Evaluating Leaf Water Potential of Maize Through Multi-Cultivar Dehydration Experiments and Segmentation Thresholding
Abstract
1. Introduction
2. Materials and Methods
2.1. Leaf Sampling and Dehydration Measurements
2.2. Selection of Hyperspectral VIs
2.3. Determination of the Best Indices
2.4. Segmented Regression and ΨTLP
2.5. Statistics
3. Results
3.1. Response of Leaf Spectral Reflectance to Different Ψleaf Values
3.2. Screening of Spectral Vegetation Index
3.3. Diagnosis of Ψleaf
3.3.1. PLSR, RF, and MLR Analyses
3.3.2. Modeling of Newly Identified VIs
3.4. Discontinuous Segmented Fitting
4. Discussion
4.1. Spectral Diagnosis of Ψleaf
4.2. Breakpoints and ΨTLP
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, B.; Chao, Q.; Lei, H. The Core Conclusions and Interpretation of Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Chin. J. Urban Environ. Stud. 2015, 3, 46–52. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Gill, S.S.; Fujita, M. Drought stress responses in plants, oxidative stress, and antioxidant defense. Clim. Change Plant Abiotic Stress Toler. 2013, 209–250. [Google Scholar] [CrossRef]
- Dong, X.; Peng, B.; Sieckenius, S.; Raman, R.; Conley, M.M.; Leskovar, D.I. Leaf water potential of field crops estimated using NDVI in ground-based remote sensing—Opportunities to increase prediction precision. PeerJ 2021, 9, e12005. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, M.K.; Scoffoni, C.; Sack, L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. Ecol. Lett. 2012, 15, 393–405. [Google Scholar] [CrossRef]
- Haynes, R.S.; Lucieer, A.; Brodribb, T.J.; Tonet, V.; Cimoli, E. Predicting key water stress indicators of Eucalyptus viminalis and Callitris rhomboidea using high-resolution visible to short-wave infrared spectroscopy. Plant Cell Environ. 2024, 47, 4992–5006. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, J.C.; Cruz, R.T. Response of leaf water potential, stomatal resistance, and leaf rolling to water stress. Plant Physiol. 1980, 65, 428–432. [Google Scholar] [CrossRef]
- Kunert, N.; Zailaa, J.; Herrmann, V.; Muller-Landau, H.C.; Wright, S.J.; Pérez, R.; Anderson-Teixeira, K.J. Leaf turgor loss point shapes local and regional distributions of evergreen but not deciduous tropical trees. New Phytol. 2021, 230, 485–496. [Google Scholar] [CrossRef]
- Mart, K.B.; Veneklaas, E.J.; Bramley, H. Osmotic potential at full turgor: An easily measurable trait to help breeders select for drought tolerance in wheat. Plant Breed. 2016, 135, 279–285. [Google Scholar] [CrossRef]
- Baltzer, J.L.; Davies, S.J.; Bunyavejchewin, S.; Noor, N.S.M. The role of desiccation tolerance in determining tree species distributions along the Malay–Thai Peninsula. Funct. Ecol. 2008, 22, 221–231. [Google Scholar] [CrossRef]
- Brodribb, T.J.; Holbrook, N.M. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol. 2003, 132, 2166–2173. [Google Scholar] [CrossRef]
- Castillo-Argaez, R.; Sapes, G.; Mallen, N.; Lippert, A.; John, G.P.; Zare, A.; Hammond, W.M. Spectral ecophysiology: Hyperspectral pressure–volume curves to estimate leaf turgor loss. New Phytol. 2024, 242, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Epron, D.; Dreyer, E. Effects of severe dehydration on leaf photosynthesis in Quercus petraea (Matt.) Liebl.: Photosystem II efficiency, photochemical and nonphotochemical fluorescence quenching and electrolyte leakage. Tree Physiol. 1992, 10, 273–284. [Google Scholar] [CrossRef]
