Mapping Young Lava Rises (Stony Rises) Across an Entire Basalt Flow Using Remote Sensing and Machine Learning
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.2. Method
Spatial Resolution | Bands (Central Wavelength) | Sensor | Date of Data Capture | Date/Source | |
---|---|---|---|---|---|
Aerial imagery | 0.15 m per pixel | Red, Green, Blue | VisionMap A3—Edge | 28 January 2019–17 May 2019 | 2018–19 South West Rural Photography [56] |
Sentinel-2 Satellite imagery | Bands 2–4, 8: 10 m per pixel; Bands 5–7, 8A, 11, 12: 20 m per pixel | Band 2 (blue): 0.490 μm Band 3 (green): 0.560 μm Band 4 (red): 0.665 μm Band 5 (Vegetation Red Edge): 0.705 μm Band 6 (Vegetation Red Edge): 0.740 μm Band 7 (Vegetation Red Edge): 0.783 μm Band 8 (Near Infrared): 0.842 μm Band 8A (Vegetation Red Edge): 0.865 μm Band 11 (Shortwave Infrared): 1.610 μm Band 12 (Shortwave Infrared): 2.190 μm | Sentinel-2A | 1 November 2021 | S2B_MSIL2A_20211101T002059_N0301_R116_T54HYC_20211101T021017.SAFE [56] |
LiDAR | 2 points per meter | N/A | ALTM Gemini, Optech ALTM Orion | 14 January 2008–23 March 2008 | 2006-07 South-West Region LiDAR—Corangamite [52] |
Airborne radiometric and aeromagnetic | 50 m; 200–400 m across metropolitan Melbourne, Victoria | Potassium: counts per second or % Thorium: counts per second or ppm Uranium: counts per second or ppm Total Magnetic Intensity: nT First Magnetic Derivative nT/m | Various Flight lines 110–10,000 m | Various between 1956 and 2001 | Victoria Airborne and Gravity 2008 [57] |
3.2.1. Preparation of Training Data
3.2.2. Preparation of Input Predictor Variables
3.2.3. Image Segmentation
3.2.4. Training and Classifying Using a Random Forest Classifier
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyce, J. The Newer Volcanics Province of Southeastern Australia: A New Classification Scheme and Distribution Map for Eruption Centres. Aust. J. Earth Sci. 2013, 60, 449–462. [Google Scholar] [CrossRef]
- Walker, G.P.L. Structure, and Origin by Injection of Lava under Surface Crust, of Tumuli, “Lava Rises”, “Lava-Rise Pits”, and “Lava-Inflation Clefts” in Hawaii. Bull. Volcanol. 1991, 53, 546–558. [Google Scholar] [CrossRef]
- Wentworth, C.K.; Macdonald, G.A. Structures and Forms of Basaltic Rocks in Hawaii. In Geological Survey Bulletin; United States Government Publishing Office: Washington, DC, USA, 1953. [Google Scholar]
- Skeats, E.W.; James, A.V.G. Basaltic Barriers and Other Surface Features of the Newer Basalts of Western Victoria. Proc. R. Soc. Vic. 1937, 49, 245–278. [Google Scholar]
- Heath, M.; Phillips, D.; Matchan, E.L. Basalt Lava Flows of the Intraplate Newer Volcanic Province in South-East Australia (Melbourne Region): 40Ar/39Ar Geochronology Reveals ~8 Ma of Episodic Activity. J. Volcanol. Geotherm. Res. 2020, 389, 106730. [Google Scholar] [CrossRef]
- Smith, B.W.; Prescott, J.R. Thermoluminescence Dating of the Eruption at Mt Schank, South Australia. Aust. J. Earth Sci. 1987, 34, 335–342. [Google Scholar] [CrossRef]
- Cas, R.A.F.; van Otterloo, J.; Blaikie, T.N.; van den Hove, J. The Dynamics of a Very Large Intra-Plate Continental Basaltic Volcanic Province, the Newer Volcanics Province, SE Australia, and Implications for Other Provinces. Geol. Soc. Spec. Publ. 2017, 446, 123–172. [Google Scholar] [CrossRef]
- Fraser, S.; Soto-Berelov, M.; Holden, L.; Hewson, R.; Webb, J.; Jones, S. Mapping Stony Rise Landforms Using a Novel Remote Sensing, Geophysical, and Machine Learning Approach. Geomorphology 2024, 450, 109070. [Google Scholar] [CrossRef]
