Performance Evaluation and Spatiotemporal Dynamics of Nine Reanalysis and Remote Sensing Evapotranspiration Products in China
Abstract
1. Introduction
2. Materials and Methods
2.1. The Actual Evapotranspiration Products
2.1.1. Reanalysis Actual Evapotranspiration Datasets
- ERA5
- ERA5-Land
- GLDAS-2.1
- MERRA-2
- TerraClimate
2.1.2. Remote Sensing Actual Evapotranspiration Datasets
- ETMonitor
- GLEAM4.2a
- PML_V2
- SiTHv2
2.2. Observation Data
2.3. Metrics for Accuracy Evaluation
2.4. Data Fusion Method
2.5. Mann–Kendall Trend Test
2.6. Evapotranspiration Concentration Index
3. Results
3.1. The Overall Performance of Nine Datasets
3.2. Accuracy Evaluation for Different Land Surface Conditions
3.3. Performance of Nine Datasets in Different Subregions
3.4. Comparison of Seasonal Variations of Different ET Products
3.5. Improving ET Data by Merging the Best Products Using TCA
3.6. Spatial and Temporal Variations of Evapotranspiration in China Revealed by Different Data Products
4. Discussion
4.1. Comparative Analysis with Some Recent Evaluation Results in the Literature
4.2. Advantages and Disadvantages of Remote Sensing Products and Reanalysis Products
4.3. Limitations and Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Land Cover | Station Name (Abbreviation) | Longitude/°E | Latitude/°N | Temporal Resolution | Observation Period | Reference |
---|---|---|---|---|---|---|
Cropland | Daman Super Station (DMS) | 100.37 | 38.86 | 30 min | 2012–2020 | Liu et al. [43,44] |
Gucheng (GC) | 115.67 | 39.13 | 30 min | 2020 | Zhou et al. [45] | |
Jinzhou (JZ) | 121.20 | 41.15 | 30 min | 2005–2014 | Zhang et al. [46] | |
Jurong (JR) | 119.22 | 31.81 | 30 min | 2015–2020 | Zhou et al. [47] | |
Luancheng (LC) | 114.68 | 37.88 | 30 min | 2013–2017 | Liu et al. [48] | |
Panjin Rice Field Station (PJC) | 121.96 | 40.94 | 30 min | 2018–2020 | Jia et al. [49] | |
Yucheng (YC) | 116.57 | 36.83 | 30 min | 2003–2010 | Zhao et al. [50] | |
Changling Rice Field Station (CLC) | 123.47 | 44.60 | 30 min | 2018–2020 | Dong et al. [51] | |
Desert | Desert Station (DS) | 100.99 | 42.11 | 30 min | 2015–2020 | Liu et al. [43,44] |
Forest | Ailaoshan (ALS) | 101.03 | 24.54 | Monthly | 2009–2013 | Qi et al. [52] |
Baotianman (BTM) | 111.94 | 33.50 | 30 min | 2017–2018 | Niu et al. [53] | |
Danzhou Rubber Forest Station (DZRF) | 109.48 | 19.55 | Monthly | 2010–2018 | Yang et al. [54] | |
Dinghushan (DHS) | 112.53 | 23.17 | 30 min | 2003–2010 | Li et al. [55] | |
Huzhong (HZ) | 121.02 | 51.78 | 30 min | 2014–2018 | Yan et al. [56] | |
Jinfoshan National Station (JFSN) | 107.15 | 29.02 | 30 min | 2020 | Tang et al. [57] | |
PuDing (PD) | 106.32 | 26.60 | 30 min | 2015–2019 | Wang et al. [58] | |
Qianyanzhou (QYZ) | 115.07 | 26.73 | 30 min | 2003–2010 | Dai et al. [59] | |
Xishuangbanna (XSBN) | 101.21 | 21.96 | Monthly | 2003–2015 | Qi et al. [60] Liu et al. [61] | |
Xishuangbanna Rubber Forest Station (XSBNRF) | 101.27 | 21.90 | 30 min | 2010–2014 | Yu et al. [62] | |
Xiaolangdi (XLD) | 112.47 | 35.03 | 30 min | 2016–2017 | Huang et al. [63] | |
Yanshan artificial coniferous forest station (YSF) | 116.66 | 40.42 | 30 min | 2020 | Du et al. [64] | |
Changbaishan (CBS) | 128.10 | 42.40 | 30 min | 2003–2010 | Wu et al. [65] | |