- Cotrozzi, L.; Couture, J.J.; Cavender-Bares, J.; Kingdon, C.C.; Fallon, B.; Pilz, G.; Townsend, P.A. Using foliar spectral properties to assess the effects of drought on plant water potential. Tree Physiol. 2017, 37, 1582–1591. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, P. Hyperspectral indices for estimating leaf biochemical properties in temperate deciduous forests: Comparison of simulated and measured reflectance data sets. Ecol. Indic. 2012, 14, 56–65. [Google Scholar] [CrossRef]
- Xue, L.H.; Luo, W.H.; Cao, W.X.; Tian, Y.C. Research progress on the water and nitrogen detection using spectral reflectance. J. Remote Sens. 2003, 7, 73–80. [Google Scholar]
- Liu, L.; Zhang, S.; Zhang, B. Evaluation of hyperspectral indices for retrieval of canopy equivalent water thickness and gravimetric water content. Int. J. Remote Sens. 2016, 37, 3384–3399. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, L.; Zhang, H.; Han, W.; Peng, X. Estimating above-ground biomass of maize using features derived from UAV-based RGB imagery. Remote Sens. 2019, 11, 1261. [Google Scholar] [CrossRef]
- Yang, H.; Li, F.; Wang, W.; Yu, K. Estimating above-ground biomass of potato using random forest and optimized hyperspectral indices. Remote Sens. 2021, 13, 2339. [Google Scholar] [CrossRef]
- Elsherbiny, O.; Fan, Y.; Zhou, L.; Qiu, Z. Fusion of feature selection methods and regression algorithms for predicting the canopy water content of rice based on hyperspectral data. Agriculture 2021, 11, 51. [Google Scholar] [CrossRef]
- Wang, L.A.; Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop J. 2016, 4, 212–219. [Google Scholar] [CrossRef]
- Elsayed, S.; El-Hendawy, S.; Dewir, Y.H.; Schmidhalter, U.; Ibrahim, H.H.; Ibrahim, M.M.; Farouk, M. Estimating the leaf water status and grain yield of wheat under different irrigation regimes using optimized two-and three-band hyperspectral indices and multivariate regression models. Water 2021, 13, 2666. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, Q.; Zheng, C. Best hyperspectral indices for tracing leaf water status as determined from leaf dehydration experiments. Ecol. Indic. 2015, 54, 96–107. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Save, R. The reflectance at the 950–970 nm region as an indicator of plant water status. Int. J. Remote Sens. 1993, 14, 1887–1905. [Google Scholar] [CrossRef]
- Jia, W. Research on Monitoring Wheat Water Status Based on Hyperspectral Technology. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 2013. [Google Scholar]
- Peñuelas, J.; Inoue, Y. Reflectance indices indicative of changes in water and pigment contents of peanut and wheat leaves. Photosynthetica 1999, 36, 355–360. [Google Scholar] [CrossRef]
- Schneider, P.; Roberts, D.A.; Kyriakidis, P.C. A VARI-based relative greenness from MODIS data for computing the Fire Potential Index. Remote Sens. Environ. 2008, 112, 1151–1167. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Rueda, C.A.; Ustin, S.L. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sens. Environ. 2003, 85, 109–124. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Chen, D.; Huang, J.; Jackson, T.J. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near-and short-wave infrared bands. Remote Sens. Environ. 2005, 98, 225–236. [Google Scholar] [CrossRef]
