Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = stony rises

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8228 KB  
Article
Mapping Young Lava Rises (Stony Rises) Across an Entire Basalt Flow Using Remote Sensing and Machine Learning
by Shaye Fraser, Mariela Soto-Berelov, Lucas Holden, John Webb and Simon Jones
Remote Sens. 2025, 17(12), 2004; https://doi.org/10.3390/rs17122004 - 10 Jun 2025
Viewed by 949
Abstract
Lava rises, locally known as stony rises, are Pliocene–Holocene volcanic landforms occurring throughout the Victorian Volcanic Plain (VVP) in Victoria, Australia. Stony rises are not only important to understanding the geological history of Victoria but are culturally significant to Aboriginal Australians and have [...] Read more.
Lava rises, locally known as stony rises, are Pliocene–Holocene volcanic landforms occurring throughout the Victorian Volcanic Plain (VVP) in Victoria, Australia. Stony rises are not only important to understanding the geological history of Victoria but are culturally significant to Aboriginal Australians and have ecological importance. Currently, the mapping of stony rises is manually performed at a case study level rather than a landscape level. Remote sensing technologies such as LiDAR data, satellite imagery, and aerial imagery allow for the mapping of stony rises from an aerial perspective. This paper aims to map stony rises using remotely sensed and geophysical data at a landscape level on a younger lava flow (~42,000 years old) within the Victorian Volcanic Plain (the Warrion Hill and Red Rock Volcanic Complex) by utilizing an object based random forest machine learning approach. The results show that stony rises were successfully identified in the landscape to an accuracy of 78.9%, with 2716 potential new stony rises identified. Out of 34 predictor variables, we found the most important variables to be slope gradient, local elevation, DEM of Difference (change in height), Normalized Difference Water Index (NDWI), Clay Mineral Ratio, the concentration of radiometric elements (Potassium, Thorium, and Uranium), Total Magnetic Intensity, and Ecological Vegetation Class (EVC). The results from this study highlight the ability to detect a volcanic landform at a landscape scale using an ensemble of predictor variables that include topographic, spectral information and geophysical data. This lays the foundation towards a uniform approach for mapping stony rises throughout the VVP and similar landforms (such as tumuli) worldwide. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

24 pages, 35825 KB  
Article
The Respondence of Wave on Sea Surface Temperature in the Context of Global Change
by Ru Yao, Weizeng Shao, Mengyu Hao, Juncheng Zuo and Song Hu
Remote Sens. 2023, 15(7), 1948; https://doi.org/10.3390/rs15071948 - 6 Apr 2023
Cited by 20 | Viewed by 3380
Abstract
Several aspects of global climate change, e.g., the rise of sea level and water temperature anomalies, suggest the advantages of studying wave distributions. In this study, WAVEWATCH-III (WW3) (version 6.07), which is a well-known numerical wave model, was employed for simulating waves over [...] Read more.
Several aspects of global climate change, e.g., the rise of sea level and water temperature anomalies, suggest the advantages of studying wave distributions. In this study, WAVEWATCH-III (WW3) (version 6.07), which is a well-known numerical wave model, was employed for simulating waves over global seas from 1993–2020. The European Centre for Medium-Range Weather Forecasts (ECMWF), Copernicus Marine Environment Monitoring Service (CMEMS), current and sea level were used as the forcing fields in the WW3 model. The validation of modelling simulations against the measurements from the National Data Buoy Center (NDBC) buoys and Haiyang-2B (HY-2B) altimeter yielded a root mean square error (RMSE) of 0.49 m and 0.63 m, with a correlation (COR) of 0.89 and 0.90, respectively. The terms calculated by WW3-simulated waves, i.e., breaking waves, nonbreaking waves, radiation stress, and Stokes drift, were included in the water temperature simulation by a numerical circulation model named the Stony Brook Parallel Ocean Model (sbPOM). The water temperature was simulated in 2005–2015 using the high-quality Simple Ocean Data Assimilation (SODA) data. The validation of sbPOM-simulated results against the measurements obtained from the Array for Real-time Geostrophic Oceanography (Argo) buoys yielded a RMSE of 1.12 °C and a COR of 0.99. By the seasonal variation, the interrelation of the currents, sea level anomaly, and significant wave heights (SWHs) were strong in the Indian Ocean. In the strong current areas, the distribution of the sea level was consistent with the SWHs. The monthly variation of SWHs, currents, sea surface elevation, and sea level anomalies revealed that the upward trends of SWHs and sea level anomalies were consistent from 1993–2015 over the global ocean. In the Indian Ocean, the SWHs were obviously influenced by the SST and sea surface wind stress. The rise of wind stress intensity and sea level enlarges the growth of waves, and the wave-induced terms strengthen the heat exchange at the air–sea layer. It was assumed that the SST oscillation had a negative response to the SWHs in the global ocean from 2005–2015. This feedback indicates that the growth of waves could slow down the amplitude of water warming. Full article
Show Figures