Grassland | Arou Super Station (ARS) | 100.46 | 38.05 | 30 min | 2013–2020 | Liu et al. [43] Che et al. [66] |
Damao (DM) | 110.33 | 41.64 | 30 min | 2015–2018 | Song et al. [67] | |
Dangxiong (DX) | 91.08 | 30.85 | 30 min | 2004–2010 | Chai et al. [68] | |
Haibei Grassland Station (HBG) | 101.31 | 37.61 | 30 min | 2015–2020 | Zhang et al. [69] | |
Duolun (DL) | 116.28 | 42.05 | 30 min | 2006–2015 | You et al. [70] | |
Inner Mongolia (NMG) | 116.40 | 43.33 | 30 min | 2003–2010 | Hao et al. [71] | |
Xilinhaote (XLHT) | 116.67 | 43.55 | 30 min | 2006–2015 | Wang et al. [72] | |
Ruoergai (REG) | 102.55 | 32.80 | 30 min | 2015–2020 | Chen et al. [73] | |
Three River Source Station (TRS) | 100.70 | 35.25 | 30 min | 2012–2016 | He et al. [74] | |
Yuanjiang (YJ) | 102.18 | 23.47 | 30 min | 2013–2015 | Qi et al. [75] | |
Shrubland | Haibei Shrubland Station (HBS) | 101.33 | 37.67 | 30 min | 2003–2020 | Zhang et al. [76] Zhang et al. [77] |
Yanchi Station (YCS) | 107.23 | 37.71 | 30 min | 2012–2016 | Han et al. [78] | |
Sidaoqiao Super Station (SDQS) | 101.14 | 42.00 | 30 min | 2013–2020 | Liu et al. [43,44] | |
Yanshan Shrubland Station (YSS) | 116.65 | 40.42 | 30 min | 2020 | Du et al. [64] | |
Wetland | Quanjiao (QJ) | 118.25 | 31.97 | 30 min | 2017–2020 | Zhang et al. [79] |
Haibei Wetland Station (HBW) | 101.32 | 37.60 | 30 min | 2004–2009 | Zhang et al. [80] | |
Yellow River Delta Station (YRD) | 118.98 | 37.77 | 30 min | 2011–2018 | Wei et al. [81] | |
Panjin Reed Wetland Station (PJRW) | 121.96 | 40.93 | 30 min | 2018–2020 | Jia et al. [49] |
References
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate Change Will Affect Global Water Availability through Compounding Changes in Seasonal Precipitation and Evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef] [PubMed]
- Padrón, R.S.; Gudmundsson, L.; Decharme, B.; Ducharne, A.; Lawrence, D.M.; Mao, J.; Peano, D.; Krinner, G.; Kim, H.; Seneviratne, S.I. Observed Changes in Dry-Season Water Availability Attributed to Human-Induced Climate Change. Nat. Geosci. 2020, 13, 477–481. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, X.; Yang, S.; Ao, Y. Spatiotemporal Variations in Evapotranspiration and Their Driving Factors in Southwest China between 2003 and 2020. Remote Sens. 2023, 15, 4418. [Google Scholar] [CrossRef]
- Bai, J.; Wu, G.; Mao, Y. Significant Disparity in Spatiotemporal Changes of Terrestrial Evapotranspiration across Reanalysis Datasets in China from 1982 to 2020. Remote Sens. 2023, 15, 4522. [Google Scholar] [CrossRef]
- Liou, Y.-A.; Kar, S. Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review. Energies 2014, 7, 2821–2849. [Google Scholar] [CrossRef]
- Kimball, J.; Running, S. A Review of Remote Sensing Based Actual Evapotranspiration Estimation: A Review of Remote Sensing Evapotranspiration. Wiley Interdiscip. Rev. Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-Based Land Evaporation and Root-Zone Soil Moisture. Geosci. Model. Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y. Coupled Estimation of 500 m and 8-Day Resolution Global Evapotranspiration and Gross Primary Production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Zheng, C.; Jia, L.; Hu, G. Global Land Surface Evapotranspiration Monitoring by ETMonitor Model Driven by Multi-Source Satellite Earth Observations. J. Hydrol. 2022, 613, 128444. [Google Scholar] [CrossRef]