- Joyce, E.B. A New Regolith Landform Map of the Western Victorian Volcanic Plains, Victoria, Australia; Taylor, G., Pain, C., Eds.; Regolith: Kalgoorlie, WA, Australia, 1998; pp. 117–126. [Google Scholar]
- Moloney, D. City of Whittlesea: Stage Two Dry Stone Wall Study: Thematic History and Precincts; City of Whittlesea: South Morang, VIC, Australia, 2020. [Google Scholar]
- Heath, M.; Phillips, D.; Matchan, E.L. An Evidence-Based Approach to Accurate Interpretation of 40Ar/39Ar Ages from Basaltic Rocks. Earth Planet. Sci. Lett. 2018, 498, 65–76. [Google Scholar] [CrossRef]
- Matchan, E.L.; Phillips, D.; Jourdan, F.; Oostingh, K. Early Human Occupation of Southeastern Australia: New Insights from 40Ar/39Ar Dating of Young Volcanoes. Geology 2020, 48, 390–394. [Google Scholar] [CrossRef]
- Oostingh, K.F.; Jourdan, F.; Matchan, E.L.; Phillips, D. 40Ar/39Ar Geochronology Reveals Rapid Change from Plume-Assisted to Stress-Dependent Volcanism in the Newer Volcanic Province, SE Australia. Geochem. Geophys. Geosyst. 2017, 18, 1065–1089. [Google Scholar] [CrossRef]
- Ollier, C.D. Landforms of the Newer Volcanic Province of Victoria. In Landform Studies from Australia and New Guinea; Jennings, J.N., Mabbutt, J.A., Eds.; Australian National University Press: Canberra, NSW, Australia, 1967; pp. 315–340. [Google Scholar]
- Department of Planning and Community Development. South West Victoria Landscape Assessment Study: Significant Landscapes; Department of Planning and Community Development: Melbourne, VIC, Australia, 2013. [Google Scholar]
- McNiven, I. Aboriginal Settlement of the Saline Lake and Volcanic Landscapes of Corangamite Basin, Western Victoria. Artefact 1998, 21, 63–94. [Google Scholar]
- Orr, A. Precinct Structure Plan 1067 Donnybrook Aboriginal Heritage Impact Assessment; Terra Culture: Northcote, VIC, Australia, 2013. [Google Scholar]
- Clarke, A. Lake Condah Project Aboriginal Archaeology: Resource Inventory; Aboriginal Affairs Victoria: Melbourne, VIC, Australia, 1991. [Google Scholar]
- Clarke, A. Romancing the Stones. The Cultural Construction of an Archaeological Landscape in the Western District of Victoria. Archaeol. Ocean. 1994, 29, 1–15. [Google Scholar] [CrossRef]
- Coutts, P.J.F.; Frank, R.K.; Hughes, P.; Vanderwal, R.L. Aboriginal Engineers of the Western District, Victoria; Aboriginal Affairs Victoria: Melbourne, VIC, Australia, 1978. [Google Scholar]
- Tulloch, J. An Archaeological Survey of 1910 Donnybrook Road, Yan Yean, Victoria; Biosis Research: Melbourne, VIC, Australia, 2001. [Google Scholar]
- Van Waarden, R.; Simmons, S. Lake Condah: Review and Assessment; Victoria Archaeological Survey: Mitcham, VIC, Australia, 1992. [Google Scholar]
- Jasiewicz, J.; Stepinski, T.F. Geomorphons-a Pattern Recognition Approach to Classification and Mapping of Landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Cody, T.R.; Anderson, S.L. LiDAR Predictive Modeling of Pacific Northwest Mound Sites: A Study of Willamette Valley Kalapuya Mounds, Oregon (USA). J. Archaeol. Sci. Rep. 2021, 38, 103008. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Kazemi Garajeh, M.; Blaschke, T.; Lakes, T. An Object Based Image Analysis Applied for Volcanic and Glacial Landforms Mapping in Sahand Mountain, Iran. Catena 2021, 198, 105073. [Google Scholar] [CrossRef]
- Freeland, T.; Heung, B.; Burley, D.V.; Clark, G.; Knudby, A. Automated Feature Extraction for Prospection and Analysis of Monumental Earthworks from Aerial LiDAR in the Kingdom of Tonga. J. Archaeol. Sci. 2016, 69, 64–74. [Google Scholar] [CrossRef]
