Deep Metric Learning for Fine-Grained Ship Classification in SAR Images with Sidelobe Interference
Abstract
:1. Introduction
- (1)
- Existing DL methods typically enhance feature extraction capabilities through the design of network architectures. However, the increased complexity of networks exacerbates the occurrence of overfitting, making them less suitable for classification tasks involving limited sample sizes.
- (2)
- Sidelobe introduces additional strong scattering points around the target in SAR imagery, obscuring the scattering features of the target [12,13]. Consequently, the combination of sidelobe suppression techniques and the DL network can facilitate critical feature extraction, resulting in enhanced classification performance. However, the current research lacks a reasonable framework to integrate sidelobe suppression and DL methods effectively. First, existing sidelobe suppression techniques suffer from excessive computational complexity and limited robustness, rendering them unsuitable for large-scale batch processing. Second, DL approaches often neglect the impact of sidelobe interference on feature extraction, resulting in the inability to achieve optimal performance under the conditions of limited data.
- (1)
- We first apply a sidelobe removal method based on maximum median filtering to promote dataset quality by analyzing the grayscale differences between sidelobe and adjacent pixels. Compared to the traditional method, it is characterized by low computational complexity and robustness, which renders it particularly suitable for dataset processing.
- (2)
- A novel deep metric learning network is proposed to tackle the challenge of insufficient sample sizes in SAR imagery. The feature extraction module integrates a lightweight attention mechanism aimed at enhancing feature extraction capabilities while simultaneously reducing the risk of overfitting. Furthermore, the metric classification module is designed to improve the model’s classification performance by selecting an appropriate set of metric loss functions for fine-grained classification tasks.
2. Related Work
2.1. Deep Metric Learning
2.2. Sidelobe Suppression
3. Deep Metric Learning for Fine-Grained Ship Classification in SAR Images with Sidelobe Interference
3.1. Overall Architecture
3.2. Sidelobe Suppression Algorithm-Based Maximum Median Filtering
3.3. Feature Extraction Module
3.4. Metric Classification Module
4. Experimental Results Based on the FUSAR Dataset
4.1. FUSAR-Ship Dataset
4.2. Sidelobe Suppression Algorithm Effectiveness Analysis
4.2.1. Evaluation Indicators
4.2.2. Comparison Results
4.3. Fine-Grained Classification Performance Analysis
4.3.1. Experimental Environment and Sampling Strategy
4.3.2. Evaluation Metrics
4.3.3. Hyperparameter Selection
4.3.4. Comparison with SOTA Methods
4.3.5. Ablation Study
4.3.6. Visualization Results
4.3.7. Confusion Matrix
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SAR | Synthetic aperture radar |
DL | Deep learning |
REFIPN | Image pyramid network based on rotation equivariance convolution |
CNN | Conventional neural network |
LSTM | Long short-term memory |
EFM-Net | Essential feature mining network |
DBN | Dual-branch network |
DML | Deep metric learning |
HENC | Hierarchical embedding network with center calibration |
ICDS | Inter-class distribution shift |
DSLL | Distribution structure learning loss |
SVA | Spatial variant apodization |
UFS | Ultra-fine stripmap |
UR | Uniformity of intra-region |
DR | Dissimilarity of inter-region |
C | Complexity |
PN | Parameter number |
Flops | Floating-point operations |
SOTA | State-of-the-art |
SP-DML | Single proxy- based deep metric learning |
References
- Bi, H.; Liu, Z.; Deng, J.; Ji, Z.; Zhang, J. Contrastive Domain Adaptation-Based Sparse SAR Target Classification under Few-Shot Cases. Remote Sens. 2023, 15, 469. [Google Scholar] [CrossRef]
- Wang, L.; Qi, Y.; Mathiopoulos, P.T.; Zhao, C.; Mazhar, S. An Improved SAR Ship Classification Method Using Text-to-Image Generation-Based Data Augmentation and Squeeze and Excitation. Remote Sens. 2024, 16, 1299. [Google Scholar] [CrossRef]