- Bhattarai, N.; Wagle, P. Recent Advances in Remote Sensing of Evapotranspiration. Remote Sens. 2021, 13, 4260. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Xie, Z. Evaluation of Seven Satellite-Based and Two Reanalysis Global Terrestrial Evapotranspiration Products. J. Hydrol. 2024, 630, 130649. [Google Scholar] [CrossRef]
- Qian, L. High Uncertainty of Evapotranspiration Products under Extreme Climatic Conditions. J. Hydrol. 2023, 626, 130332. [Google Scholar] [CrossRef]
- Yao, T.; Lu, H.; Yu, Q.; Feng, S.; Xue, Y.; Feng, W. Uncertainties of Three High-Resolution Actual Evapotranspiration Products across China: Comparisons and Applications. Atmos. Res. 2023, 286, 106682. [Google Scholar] [CrossRef]
- Salazar-Martínez, D.; Holwerda, F.; Holmes, T.R.H.; Yépez, E.A.; Hain, C.R.; Alvarado-Barrientos, S.; Ángeles-Pérez, G.; Arredondo-Moreno, T.; Delgado-Balbuena, J.; Figueroa-Espinoza, B.; et al. Evaluation of Remote Sensing-Based Evapotranspiration Products at Low-Latitude Eddy Covariance Sites. J. Hydrol. 2022, 610, 127786. [Google Scholar] [CrossRef]
- Yu, X.; Qian, L.; Wang, W.; Hu, X.; Dong, J.; Pi, Y.; Fan, K. Comprehensive Evaluation of Terrestrial Evapotranspiration from Different Models under Extreme Condition over Conterminous United States. Agric. Water Manag. 2023, 289, 108555. [Google Scholar] [CrossRef]
- Elnashar, A.; Wang, L.; Wu, B.; Zhu, W.; Zeng, H. Synthesis of Global Actual Evapotranspiration from 1982 to 2019. Earth Syst. Sci. Data 2021, 13, 447–480. [Google Scholar] [CrossRef]
- Liu, H. Intercomparison and Evaluation of Ten Global ET Products at Site and Basin Scales. J. Hydrol. 2023, 617, 128887. [Google Scholar] [CrossRef]
- Shi, X. The Intercomparison of Six 0.1° × 0.1° Spatial Resolution Evapotranspiration Products across Mainland China. J. Hydrol. 2024, 633, 130949. [Google Scholar] [CrossRef]
- Zuo, L.; Zou, L.; Xia, J.; Zhang, L.; Cao, H.; She, D. Multi-Scale Analysis of Six Evapotranspiration Products across China: Accuracy, Uncertainty and Spatiotemporal Pattern. J. Hydrol. 2025, 650, 132516. [Google Scholar] [CrossRef]
- Li, S.; Wang, G.; Sun, S.; Chen, H.; Bai, P.; Zhou, S.; Huang, Y.; Wang, J.; Deng, P. Assessment of Multi-Source Evapotranspiration Products over China Using Eddy Covariance Observations. Remote Sens. 2018, 10, 1692. [Google Scholar] [CrossRef]
- Huang, L.; Steenhuis, T.S.; Luo, Y.; Tang, Q.; Tang, R.; Zheng, J.; Shi, W.; Qiao, C. Revisiting Daily MODIS Evapotranspiration Algorithm Using Flux Tower Measurements in China. Earth Space Sci. 2021, 8, e2021EA001818. [Google Scholar] [CrossRef]
- Burnett, M.W.; Quetin, G.R.; Konings, A.G. Data-Driven Estimates of Evapotranspiration and Its Controls in the Congo Basin. Hydrol. Earth Syst. Sci. 2020, 24, 4189–4211. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 monthly averaged data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview (accessed on 31 January 2025).
- Muñoz Sabater, J. ERA5-Land Monthly Averaged Data from 1950 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means?tab=overview (accessed on 31 January 2025).