Figure 1

19 pages, 8615 KB  
Article
What Hides in the Heights? The Case of the Iberian Endemism Bromus picoeuropeanus
by Claudia González-Toral, Herminio S. Nava, José Antonio Fernández Prieto and Eduardo Cires
Plants 2023, 12(7), 1531; https://doi.org/10.3390/plants12071531 - 1 Apr 2023
Viewed by 2261
Abstract
Bromus picoeuropeanus is a recently described species belonging to a complex genus of grasses. It inhabits stony soils at heights ranging from 1600 to 2200 m in Picos de Europa (Cantabrian Mountains, northern Spain). This species is morphologically very similar to B. erectus [...] Read more.
Bromus picoeuropeanus is a recently described species belonging to a complex genus of grasses. It inhabits stony soils at heights ranging from 1600 to 2200 m in Picos de Europa (Cantabrian Mountains, northern Spain). This species is morphologically very similar to B. erectus, partially sharing its presumed distribution range. We aim to determine the relationship between these species and their altitudinal ranges in Picos de Europa and the Cantabrian Mountains by conducting phylogenetic analyses based on nuclear (ETS and ITS) and chloroplastic (trnL) markers. Phylogenetic trees were inferred by Maximum Likelihood and Bayesian Inference. Haplotype networks were estimated based on the plastid marker. Although the ITS topologies could not generate exclusive clades for these species, the ETS analyses generated highly supported B. picoeuropeanus exclusive clades, which included locations outside its altitudinal putative range. The ETS-ITS and ETS-ITS-trnL topologies generated B. picoeuropeanus exclusive clades, whereas the trnL-based trees and haplotype networks were unable to discriminate B. erectus and B. picoeuropeanus. This evidence suggests that B. picoeuropeanus is a separate species with a larger distribution than previously thought, opening new questions regarding the evolution of B. erectus and other similar species in European mountainous systems. However, more information is needed regarding B. picoeuropeanus susceptibility to temperature rises. Full article
(This article belongs to the Collection Feature Papers in Plant Ecology)
Show Figures

Figure 1

22 pages, 3767 KB  
Article
Determination of Biochemical Composition in Peach (Prunus persica L. Batsch) Accessions Characterized by Different Flesh Color and Textural Typologies
by Sara Serra, Brendon Anthony, Andrea Masia, Daniela Giovannini and Stefano Musacchi
Foods 2020, 9(10), 1452; https://doi.org/10.3390/foods9101452 - 13 Oct 2020
Cited by 42 | Viewed by 6381
Abstract
The rising interest in beneficial health properties of polyphenol compounds in fruit initiated this investigation about biochemical composition in peach mesocarp/exocarp. Biochemical evaluation of phenolic compounds and ascorbic acid were quantified through high-performance liquid chromatography (HPLC) in relation to three flesh colors (white, [...] Read more.
The rising interest in beneficial health properties of polyphenol compounds in fruit initiated this investigation about biochemical composition in peach mesocarp/exocarp. Biochemical evaluation of phenolic compounds and ascorbic acid were quantified through high-performance liquid chromatography (HPLC) in relation to three flesh colors (white, yellow and red) and four flesh typologies (melting, non-melting, slow softening and stony hard) within six commercial cultivars and eight breeding selections of peach/nectarine in 2007. While in 2008, quality and sensorial analyses were conducted on only three commercial cultivars (‘Big Top’, ‘Springcrest’ and ‘Ghiaccio 1’). The red flesh selection demonstrated the highest levels of phenolic compounds (in mesocarp/exocarp) and ascorbic acid. Total phenolic concentration was approximately three-fold higher in the exocarp than the mesocarp across all accessions. Breeding selections generally reported higher levels of phenolics than commercial cultivars. Flesh textural typologies justified firmness differences at harvest, but minimally addressed variations in quality and phenolic compounds. Flesh pigmentation explained variation in the biochemical composition, with the red flesh accession characterized by an abundancy of phenolic compounds and a high potential for elevated antioxidant activity. Sensorial analyses ranked the cultivar with high soluble solids concentration:titratable acidity (SSC:TA) and reduced firmness the highest overall. Red flesh is a highly desirable trait for breeding programs aiming to improve consumption of peaches selected for nutraceutical properties. Full article
(This article belongs to the Special Issue Bioactive (Poly)phenols in Food: Current Topics and Advances)
Show Figures

Figure 1

Back to TopTop