- Klemas, V.; Smart, R. The influence of soil salinity, growth form, and leaf moisture on-the spectral radiance of. Photogramm. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Seelig, H.D.; Hoehn, A.; Stodieck, L.S.; Klaus, D.M.; Adams Iii, W.W.; Emery, W.J. The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared. Int. J. Remote Sens. 2008, 29, 3701–3713. [Google Scholar] [CrossRef]
- Hunt Jr, E.R.; Rock, B.N. Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar] [CrossRef]
- Liu, X.; Tian, Y.; Yao, X.; Cao, W.; Zhu, Y. Research on Monitoring Rice Leaf Water Content Based on Hyperspectral. Sci. Agric. Sin. 2012, 45, 435–442. [Google Scholar]
- Tian, Y.; Zhu, Y.; Cao, W.; Dai, T. The Relationship between Wheat Canopy Reflectance Spectrum and Plant Water Status. Chin. J. Appl. Ecol. 2004, 15, 2072. [Google Scholar]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Jamieson, P.D.; Porter, J.R.; Wilson, D.R. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crop. Res. 1991, 27, 337–350. [Google Scholar] [CrossRef]
- Foley, S.; Rivard, B.; Sanchez-Azofeifa, G.A.; Calvo, J. Foliar spectral properties following leaf clipping and implications for handling techniques. Remote Sens. Environ. 2006, 103, 265–275. [Google Scholar] [CrossRef]
- Carter, G.A. Primary and secondary effects of water content on the spectral reflectance of leaves. Am. J. Bot. 1991, 78, 916–924. [Google Scholar] [CrossRef]
- Santos, A.O.; Kaye, O. Grapevine leaf water potential based upon near infrared spectroscopy. Sci. Agric. 2009, 66, 287–292. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.M.; Miller, J.R.; Noland, T.L. Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery. Remote Sens. Environ. 2008, 112, 3234–3247. [Google Scholar] [CrossRef]
- Reicosky, D.C.; Lambert, J.R. Field measured and simulated corn leaf water potential. Soil Sci. Soc. Am. J. 1978, 42, 221–228. [Google Scholar] [CrossRef]
- González-Fernández, A.B.; Rodríguez-Pérez, J.R.; Marabel, M.; Álvarez-Taboada, F. Spectroscopic estimation of leaf water content in commercial vineyards using continuum removal and partial least squares regression. Sci. Hortic. 2015, 188, 15–22. [Google Scholar] [CrossRef]
- Kim, S.Y. Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. BMC Bioinform. 2009, 10, 147. [Google Scholar] [CrossRef] [PubMed]
- Le Maire, G.; François, C.; Soudani, K.; Berveiller, D.; Pontailler, J.Y.; Bréda, N.; Dufrêne, E. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 2008, 112, 3846–3864. [Google Scholar] [CrossRef]
- Sack, L.; Cowan, P.D.; Jaikumar, N.; Holbrook, N.M. The ‘hydrology’of leaves: Co-ordination of structure and function in temperate woody species. Plant Cell Environ. 2003, 26, 1343–1356. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Bozzolo, A.; Wilkins, J.L.; Kwasniewski, M.T. Early detection of plant physiological responses to different levels of water stress using reflectance spectroscopy. Remote Sens. 2017, 9, 745. [Google Scholar] [CrossRef]
- Li, H.; Yang, W.; Lei, J.; She, J.; Zhou, X. Estimation of leaf water content from hyperspectral data of different plant species by using three new spectral absorption indices. PLoS ONE 2021, 16, e0249351. [Google Scholar] [CrossRef]
VIs | Formula | Reference |
---|---|---|
WI | R970/R900 | [23] |
RSI(1402,2272) | R1402/R2272 | [24] |
NDSI(1402,2272) | (R1402 − R2272)/(R1402 + R2272) | [24] |
WI/NDVI | (R900/R970)/[(R900 − R680)/(R900 + R680)] | [25] |
VARI | (R555 − R645)/(R555 + R645 − R469) | [26] |
SRWI | R860/R1240 | [27] |
NDWI | (R860 − R1240)/(R860 + R1240) | [28] |
NDWI2130 | (R858 − R2130)/(R858 + R2130) | [29] |