- Beaudoing, H.; Rodell, M. GLDAS Noah Land Surface Model L4 monthly 0.25 × 0.25 Degree V2.1; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2020. [Google Scholar] [CrossRef]
- Global Modeling and Assimilation Office (GMAO). MERRA-2 tavgU_2d_lnd_Nx: 2d, diurnal, Time-Averaged, Single-Level, Assimilation, Land Surface Diagnostics V5.12.4; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2015. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. Data Descriptor: TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Miralles, D.G.; Bonte, O.; Koppa, A.; Baez-Villanueva, O.M.; Tronquo, E.; Zhong, F.; Beck, H.E.; Hulsman, P.; Dorigo, W.; Verhoest, N.E.C.; et al. GLEAM4: Global Land Evaporation and Soil Moisture Dataset at 0.1° Resolution from 1980 to near Present. Sci. Data 2025, 12, 416. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, H.; Ma, N.; Shang, S.; Wang, Y.; Xu, Q.; Zhu, G. A Global Dataset of Terrestrial Evapotranspiration and Soil Moisture Dynamics from 1982 to 2020. Sci. Data 2024, 11, 445. [Google Scholar] [CrossRef]
- Yu, G.-R.; Wen, X.-F.; Sun, X.-M.; Tanner, B.D.; Lee, X.; Chen, J.-Y. Overview of ChinaFLUX and Evaluation of Its Eddy Covariance Measurement. Agric. For. Meteorol. 2006, 137, 125–137. [Google Scholar] [CrossRef]
- Yin, L.; Tao, F.; Chen, Y.; Liu, F.; Hu, J. Improving Terrestrial Evapotranspiration Estimation across China during 2000–2018 with Machine Learning Methods. J. Hydrol. 2021, 600, 126538. [Google Scholar] [CrossRef]
- Pan, M.; Fisher, C.K.; Chaney, N.W.; Zhan, W.; Crow, W.T.; Aires, F.; Entekhabi, D.; Wood, E.F. Triple Collocation: Beyond Three Estimates and Separation of Structural/Non-Structural Errors. Remote Sens. Environ. 2015, 171, 299–310. [Google Scholar] [CrossRef]
- Loew, A.; Schlenz, F. A Dynamic Approach for Evaluating Coarse Scale Satellite Soil Moisture Products. Hydrol. Earth Syst. Sci. 2011, 15, 75–90. [Google Scholar] [CrossRef]
- Moran, P.A.P. Rank Correlation Methods, Royal Statistical Society. J. Ser. A Gen. 1951, 114, 99–100. [Google Scholar] [CrossRef]
- Oliver, J.E. Monthly Precipitation Distribution: A Comparative Index. Prof. Geogr. 1980, 32, 300–309. [Google Scholar] [CrossRef]
- Koppa, A.; Rains, D.; Hulsman, P.; Poyatos, R.; Miralles, D.G. A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation. Nat. Commun. 2022, 13, 1912. [Google Scholar] [CrossRef]
- Zhong, F.; Jiang, S.; van Dijk, A.I.J.M.; Ren, L.; Schellekens, J.; Miralles, D.G. Revisiting Large-Scale Interception Patterns Constrained by a Synthesis of Global Experimental Data. Hydrol. Earth Syst. Sci. 2022, 26, 5647–5667. [Google Scholar] [CrossRef]
- Hulsman, P.; Keune, J.; Koppa, A.; Schellekens, J.; Miralles, D.G. Incorporating Plant Access to Groundwater in Existing Global, Satellite-Based Evaporation Estimates. Water Resour. Res. 2023, 59, e2022WR033731. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Xu, Z.; Che, T.; Xiao, Q.; Ma, M.; Liu, Q.; Jin, R.; Guo, J.; Wang, L.; et al. The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in China. Vadose Zone J. 2018, 17, 1–21. [Google Scholar] [CrossRef]
- Liu, S.M.; Xu, Z.W.; Che, T.; Li, X.; Xu, T.R.; Ren, Z.G.; Zhang, Y.; Tan, J.L.; Song, L.S.; Zhou, J.; et al. A Dataset of Energy, Water Vapor, and Carbon Exchange Observations in Oasis–Desert Areas from 2012 to 2021 in a Typical Endorheic Basin. Earth Syst. Sci. Data 2023, 15, 4959–4981. [Google Scholar] [CrossRef]
