75, 201–206. [Google Scholar] [CrossRef]
- Abell, J.M.; Pingram, M.A.; Özkundakci, D.; David, B.O.; Scarsbrook, M.; Wilding, T.; Williams, A.; Noble, M.; Brasington, J.; Perrie, A. Large Floodplain River Restoration in New Zealand: Synthesis and Critical Evaluation to Inform Restoration Planning and Research. Reg. Environ. Chang. 2023, 23, 18. [Google Scholar] [CrossRef]
Name | Format | Resolution | Source |
---|---|---|---|
Sentinel-1 | SAR GRD IW | 10 m | Copernicus Data Space Ecosystem |
Sentinel-2 | Multispectral L2A | 10–20 m | Copernicus Data Space Ecosystem |
Landsat 8 | Multispectral C2 T1 L2 | 30 m | Earth Explorer |
SRTM 1 Arc-Sec v3 DEM | Raster | 30 m | Earth Explorer |
CORINE Land Cover 2018 | Vector (Polygon) | - | Copernicus Land Monitoring Service |
WorldPop Population Density | Raster | ~1 km | Humanitarian Data Exchange |
EU-Hydro | Vector (Lines, Polygons) | - | Copernicus Land Monitoring Service |
OpenStreetMap | Vector (Lines, Polygons, Points) | - | OpenStreetMap Geofrabrik |
Satellite Images | Date | Use |
---|---|---|
Landsat 8 C2 L2 T | 11 August 2024 10:36 UTC | Pre-event |
Sentinel-2 L2A | 17 August 2024 10:50 UTC | Pre-event |
Sentinel-1 GRD IW Ascending | 19 October 2024 18:03 UTC | Pre-event |
Landsat 8 C2 L2 T1 | 30 October 2024 10:37 UTC | Post-event |
Sentinel-2 L2A | 31 October 2024 10:51 UTC | Post-event |
Sentinel-1 GRD IW Ascending | 31 October 2024 18:03 UTC | Post-event |
Sentinel-2 L2A | 5 November 2024 10:52 UTC | Post-event |
Satellite Images | Date | Area (km2) | Result |
---|---|---|---|
Landsat 8 C2 L2 T1 | 30 October 2024 10:37 UTC | 199.03 | Analysis Flood Extent |
Sentinel-2 L2A | 31 October 2024 10:51 UTC | 84.16 | Flood Extent 2 |
Sentinel-1 GRD IW Ascending | 31 October 2024 18:03 UTC | 87.53 | Flood Extent 3 |
Sentinel-2 L2A | 5 November 2024 10:52 UTC | Not estimated due to cloud coverage |
CORINE Land Cover | Percentage % |
---|---|
Continuous urban fabric | 0.17 |
Discontinuous urban fabric | 0.26 |
Industrial or commercial units | 1.34 |
Road and rail networks and associated land | 0.00 |
Port areas | 0.08 |
Airports | 0.01 |
Mineral extraction sites | 0.18 |
Construction sites | 0.21 |
Sport and leisure facilities | 0.03 |
Permanently irrigated land | 1.78 |
Rice fields | 64.97 |
Fruit trees and berry plantations | 25.86 |
Pastures | 0.13 |
Complex cultivation patterns | 1.76 |
Land principally occupied by agriculture with significant areas of natural vegetation | 0.19 |
Coniferous forest | 0.09 |
Natural grasslands | 0.36 |
Sclerophyllous vegetation | 0.24 |
Transitional woodland–shrub | 0.00 |
Beaches, dunes, sands | 0.28 |
Sparsely vegetated areas | 0.00 |
Inland marshes | 0.12 |
Salt marshes | 0.60 |
Water courses | 0.63 |
Water bodies | 0.26 |
Coastal lagoons | 0.47 |
Total | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Melgar, I.; Falaras, T.; Basiou, E.; Parcharidis, I. Assessment of the October 2024 Cut-Off Low Event Floods Impact in Valencia (Spain) with Satellite and Geospatial Data. Remote Sens. 2025, 17, 2145. https://doi.org/10.3390/rs17132145
Castro-Melgar I, Falaras T, Basiou E, Parcharidis I. Assessment of the October 2024 Cut-Off Low Event Floods Impact in Valencia (Spain) with Satellite and Geospatial Data. Remote Sensing. 2025; 17(13):2145. https://doi.org/10.3390/rs17132145
Chicago/Turabian StyleCastro-Melgar, Ignacio, Triantafyllos Falaras, Eleftheria Basiou, and Issaak Parcharidis. 2025. "Assessment of the October 2024 Cut-Off Low Event Floods Impact in Valencia (Spain) with Satellite and Geospatial Data" Remote Sensing 17, no. 13: 2145. https://doi.org/10.3390/rs17132145
APA StyleCastro-Melgar, I., Falaras, T., Basiou, E., & Parcharidis, I. (2025). Assessment of the October 2024 Cut-Off Low Event Floods Impact in Valencia (Spain) with Satellite and Geospatial Data. Remote Sensing, 17(13), 2145. https://doi.org/10.3390/rs17132145