- Kazemi Garajeh, M.; Feizizadeh, B.; Weng, Q.; Rezaei Moghaddam, M.H.; Kazemi Garajeh, A. Desert Landform Detection and Mapping Using a Semi-Automated Object-Based Image Analysis Approach. J. Arid Environ. 2022, 199, 104721. [Google Scholar] [CrossRef]
- Mitkari, K.V.; Arora, M.K.; Tiwari, R.K.; Sofat, S.; Gusain, H.S.; Tiwari, S.P. Large-Scale Debris Cover Glacier Mapping Using Multisource Object-Based Image Analysis Approach. Remote Sens. 2022, 14, 3202. [Google Scholar] [CrossRef]
- Pedersen, G.B.M. Semi-Automatic Classification of Glaciovolcanic Landforms: An Object-Based Mapping Approach Based on Geomorphometry. J. Volcanol. Geotherm. Res. 2016, 311, 29–40. [Google Scholar] [CrossRef]
- Verhagen, P.; Drâguţ, L. Object-Based Landform Delineation and Classification from DEMs for Archaeological Predictive Mapping. J. Archaeol. Sci. 2012, 39, 698–703. [Google Scholar] [CrossRef]
- Guyot, A.; Hubert-Moy, L.; Lorho, T. Detecting Neolithic Burial Mounds from LiDAR-Derived Elevation Data Using a Multi-Scale Approach and Machine Learning Techniques. Remote Sens. 2018, 10, 225. [Google Scholar] [CrossRef]
- Orengo, H.A.; Conesa, F.C.; Garcia-Molsosa, A.; Lobo, A.; Green, A.S.; Madella, M.; Petrie, C.A. Automated Detection of Archaeological Mounds Using Machine-Learning Classification of Multisensor and Multitemporal Satellite Data. Proc. Natl. Acad. Sci. USA 2020, 117, 18240–18250. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, R.G.; Veloso, G.V.; Fernandes-Filho, E.I.; Francelino, M.R.; Schaefer, C.E.G.R.; Corrêa, G.R. Evaluation of Machine Learning Algorithms to Classify and Map Landforms in Antarctica. Earth Surf. Process. Landf. 2022, 47, 367–382. [Google Scholar] [CrossRef]
- Stott, D.; Kristiansen, S.M.; Sindbæk, S.M. Searching for Viking Age Fortresses with Automatic Landscape Classification and Feature Detection. Remote Sens. 2019, 11, 1881. [Google Scholar] [CrossRef]
- Zhao, W.-F.; Xiong, L.-Y.; Ding, H.; Tang, G.-A. Automatic Recognition of Loess Landforms Using Random Forest Method. J. Mt. Sci. 2017, 14, 885–897. [Google Scholar] [CrossRef]
- Juel, A.; Groom, G.B.; Svenning, J.C.; Ejrnæs, R. Spatial Application of Random Forest Models for Fine-Scale Coastal Vegetation Classification Using Object Based Analysis of Aerial Orthophoto and DEM Data. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 106–114. [Google Scholar] [CrossRef]
- Silveira, E.M.O.; Silva, S.H.G.; Acerbi-Junior, F.W.; Carvalho, M.C.; Carvalho, L.M.T.; Scolforo, J.R.S.; Wulder, M.A. Object-Based Random Forest Modelling of Aboveground Forest Biomass Outperforms a Pixel-Based Approach in a Heterogeneous and Mountain Tropical Environment. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 175–188. [Google Scholar] [CrossRef]
- De Castro, A.I.; Torres-Sánchez, J.; Peña, J.M.; Jiménez-Brenes, F.M.; Csillik, O.; López-Granados, F. An Automatic Random Forest-OBIA Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery. Remote Sens. 2018, 10, 285. [Google Scholar] [CrossRef]
- Lebourgeois, V.; Dupuy, S.; Vintrou, É.; Ameline, M.; Butler, S.; Bégué, A. A Combined Random Forest and OBIA Classification Scheme for Mapping Smallholder Agriculture at Different Nomenclature Levels Using Multisource Data (Simulated Sentinel-2 Time Series, VHRS and DEM). Remote Sens. 2017, 9, 259. [Google Scholar] [CrossRef]
- Li, M.; Ma, L.; Blaschke, T.; Cheng, L.; Tiede, D. A Systematic Comparison of Different Object-Based Classification Techniques Using High Spatial Resolution Imagery in Agricultural Environments. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 87–98. [Google Scholar] [CrossRef]