NDWI1640 | (R858 − R1640)/(R858 + R1640) | [29] |
NDII | (R850 − R1650)/(R850 + R1650) | [30] |
SR(1300,1450) | R1300/R1450 | [31] |
MSI | R1600/R820 | [32] |
R(810,460) | R810/R460 | [33] |
R(610,560)/ND(810,610) | (R610/R560)/[(R810 − R610)/(R810 + R610)] | [34] |
mSR705 | (R750 − R445)/(R705 − R445) | [35] |
mND705 | (R750 − R705)/(R750 + R705 − 2 × R445) | [35] |
DDn(1530,525) | 2 × R1530 − R1005 − R2055 | [14] |
Calibration Dataset | Verification Dataset | |||||||
---|---|---|---|---|---|---|---|---|
Crop | Cultivar | R2 | MAE | RMSE | R2 | MAE | RMSE | NRMSE |
Maize | JY168 | 0.8921 | 0.2826 | 0.3546 | 0.9574 | 0.1844 | 0.2544 | 6.99% |
JK968 | 0.7897 | 0.2801 | 0.3695 | 0.8802 | 0.2163 | 0.2758 | 7.81% | |
ZD958 | 0.7107 | 0.3403 | 0.4408 | 0.7739 | 0.2629 | 0.3150 | 11.98% | |
All cultivars | PLSR | 0.8446 | 0.2901 | 0.3720 | 0.8480 | 0.2846 | 0.3694 | 9.45% |
RF | 0.9113 | 0.2094 | 0.2811 | 0.8615 | 0.2677 | 0.3526 | 9.02% |
Crop | Cultivar | Parametric | Empirical Formula Model | Verification Dataset | |||
---|---|---|---|---|---|---|---|
R2 | MAE | RMSE | NRMSE | ||||
Maize | JY168 | x: DDn(1530,525) | y = −31.385x − 3.241 | 0.9453 | 0.2409 | 0.2846 | 7.82% |
JK968 | x: NDWI1640 | y = 10.694x − 6.130 | 0.7977 | 0.2867 | 0.3658 | 11.12% | |
ZD958 | x: SR(1300,1450) | y = 1.574x − 5.232 | 0.8229 | 0.3150 | 0.4192 | 11.68% | |
All cultivars | x1: SR(1300,1450) x2: NDII x3: MSI x4: NDWI2130 | y = 2.728x1 − 193.92x2 − 144.304x3 − 16.403x4 + 134.326 | 0.8575 | 0.2831 | 0.3713 | 9.50% |
Crop | Cultivar | Parametric | Empirical Formula Model | MAE | RMSE | NRMSE | |
---|---|---|---|---|---|---|---|
Maize | JY168 | x: DDn(2028,40) | y = 166.98x − 3.183 | 0.9447 | 0.2118 | 0.2694 | 7.09% |
x:ND(1771,1773) | y = 189672x2 − 2744.6x + 0.6859 | 0.9229 | 0.2567 | 0.3182 | 8.37% | ||
JK968 | x: DDn(1880,10) | y = −168.6x − 2.1552 | 0.8267 | 0.2705 | 0.3299 | 10.03% | |
x:ND(1130,1134) | y = 351637x2 + 2998.3x − 6.0636 | 0.8424 | 0.2728 | 0.3199 | 9.72% | ||
ZD958 | x: DDn(2372,26) | y = −797.43x − 0.7728 | 0.8692 | 0.2501 | 0.3096 | 8.62% | |
x: ND(1131,1134) | y = 237609x2 + 3036.3x − 5.4458 | 0.8745 | 0.2380 | 0.2946 | 8.21% | ||
All cultivars | x: DDn(2030,45) | y = −132.84x − 1.0743 | 0.8962 | 0.2331 | 0.3057 | 7.94% | |
x: ND(1000,1888) | y = −9.5246x2 − 19.971x − 9.6646 | 0.8791 | 0.2383 | 0.3284 | 8.53% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Zhang, Y.; Feng, P.; Hu, X.; Mo, Y.; Li, H.; Li, J. Evaluating Leaf Water Potential of Maize Through Multi-Cultivar Dehydration Experiments and Segmentation Thresholding. Remote Sens. 2025, 17, 2106. https://doi.org/10.3390/rs17122106
Zhao S, Zhang Y, Feng P, Hu X, Mo Y, Li H, Li J. Evaluating Leaf Water Potential of Maize Through Multi-Cultivar Dehydration Experiments and Segmentation Thresholding. Remote Sensing. 2025; 17(12):2106. https://doi.org/10.3390/rs17122106
Chicago/Turabian StyleZhao, Shuanghui, Yanqun Zhang, Pancen Feng, Xinlong Hu, Yan Mo, Hao Li, and Jiusheng Li. 2025. "Evaluating Leaf Water Potential of Maize Through Multi-Cultivar Dehydration Experiments and Segmentation Thresholding" Remote Sensing 17, no. 12: 2106. https://doi.org/10.3390/rs17122106
APA StyleZhao, S., Zhang, Y., Feng, P., Hu, X., Mo, Y., Li, H., & Li, J. (2025). Evaluating Leaf Water Potential of Maize Through Multi-Cultivar Dehydration Experiments and Segmentation Thresholding. Remote Sensing, 17(12), 2106. https://doi.org/10.3390/rs17122106