- Zhou, L.; Geng, J.; Zhou, G.; Zhang, S.; Wu, Y. A Dataset of Carbon and Water Fluxes in the Winter Wheat and Summer Maize Rotation Ecosystem at Gucheng Station (2020–2022). China Sci. Data 2023, 8, 1–10. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, L.; Zhou, G.; Jia, Q.; Li, R.; Wang, Y. A Dataset of Carbon and Water Flux Observations in the Agricultural Ecosystem of Spring Maize in Jinzhou (2005–2014). China Sci. Data 2023, 8, 1–12. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Zhu, T.; Ju, W. A Dataset of Carbon and Water Fluxes in the Cropland Ecosystem at Jurong Station (2015–2020). China Sci. Data 2023, 8, 1–11. [Google Scholar] [CrossRef]
- Liu, F.; Shen, Y.; Cao, J.; Zhang, Y. A Dataset of Water, Heat, and Carbon Fluxes over the Winter Wheat-Summer Maize Croplands in Luancheng during 2013–2017. China Sci. Data 2023, 8, 1–10. [Google Scholar] [CrossRef]
- Jia, Q.; Wen, R.; Zhou, L.; Zhou, G.; Xie, Y.; Wu, Q. A Dataset of the Observations of Carbon and Water Fluxes in the Paddy Fields of Panjin (2018–2020). China Sci. Data 2023, 8, 1–12. [Google Scholar] [CrossRef]
- Zhao, F.; Li, F.; Zhan, C.; Zhang, L.; Chen, Z. A Carbon and Water Fluxes Dataset of the Farmland Ecosystem of Winter Wheat and Summer Maize in Yucheng (2003–2010). China Sci. Data 2021, 6, 1–7. [Google Scholar] [CrossRef]
- Dong, G.; Wang, Y.; Wang, K.; Jiang, S.; Shao, C. A Dataset of Carbon and Water Fluxes in the Changling Alkali-Saline Paddy Rice Fields in the Songnen Plain, China (2018–2020). China Sci. Data 2023, 8, 1–15. [Google Scholar] [CrossRef]
- Qi, D.; Fei, X.; Song, Q.; Zhang, Y.; Sha, L.; Liu, Y.; Zhou, W.; Lu, Z.; Fan, Z. A Dataset of Carbon and Water Fluxes Observation in Subtropical Evergreen Broad-Leaved Forest in Ailao Shan from 2009 to 2013. China Sci. Data 2021, 6, 1–11. [Google Scholar] [CrossRef]
- Niu, X.; Sun, P.; Tao, S.; Chen, Z.; Niu, B.; Liu, S. A Dataset of Carbon and Water Fluxes in a Natural Oak Forest of Baotianman in Henan Province (2017–2018). China Sci. Data 2023, 8, 1–10. [Google Scholar] [CrossRef]
- Yang, S.; Liu, J.; Yang, C.; Lan, G.; Song, B.; Wu, Z. A Dataset of Carbon and Water Fluxes and Micrometerological Elements in Danzhou Rubber Plantation (2010–2018). China Sci. Data 2022, 7, 1–13. [Google Scholar] [CrossRef]
- Li, Y.; Yan, J.; Meng, Z.; Huang, J.; Zhang, L.; Chen, Z.; Liu, S.; Chu, G.; Zhang, Q.; Zhang, D. An Observation Dataset of Carbon and Water Fluxes in a Mixed Coniferous Broad-Leaved Forest at Dinghushan, Southern China (2003–2010). China Sci. Data 2021, 6, 1–11. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, L.; Zhou, G.; Jia, B.; Song, J.; Zhang, S. A Dataset of Carbon and Water Fluxes of the Boreal Forest Ecosystem in Huzhong (2014–2018). China Sci. Data 2023, 8, 1–10. [Google Scholar] [CrossRef]
- Tang, X.; Kong, D.; Chen, Y.; Li, Y.; Qian, F.; Ding, Z.; Ma, M. A Dataset of Carbon and Water Fluxes Observations in Subtropical Evergreen Broad-Leaved Forest in Jinfo Mountain from 2020 to 2021. CSDATA 2023, 8, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, W.; Chen, J.; Cai, X.; Zhang, L.; Cheng, A.; Wang, S. A Dataset of Carbon and Water Fluxes in the Sample Plots of Natural Regeneration at Puding Station of Guizhou Province (2015–2019). China Sci. Data 2023, 8, 1–9. [Google Scholar] [CrossRef]