- Vogels, M.F.A.; de Jong, S.M.; Sterk, G.; Addink, E.A. Agricultural Cropland Mapping Using Black-and-White Aerial Photography, Object-Based Image Analysis and Random Forests. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 114–123. [Google Scholar] [CrossRef]
- Fallatah, A.; Jones, S.; Mitchell, D. Object-Based Random Forest Classification for Informal Settlements Identification in the Middle East: Jeddah a Case Study. Int. J. Remote Sens. 2020, 41, 4421–4445. [Google Scholar] [CrossRef]
- Amini, S.; Homayouni, S.; Safari, A.; Darvishsefat, A.A. Object-Based Classification of Hyperspectral Data Using Random Forest Algorithm. Geo-Spat. Inf. Sci. 2018, 21, 127–138. [Google Scholar] [CrossRef]
- Nasiri, V.; Hawryło, P.; Janiec, P.; Socha, J. Comparing Object-Based and Pixel-Based Machine Learning Models for Tree-Cutting Detection with PlanetScope Satellite Images: Exploring Model Generalization. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103555. [Google Scholar] [CrossRef]
- Ding, H.; Na, J.; Jiang, S.; Zhu, J.; Liu, K.; Fu, Y.; Li, F. Evaluation of Three Different Machine Learning Methods for Object-Based Artificial Terrace Mapping—A Case Study of the Loess Plateau, China. Remote Sens. 2021, 13, 1021. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Bureau of Meteorology; CSIRO. Corangamite Region at a Glance A Climate Guide for Agriculture Corangamite, Victoria; Bureau of Meteorology: Melbourne, VIC, Australia, 2019. [Google Scholar]
- Blaikie, T.; Piganis, F.; Cas, R.; Ailleres, L.; Betts, P. The Red Rock Volcanic Complex. In Proceedings of the VF01: Factors That Influence Varying Eruption Styles (From Magmatic to Phreato-Magmatic) in Intraplate Continental Basaltic Volcanic Provinces: The Newer Volcanics Province of South-Eastern Australia; Cas, R., Blaikie, T., Boyce, J., Hayman, P., Jordan, S., Piganis, F., Prata, G., van Otterloo, J., Eds.; The Nomadic Explorers: Melbourne, VIC, Australia, 2011. [Google Scholar]
- Hon, K.; Kauahikaua, J.; Denlinger, R.; Mackay, K. Emplacement and Inflation of Pahoehoe Sheet Flows: Observations and Measurements of Active Lava Flows on Kilauea Volcano, Hawaii. Geol. Soc. Am. Bull. 1994, 106, 351–370. [Google Scholar] [CrossRef]
- Fraser, S.; Soto-Berelov, M.; Holden, L.; Jones, S. Identifying Metrics for the Spatial Characterisation of Stony Rise Landforms across the Landscape. In Proceedings of the Excavations, Surveys and Heritage Management in Victoria; Kelly, D., Frankel, D., Foley, E., Lawrence, S., Spry, C., Eds.; La Trobe University: Melbourne, VIC, Australia, 2022; Volume 11, pp. 15–28. [Google Scholar]
- Department of Environment Land Water and Planning. 2006-07 South-West Region LiDAR—Corangamite. 2016.
- Copernicus S2B_MSIL2A_20211101T002059_N0301_R116_T54HYC_20211101T021017.SAFE 2021. Available online: https://dataspace.copernicus.eu/ (accessed on 22 November 2023).
- Gao, B.C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Pour, A.B.; Ranjbar, H.; Sekandari, M.; Abd El-Wahed, M.; Hossain, M.S.; Hashim, M.; Yousefi, M.; Zoheir, B.; Wambo, J.D.T.; Muslim, A.M. Remote Sensing for Mineral Exploration. In Geospatial Analysis Applied to Mineral Exploration: Remote Sensing, GIS, Geochemical, and Geophysical Applications to Mineral Resources; Elsevier: Amsterdam, The Netherlands, 2023; pp. 17–149. [Google Scholar] [CrossRef]
- Department of Environment Land Water and Planning. 2018–2019 South West Rural Photography. 2019.