- Shi, Y.; Du, L.; Guo, Y.; Du, Y.; Li, Y. Unsupervised Domain Adaptation for Ship Classification via Progressive Feature Alignment: From Optical to SAR Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5222517. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, Z.; Zhang, H. Few-Shot Ship Classification in Optical Remote Sensing Images Using Nearest Neighbor Prototype Representation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 3581–3590. [Google Scholar] [CrossRef]
- Wei, X.S.; Song, Y.Z.; Aodha, O.M.; Wu, J.; Peng, Y.; Tang, J.; Yang, J.; Belongie, S. Fine-Grained Image Analysis With Deep Learning: A Survey. IEEE Trans. Pattern. Anal. Mach. Intell. 2022, 44, 8927–8948. [Google Scholar] [CrossRef]
- Shamsolmoali, P.; Zareapoor, M.; Chanussot, J.; Zhou, H.; Yang, J. Rotation Equivariant Feature Image Pyramid Network for Object Detection in Optical Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5608614. [Google Scholar] [CrossRef]
- Toumi, A.; Cexus, J.C.; Khenchaf, A.; Abid, M. A Combined CNN-LSTM Network for Ship Classification on SAR Images. Sensors 2024, 24, 7954. [Google Scholar] [CrossRef]
- Yi, Y.; You, Y.; Li, C.; Zhou, W. EFM-Net: An Essential Feature Mining Network for Target Fine-Grained Classification in Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5606416. [Google Scholar] [CrossRef]
- Zhao, S.; Lang, H. Improving Deep Subdomain Adaptation by Dual-Branch Network Embedding Attention Module for SAR Ship Classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 8038–8048. [Google Scholar] [CrossRef]
- Zhao, S.; Li, W.; Shen, F.; You, M. LN-SCNet: A Lightweight Convolutional Neural Network for SAR Ship Classification. IEEE Access 2025, 13, 39394–39404. [Google Scholar] [CrossRef]
- Chen, Y.; An, W.; Zou, B.; Ren, P. AlignMixup-based ship classification in SAR imagery. Signal Image Video Process. 2025, 19, 252. [Google Scholar] [CrossRef]
- Chan, Y.K.; Koo, V. An introduction to Synthetic Aperture Radar (SAR). Prog. Electromagn. Res. B 2008, 2, 27–60. [Google Scholar] [CrossRef]
- Yuan, S.; Yu, Z.; Li, C.; Wang, S. A Novel SAR Sidelobe Suppression Method Based on CNN. IEEE Geosci. Remote Sens. Lett. 2020, 18, 132–136. [Google Scholar]
- Kaya, M.; BİLge, H.Ş. Deep Metric Learning: A Survey. Symmetry 2019, 11, 1066. [Google Scholar] [CrossRef]
- Gao, G.; Wang, M.; Zhou, P.; Yao, L.; Zhang, X.; Li, H.; Li, G. A Multibranch Embedding Network With Bi-Classifier for Few-Shot Ship Classification of SAR Images. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5201515. [Google Scholar] [CrossRef]
- Yang, M.; Bai, X.; Wang, L.; Zhou, F. HENC: Hierarchical Embedding Network With Center Calibration for Few-Shot Fine-Grained SAR Target Classification. IEEE Trans. Image Process. 2023, 32, 3324–3337. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lang, H. Distribution Shift Metric Learning for Fine-Grained Ship Classification in SAR Images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 2276–2285. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, H.; Zhao, H.; Liu, P.; Hu, H. Distribution Structure Learning Loss (DSLL) Based on Deep Metric Learning for Image Retrieval. Entropy 2019, 21, 1121. [Google Scholar] [CrossRef]
- He, J.; Wang, Y.; Liu, H. Ship Classification in Medium-Resolution SAR Images via Densely Connected Triplet CNNs Integrating Fisher Discrimination Regularized Metric Learning. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3022–3039. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, W.; Li, Z.; Ji, Z.; Sun, Y. Module spatially variant apodization algorithm for enhancing radar images. In Proceedings of the 2012 9th European Radar Conference, Amsterdam, The Netherlands, 31 October–2 November 2012; pp. 294–297. [Google Scholar]
- Liu, M.; Li, Z.; Liu, L. A Novel Sidelobe Reduction Algorithm Based on Two-Dimensional Sidelobe Correction Using D-SVA for Squint SAR Images. Sensors 2018, 18, 783. [Google Scholar] [CrossRef]
- Xu, X.; Wang, X. Fine segmentation of ship targets for high-resolution SAR images based on Radon transform. Appl. Electron. Tech. 2023, 49, 142–148. [Google Scholar]