- Dai, X.; Wang, H.; Xu, M.; Yang, F.; Wen, X.; Chen, Z.; Zhang, L.; Sun, X.; Yu, G. An Observation Dataset of Carbon and Water Fluxes of Artificial Coniferous Forests in Qianyanzhou (2003–2010). China Sci. Data 2021, 6, 1–9. [Google Scholar] [CrossRef]
- Qi, D.; Zhang, Y.; Song, Q.; Fei, X.; Sha, L.; Liu, Y.; Zhou, W.; Zhou, L.; Deng, X.; Luo, Y.; et al. A Dataset of Carbon, Water and Energy Fluxes Observed in Xishuangbanna Tropical Seasonal Rain Forest from 2003 to 2010. China Sci. Data 2021, 6, 1–13. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Zheng, H.; Fei, X.; Sha, L.; Zhou, W.; Zhou, L.; Deng, X.; Luo, Y.; Deng, Y.; et al. A Dataset of Carbon and Water Fluxes Observed in Xishuangbanna Tropical Seasonal Rain Forest from 2011 to 2015. China Sci. Data 2023, 8, 1–13. [Google Scholar] [CrossRef]
- Yu, H.; Qi, D.; Zhang, Y.; Sha, L.; Liu, Y.; Zhou, W.; Deng, Y.; Song, Q. An Observation Dataset of Carbon and Water Fluxes in Xishuangbanna Rubber Plantations from 2010 to 2014. China Sci. Data 2021, 6, 1–12. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, Y.; Zhang, J.; Gao, X.; Liu, L.; Meng, P. A Dataset of Carbon and Water Flux Observations in a Quercus Variabilis Plantation in Xiaolangdi (2016–2017). China Sci. Data 2023, 8, 1–9. [Google Scholar] [CrossRef]
- Du, J.; Luo, W.; An, Z.; Zhang, L.; Huang, H.; Hao, Y.; Wang, Y. A Dataset of Carbon and Water Fluxes over Typical Ecosystems in Beijing Yanshan Hilly Regions (2020–2021). China Sci. Data 2023, 8, 1–9. [Google Scholar] [CrossRef]
- Wu, J.; Guan, D.; Wang, A.; Yuan, F.; Diao, H.; Yu, G.; Chen, Z.; Zhang, L. A Dataset of Carbon and Water Flux Observation in a Broad-Leaved Red Pine Forest in Changbai Mountain (2003–2010). China Sci. Data 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Liu, S.; Li, H.; Xu, Z.; Tan, J.; Zhang, Y.; Ren, Z.; Xiao, L.; Deng, J.; et al. Integrated Hydrometeorological, Snow and Frozen-Ground Observations in the Alpine Region of the Heihe River Basin, China. Earth Syst. Sci. Data 2019, 11, 1483–1499. [Google Scholar] [CrossRef]
- Song, J.; Zhou, L.; Zhou, G.; Yan, Y.; Zhang, S. A Dataset of Carbon and Water Fluxes of the Temperate Desert Steppe in Damao Banner, Inner Mongolia (2015–2018). China Sci. Data 2023, 8, 1–9. [Google Scholar] [CrossRef]
- Chai, X.; He, Y.; Shi, P.; Zhang, X.; Niu, B.; Zhang, L.; Chen, Z. An Observation Dataset of Carbon and Water Fluxes over Alpine Meadow in Damxung (2004–2010). China Sci. Data 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Zhang, F.; Si, M.; Guo, X.; Cao, G.; Zhang, Z. A Dataset of the Observations of Carbon, Water and Heat Fluxes over an Alpine Meadow in Haibei (2015–2020). China Sci. Data 2023, 8, 1–10. [Google Scholar] [CrossRef]
- You, C.; Wang, Y.; Chen, S. A Dataset of Carbon and Water Fluxes of the Typical Grasslands in Duolun County, Inner Mongolia during 2006–2015. China Sci. Data 2023, 8, 1–11. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, L.; Sun, X.; Yu, G.; Chen, Z.; Wang, Y. A Dataset of Carbon and Water Fluxes over Xilinhot Temperate Steppe in Inner Mongolia (2003–2010). China Sci. Data 2021, 6, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.; You, C.; Chen, S. A Dataset of Carbon and Water Fluxes of Mowing Grasslands in Xilinhot, Inner Mongolia during 2006–2015. China Sci. Data 2023, 8, 1–10. [Google Scholar] [CrossRef]