- Department of Primary Industries. Victoria—Gridded Airborne Geophysical Data, and Located and Gridded Gravity 2008. Available online: https://earthresources.efirst.com.au/product.asp?pID=22&cID=13 (accessed on 19 October 2022).
- Department of Environment Land Water and Planning Native Vegetation—Modelled 1750 Ecological Vegetation Classes 2022. Available online: https://www.data.vic.gov.au/ (accessed on 1 August 2022).
- Rocamora, I.; Ienco, D.; Ferry, M. Multi-Source Deep-Learning Approach for Automatic Geomorphological Mapping: The Case of Glacial Moraines. Geo-Spat. Inf. Sci. 2024, 27, 1747–1766. [Google Scholar] [CrossRef]
- Orfeo ToolBox Orfeo ToolBox. Available online: https://www.orfeo-toolbox.org/about-otb/ (accessed on 5 January 2023).
- Boukir, S.; Jones, S.; Reinke, K. Fast Mean-Shift Based Classification of Very High Resolution Images: Application to Forest Cover Mapping. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 1, 111–116. [Google Scholar] [CrossRef]
- Anders, N.S.; Seijmonsbergen, A.C.; Bouten, W. Segmentation Optimization and Stratified Object-Based Analysis for Semi-Automated Geomorphological Mapping. Remote Sens. Environ. 2011, 115, 2976–2985. [Google Scholar] [CrossRef]
- Ma, W.; Ye, X.; Tu, F.; Hu, F. Carat: An R Package for Covariate-Adaptive Randomization in Clinical Trials. J. Stat. Softw. 2023, 107, 1–27. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Mellor, A.; Boukir, S.; Haywood, A.; Jones, S. Exploring Issues of Training Data Imbalance and Mislabelling on Random Forest Performance for Large Area Land Cover Classification Using the Ensemble Margin. ISPRS J. Photogramm. Remote Sens. 2015, 105, 155–168. [Google Scholar] [CrossRef]
- Li, S.; Xiong, L.; Tang, G.; Strobl, J. Deep Learning-Based Approach for Landform Classification from Integrated Data Sources of Digital Elevation Model and Imagery. Geomorphology 2020, 354, 107045. [Google Scholar] [CrossRef]
- Veronesi, F.; Hurni, L. Random Forest with Semantic Tie Points for Classifying Landforms and Creating Rigorous Shaded Relief Representations. Geomorphology 2014, 224, 152–160. [Google Scholar] [CrossRef]
- Dickson, L.; Scott, K.M. Interpretation of Aerial Gamma-Ray Surveys-Adding the Geochemical Factors. AGSO J. Aust. Geol. Geophys. 1997, 17, 187–200. [Google Scholar]
- Cignetti, M.; Godone, D.; Ferrari Trecate, D.; Baldo, M. New Paradigms for Geomorphological Mapping: A Multi-Source Approach for Landscape Characterization. Remote Sens. 2025, 17, 581. [Google Scholar] [CrossRef]
- Smith, M.J.; Wise, S.M. Problems of Bias in Mapping Linear Landforms from Satellite Imagery. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 65–78. [Google Scholar] [CrossRef]
- Sevara, C.; Verhoeven, G.; Doneus, M.; Draganits, E. Surfaces from the Visual Past: Recovering High-Resolution Terrain Data from Historic Aerial Imagery for Multitemporal Landscape Analysis. J. Archaeol. Method Theory 2018, 25, 611–642. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, A.; Spry, C.; Jones, R.; Wandin, A.; Mullins, B.; Stephenson-Gordon, G.; Stephenson, B.; Flatley, A.; Kurpiel, R.; Bruce, A.; et al. A Tale as Old as Time: Stony Rises on Wurundjeri Woi-Wurrung Country, South-Eastern Australia. In Proceedings of the 2023 Excavations, Surveys and Heritage Management in Victoria; Kelly, D., Frankel, D., Foley, E., Lawrence, S., Spry, C., Berelov, I., Canning, S., Eccleston, M., Eds.; La Trobe: Melbounre, VIC, Australia, 2023; Volume 12, pp. 19–32. [Google Scholar]