- Suyog, D.D.; Meng Hwa, E.; Ronda, V.; Philip, C. Max-mean and max-median filters for detection of small targets. Signal Data Process. Small Targets 1999, 3809, 74–83. [Google Scholar]
- Yang, L.; Zhang, R.-Y.; Li, L.; Xie, X. SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 11863–11874. [Google Scholar]
- Qian, Q.; Shang, L.; Sun, B.; Hu, J.; Tacoma, T.; Li, H.; Jin, R. SoftTriple Loss: Deep Metric Learning Without Triplet Sampling. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6449–6457. [Google Scholar]
- Sun, Y.; Cheng, C.; Zhang, Y.; Zhang, C.; Zheng, L.; Wang, Z.; Wei, Y. Circle Loss: A Unified Perspective of Pair Similarity Optimization. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020; IEEE: New York, NY, USA, 2020; pp. 6398–6407. [Google Scholar]
- Hou, X.; Ao, W.; Song, Q.; Lai, J.; Wang, H.; Xu, F. FUSAR-Ship: Building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition. Sci. China Inf. Sci. 2020, 63, 140303. [Google Scholar] [CrossRef]
- Chabrier, S.; Emile, B.; Rosenberger, C.; Laurent, H. Unsupervised Performance Evaluation of Image Segmentation. EURASIP J. Adv. Signal Process. 2006, 2006, 096306. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512-03385. [Google Scholar]
- Sergey, I.; Christian, S. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015, arXiv:1502-03167. [Google Scholar]
- Simonyan, K.; Zisserman, A.J.C. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409-1556. [Google Scholar]
- Movshovitz-Attias, Y.; Toshev, A.; Leung, T.K.; Ioffe, S.; Singh, S. No Fuss Distance Metric Learning Using Proxies. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 360–368. [Google Scholar]
- Xu, J.; Lang, H. A Unified Multiple Proxy Deep Metric Learning Framework Embedded With Distribution Optimization for Fine-Grained Ship Classification in Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2024, 17, 5604–5620. [Google Scholar] [CrossRef]
Class | Number |
---|---|
Cargo | 80 |
Carrier | 134 |
Fishing | 92 |
Other | 41 |
Tanker | 46 |
Total | 393 |
ID | Radon Transform | Proposed Methods | ||||
---|---|---|---|---|---|---|
UR | DR | C | UR | DR | C | |
1 | 0.9929 | 0.8316 | 7.3556 | 0.9952 | 0.8329 | 4.9709 |
2 | 0.9779 | 0.8087 | 9.7632 | 0.9889 | 0.7996 | 6.8564 |
3 | 0.9923 | 0.8798 | 4.9137 | 0.9946 | 0.8948 | 4.8471 |
4 | 0.9864 | 0.7991 | 12.0521 | 0.9885 | 0.8901 | 4.5120 |
Method | Accfinal (%) | PN (M) | FLOPs (G) |
---|---|---|---|
ResNet18 [28] | 72.10 | 11.21 | 2.38 |
BN-Inception | 72.56 | 10.34 | 2.68 |
VGG-16 | 73.21 | 138.36 | 20.21 |
EFM-Net | 76.02 | 87.10 | 15.21 |
SP-DML [30] | 73.38 | 11.21 | 2.38 |
DSL Loss [14] | 75.51 | 11.21 | 2.41 |
Combination Loss [15] | 74.69 | 11.21 | 2.41 |
UMP+D [29] | 77.22 | 11.21 | 2.40 |
Our Methods | 84.18 | 11.20 | 9.02 |
Sidelobe Removal | Feature Extraction Module | Metric Classification Module | Accfinal (%) |
---|---|---|---|
× | × | × | 75.11 |
× | √ | × | 75.47 |
× | × | √ | 75.97 |
√ | × | × | 81.17 |
√ | √ | × | 82.28 |
√ | × | √ | 82.91 |
× | √ | √ | 76.10 |
√ | √ | √ | 84.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Mu, Y.; Xie, W.; Xing, K.; Tan, B.; Zhou, Y.; Yu, Z.; Cui, Z.; Zhang, C.; Liu, X.; et al. Deep Metric Learning for Fine-Grained Ship Classification in SAR Images with Sidelobe Interference. Remote Sens. 2025, 17, 1835. https://doi.org/10.3390/rs17111835
Zhu H, Mu Y, Xie W, Xing K, Tan B, Zhou Y, Yu Z, Cui Z, Zhang C, Liu X, et al. Deep Metric Learning for Fine-Grained Ship Classification in SAR Images with Sidelobe Interference. Remote Sensing. 2025; 17(11):1835. https://doi.org/10.3390/rs17111835
Chicago/Turabian StyleZhu, Haibin, Yaxin Mu, Wupeng Xie, Kang Xing, Bin Tan, Yashi Zhou, Zhongde Yu, Zhiying Cui, Chuang Zhang, Xin Liu, and et al. 2025. "Deep Metric Learning for Fine-Grained Ship Classification in SAR Images with Sidelobe Interference" Remote Sensing 17, no. 11: 1835. https://doi.org/10.3390/rs17111835
APA StyleZhu, H., Mu, Y., Xie, W., Xing, K., Tan, B., Zhou, Y., Yu, Z., Cui, Z., Zhang, C., Liu, X., & Xia, Z. (2025). Deep Metric Learning for Fine-Grained Ship Classification in SAR Images with Sidelobe Interference. Remote Sensing, 17(11), 1835. https://doi.org/10.3390/rs17111835