- Chen, W.; Wang, S.; Niu, S. A Dataset of Carbon, Water and Heat Fluxes of Zoige Alpine Meadow from 2015 to 2020. China Sci. Data 2023, 8, 1–8. [Google Scholar] [CrossRef]
- He, F.; Li, Q.; Chen, D.; Zhao, L. A Dataset of Carbon, Water and Heat Fluxes over an Elymus Nutans Artificial Grassland in the Sanjiangyuan Area (2012–2016). China Sci. Data 2023, 8, 1–10. [Google Scholar] [CrossRef]
- Qi, D.; Yang, D.; Song, Q.; Liu, Y.; Zhang, Y.; Fei, X.; Sha, L.; Zhou, W.; Chen, A.; Wen, G.; et al. An Observation Dataset of Carbon and Water Fluxes at Yuanjiang Dry-Hot Valley Ecological Station (2013–2015). China Sci. Data 2021, 6, 1–13. [Google Scholar] [CrossRef]
- Zhang, F.-W.; Li, H.; Zhao, L.; Zhang, L.; Chen, Z.; Zhu, J.; Xu, S.; Yang, Y.; Zhao, X.; Yu, G.; et al. An Observation Dataset of Carbon, Water and Heat Fluxes of Alpine Shrubland in Haibei (2003–2010). China Sci. Data 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Zhang, F.; Li, H.; Zhang, L.; Li, J.; Yang, Y.; Yu, G.; Li, Y. A Dataset of the Observations of Carbon, Water and Heat Fluxes over an Alpine Shrubland in Haibei (2011–2020). China Sci. Data 2023, 8, 1–11. [Google Scholar] [CrossRef]
- Han, C.; Mu, Y.; Zha, T.; Qin, S.; Liu, P.; Tian, Y.; Jia, X. A Dataset of Ecosystem Fluxes in a Shrubland Ecosystem of Mau Us Sandy Land in Yanchi, Ningxia, China (2012–2016). Chin. J. Plant Ecol. 2023, 47, 1322–1332. [Google Scholar] [CrossRef]
- Zhang, M.; Xiao, W.; Zhao, J.; Jia, L.; Ge, P.; Bao, H.; Qiu, J.; Zhang, Z.; Zhao, R.; Wang, J.; et al. A Dataset of Carbon and Water Flux Observed in Aquaculture Ponds in Quanjiao, Anhui Province from 2016 to 2020. China Sci. Data 2023, 8, 1–17. [Google Scholar] [CrossRef]
- Zhang, F.; Li, H.; Zhao, L.; Zhang, L.; Chen, Z.; Zhu, J.; Xu, S.; Yang, Y.; Zhao, X.; Yu, G.; et al. An Observation Dataset of Carbon, Water and Heat Fluxes in an Alpine Wetland in Haibei (2004–2009). China Sci. Data 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Wei, S.; Li, P.; Chu, X.; Song, W.; Wang, X.; Zhao, M.; Zhang, X.; Han, G. A Dataset of Carbon and Water Fluxes in a Phragmites Australis Wetland in the Yellow River Delta during 2011–2018. China Sci. Data 2024, 9, 1–10. [Google Scholar] [CrossRef]
Product Type | Product Name | Time Resolution | Spatial Resolution | Time Range | Reference |
---|---|---|---|---|---|
Reanalysis data | ERA5 | Monthly | 0.25° × 0.25° | 1940–2024 | Hersbach et al. [27] |
ERA5-Land | Monthly | 0.1° × 0.1° | 1950–2024 | Muñoz Sabater [28] | |
GLDAS-2.1 | Monthly | 0.25° × 0.25° | 2000–2024 | Beaudoing et al. [29] | |
MERRA-2 | Monthly | 0.5° × 0.625° | 1980–2024 | GMAO [30] | |
TerraClimate | Monthly | 0.05° × 0.05° | 1958–2024 | Abatzoglou et al. [31] | |
Remote sensing data | ETMonitor | Daily | 1 km | 2000–2021 | Zheng et al. [10] |
GLEAM4.2a | Monthly | 0.1° × 0.1° | 1980–2023 | Miralles et al. [32] | |
PML_V2 | 8-day | 500 m | 26 February 2000–2020 | Zhang et al. [9] | |
SiTHv2 | Monthly | 0.1° × 0.1° | 1982–2020 | Zhang et al. [33] |
Product | MBE (mm/month) | RMSE (mm/month) | r | TS |
---|---|---|---|---|
ETMonitor | 2.41 | 24.10 | 0.83 | 0.90 |
PML_V2 | −1.70 | 25.60 | 0.77 | 0.88 |
SiTHv2 | −1.21 | 27.19 | 0.75 | 0.87 |