- Mcconachie, F.; Mcalister, R. Mapping Cultural Values: A Case Study from Kalkallo, Melbourne Metropolitan Area. In Proceedings of the Excavations, Surveys and Heritage Management in Victoria; La Trobe: Melbourne, VIC, Australia, 2018; Volume 7, pp. 25–32. [Google Scholar]
Variable Cohort | |||
---|---|---|---|
Topography | Spectral Signature and Indices | Airborne Geophysics | Vegetation |
Aspect Mean Aspect Std Dev DEM of Difference Mean * DEM of Difference Std Dev * Local Elevation Mean *^ Local Elevation Std Dev ^ Slope Mean *^ Slope Std Dev * Surface Terrain Roughness Index Mean Surface Terrain Roughness Index Std Dev | Normalized Difference Water Index Mean *^ Normalized Difference Water Index Std Dev Iron Oxide Ratio Mean Iron Oxide Ratio Std Dev Clay Mineral Ratio Mean *^ Clay Mineral Ratio Std Dev Red Reflectance Mean Red Reflectance Std Dev Green Reflectance Mean Green Reflectance Std Dev Blue Reflectance Mean Blue Reflectance Std Dev | Concentration of Potassium Mean * Concentration of Potassium Std Dev Concentration of Thorium Mean *^ Concentration of Thorium Std Dev Concentration of Uranium Mean *^ Concentration of Uranium Std Dev Aeromagnetic (Total Magnetic Intensity) Mean *^ Aeromagnetic (Total Magnetic Intensity) Std Dev Aeromagnetic (first vertical derivative) Mean Aeromagnetic (first vertical derivative) Std Dev | Ecological Vegetation Class (EVC) Majority * |
Reference | ||
---|---|---|
Prediction | 0 | 1 |
0 | 771,515 | 16,032 |
1 | 7531 | 23,966 |
Predictor Variable | Predictor Variable of Importance (by Mean Decrease Gini) | Predictor Variable Ranking from Fraser et al. [8] |
---|---|---|
Slope Mean | 5011 | Local Elevation Mean |
Local Elevation Mean | 3070 | Concentration Thorium Mean |
Concentration of Potassium Mean | 2345 | Aeromagnetic (TMI) Mean |
Normalized Difference Water Index (NDWI) Mean | 2183 | Concentration of Uranium Mean |
Concentration Thorium Mean | 1996 | Clay Mineral Ratio Mean |
DEM of Difference Mean | 1918 | Normalized Difference Water Index (NDWI) Mean |
Slope Std Dev | 1885 | Slope Mean |
Aeromagnetic (TMI) Mean | 1738 | Local Elevation Standard Deviation |
Concentration of Uranium Mean | 1737 | |
Clay Mineral Ratio Mean | 1567 | |
DEM of Difference Std Dev | 1480 | |
Vegetation Class Mean | 364 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraser, S.; Soto-Berelov, M.; Holden, L.; Webb, J.; Jones, S. Mapping Young Lava Rises (Stony Rises) Across an Entire Basalt Flow Using Remote Sensing and Machine Learning. Remote Sens. 2025, 17, 2004. https://doi.org/10.3390/rs17122004
Fraser S, Soto-Berelov M, Holden L, Webb J, Jones S. Mapping Young Lava Rises (Stony Rises) Across an Entire Basalt Flow Using Remote Sensing and Machine Learning. Remote Sensing. 2025; 17(12):2004. https://doi.org/10.3390/rs17122004
Chicago/Turabian StyleFraser, Shaye, Mariela Soto-Berelov, Lucas Holden, John Webb, and Simon Jones. 2025. "Mapping Young Lava Rises (Stony Rises) Across an Entire Basalt Flow Using Remote Sensing and Machine Learning" Remote Sensing 17, no. 12: 2004. https://doi.org/10.3390/rs17122004
APA StyleFraser, S., Soto-Berelov, M., Holden, L., Webb, J., & Jones, S. (2025). Mapping Young Lava Rises (Stony Rises) Across an Entire Basalt Flow Using Remote Sensing and Machine Learning. Remote Sensing, 17(12), 2004. https://doi.org/10.3390/rs17122004