TCA_ET | −0.45 | 24.99 | 0.79 | 0.89 |
Product | North | Northwest | South | Tibetan Plateau |
---|---|---|---|---|
ETMonitor | 0.86 | 0.84 | 0.79 | 0.90 |
PML_V2 | 0.84 | 0.70 | 0.72 | 0.87 |
SiTHv2 | 0.82 | 0.59 | 0.79 | 0.91 |
TCA_ET | 0.84 | 0.71 | 0.80 | 0.90 |
Product | Trend | Z | Slope | |||
---|---|---|---|---|---|---|
ET | ETCI | ET | ETCI | ET | ETCI | |
ERA5 | decreasing | no trend | −2.30 * | 1.91 | −0.72 mm/year | 0.03 |
ERA5-Land | no trend | no trend | −1.40 | 1.40 | −0.63 mm/year | 0.02 |
GLDAS-2.1 | increasing | no trend | 4.57 * | −0.88 | 3.28 mm/year | −0.01 |
MERRA-2 | increasing | no trend | 3.99 * | −1.65 | 3.71 mm/year | −0.03 |
TerraClimate | no trend | no trend | 0.75 | −1.20 | 0.83 mm/year | −0.04 |
ETMonitor | increasing | no trend | 4.51 * | −0.88 | 2.36 mm/year | −0.03 |
GLEAM4.2a | increasing | no trend | 3.02 * | −0.49 | 1.36 mm/year | −0.01 |
PML_V2 | increasing | increasing | 4.19 * | 3.80 * | 2.18 mm/year | 0.07 |
SiTHv2 | no trend | increasing | 0.42 | 1.98 * | 0.17 mm/year | 0.02 |
Reference | Evaluation Region | Number of Stations | Product Name | Evaluation Result |
---|---|---|---|---|
Zuo et al. [23] | China | 8 | ERA5-Land, GLASS, GLDAS, GLEAM, PML_V2, SSEBop | The accuracy of GLASS, GLEAM and PML_V2 is higher than other products. |
Shi et al. [22] | China | 9 | AVHRR, GLASS, GLEAM, IDAHO, MOD16, PML_V2 | GLEAM and PML_V2 perform better than other products, and PML_V2 performs better than GLEAM. |
Yao et al. [17] | China | 12 | GLEAMv3.5a, GLDASv2.0, GLDASv2.1, CR, CFET, NTSG, PML_V1 | The GLEAMv3.5a product performs better in the inter-annual AET distribution, but lower in the spatial pattern. |
Xie et al. [15] | Globe | 230 | GLASS-AVHRR, GLASS-MODIS, BESS, FLUXCOM, GLEAMv3a, MOD16A2, PML_V2, ERA5, MERRA-2 | FLUXCOM, PML_V2 and GLASS-MODIS outperform other products. |
Qian et al. [16] | Globe | 153 | CLSM, FLDAS, NOAH, ERA5, GLEAMv3.6b, MOD16A2, PML_V2, REA, Synthesized | GLEAM_v3.6b has the highest accuracy, ERA5 is better, and PML_V2 has relatively poor accuracy. |
Liu et al. [21] | Globe | 206 | MOD16, NTSG, PT-JPLSM, SSEBop, GLEAM, GLDAS, FLDAS, TerraClimate, FLUXCOM, SynthesisET | The product performance of GLEAM is in the middle level, while the product accuracy of TerraClimate is the lowest. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, W.; Zhao, T.; Huo, Z. Performance Evaluation and Spatiotemporal Dynamics of Nine Reanalysis and Remote Sensing Evapotranspiration Products in China. Remote Sens. 2025, 17, 1881. https://doi.org/10.3390/rs17111881
Liu Y, Wang W, Zhao T, Huo Z. Performance Evaluation and Spatiotemporal Dynamics of Nine Reanalysis and Remote Sensing Evapotranspiration Products in China. Remote Sensing. 2025; 17(11):1881. https://doi.org/10.3390/rs17111881
Chicago/Turabian StyleLiu, Yujie, Wen Wang, Tianqing Zhao, and Zhiyuan Huo. 2025. "Performance Evaluation and Spatiotemporal Dynamics of Nine Reanalysis and Remote Sensing Evapotranspiration Products in China" Remote Sensing 17, no. 11: 1881. https://doi.org/10.3390/rs17111881
APA StyleLiu, Y., Wang, W., Zhao, T., & Huo, Z. (2025). Performance Evaluation and Spatiotemporal Dynamics of Nine Reanalysis and Remote Sensing Evapotranspiration Products in China. Remote Sensing, 17(11), 1881. https://doi.org/10.3390/rs17111881