Can Ground-Penetrating Radar Detect Thermal Gradients in the Active Layer of Frozen Peatlands?
Abstract
:1. Introduction
2. Study Site
3. Materials and Methods
4. Results
4.1. FTC and Relative Permittivity
4.2. Variability of Peat Parameters
4.3. GPR Field Survey
5. Discussion
- (i)
- High-resolution field studies combining high-frequency GPR antennas with thermistor arrays;
- (ii)
- Controlled freeze–thaw cycle experiments with concurrent GPR monitoring following approaches described by Léger et al. [61];
- (iii)
- Advanced attribute selection and analysis incorporating machine learning techniques.
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aalto, J.; Karjalainen, O.; Hjort, J.; Luoto, M. Statistical Forecasting of Current and Future Circum-Arctic Ground Temperatures and Active Layer Thickness. Geophys. Res. Lett. 2018, 45, 4889–4898. [Google Scholar] [CrossRef]
- Kaverin, D.; Malkova, G.; Zamolodchikov, D.; Shiklomanov, N.; Pastukhov, A.; Novakovskiy, A.; Sadurtdinov, M.; Skvortsov, A.; Tsarev, A.; Pochikalov, A.; et al. Long-Term Active Layer Monitoring at CALM Sites in the Russian European North. Polar Geogr. 2021, 44, 203–216. [Google Scholar] [CrossRef]
- Li, G.; Zhang, M.; Pei, W.; Melnikov, A.; Khristoforov, I.; Li, R.; Yu, F. Changes in Permafrost Extent and Active Layer Thickness in the Northern Hemisphere from 1969 to 2018. Sci. Total Environ. 2022, 804, 150182. [Google Scholar] [CrossRef]
- Yi, Y.; Kimball, J.S.; Chen, R.H.; Moghaddam, M.; Reichle, R.H.; Mishra, U.; Zona, D.; Oechel, W.C. Characterizing Permafrost Active Layer Dynamics and Sensitivity to Landscape Spatial Heterogeneity in Alaska. Cryosphere 2018, 12, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Piilo, S.R.; Amesbury, M.J.; Charman, D.J.; Gallego-Sala, A.V.; Väliranta, M.M. The Role of Climate Change in Regulating Arctic Permafrost Peatland Hydrological and Vegetation Change Over the Last Millennium. Quat. Sci. Rev. 2018, 182, 121–130. [Google Scholar] [CrossRef]
- Carpino, O.A.; Haynes, K.; Connon, R.; Craig, J.; Devoie, E.; Quinton, W. Long-Term Climate-Influenced Land Cover Change in Discontinuous Permafrost Peatland Complexes. Hydrol. Earth Syst. Sci. 2021, 25, 3301–3317. [Google Scholar] [CrossRef]
- Olefeldt, D.; Heffernan, L.; Jones, M.C.; Sannel, A.B.K.; Treat, C.C.; Turetsky, M.R. Permafrost Thaw in Northern Peatlands: Rapid Changes in Ecosystem and Landscape Functions. In Ecosystem Collapse and Climate Change; Canadell, J.G., Jackson, R.B., Eds.; Ecological Studies; Springer: Cham, Switzerland, 2021; Volume 241, pp. 3–22. [Google Scholar] [CrossRef]
- Luo, D.; Wu, Q.; Jin, H.; Marchenko, S.S.; Lü, L.; Gao, S. Recent Changes in the Active Layer Thickness Across the Northern Hemisphere. Environ. Earth Sci. 2016, 75, 555. [Google Scholar] [CrossRef]
- Clayton, L.K.; Schaefer, K.; Battaglia, M.J.; Bourgeau-Chavez, L.; Chen, J.; Chen, R.H.; Chen, A.C.; Bakian-Dogaheh, K.; Grelik, S.; Jafarov, E.; et al. Active Layer Thickness as a Function of Soil Water Content. Environ. Res. Lett. 2021, 16, 055028. [Google Scholar] [CrossRef]
- Bobrik, A.A.; Goncharova, O.Y.; Matyshak, G.V.; Ryzhova, I.M.; Moskalenko, N.G.; Ponomareva, O.E.; Ogneva, O.A. Correlation of Active Layer Thickness and Landscape Parameters of Peatland in Northern West Siberia (Nadym Station). Earth’s Cryosphere 2015, 19, 29–35. [Google Scholar]
- Atchley, A.L.; Coon, E.T.; Painter, S.L.; Harp, D.R.; Wilson, C.J. Influences and Interactions of Inundation, Peat, and Snow on Active Layer Thickness. Geophys. Res. Lett. 2016, 43, 5116–5123. [Google Scholar] [CrossRef]
- Du, R.; Peng, X.; Frauenfeld, O.W.; Sun, W.; Liang, B.; Chen, C.; Jin, H.; Zhao, Y. The Role of Peat on Permafrost Thaw Based on Field Observations. Catena 2022, 208, 105772. [Google Scholar] [CrossRef]
- Sannel, A.B.K.; Hugelius, G.; Jansson, P.; Kuhry, P. Permafrost Warming in a Subarctic Peatland—Which Meteorological Controls Are Most Important? Permafr. Periglac. Process. 2016, 27, 177–188. [Google Scholar] [CrossRef]
- Sannel, A.B.K. Ground Temperature and Snow Depth Variability Within a Subarctic Peat Plateau Landscape. Permafr. Periglac. Process. 2020, 31, 255–263. [Google Scholar] [CrossRef]
- Léger, E.; Dafflon, B.; Robert, Y.; Ulrich, C.; Peterson, J.E.; Biraud, S.C.; Romanovsky, V.E.; Hubbard, S.S. A Distributed Temperature Profiling Method for Assessing Spatial Variability in Ground Temperatures in a Discontinuous Permafrost Region of Alaska. Cryosphere 2019, 13, 2853–2867. [Google Scholar] [CrossRef]
- Wilson, R.M.; Hopple, A.M.; Tfaily, M.M.; Sebestyen, S.D.; Schadt, C.W.; Pfeifer-Meister, L.; Hanson, P.J. Stability of Peatland Carbon to Rising Temperatures. Nat. Commun. 2016, 7, 13723. [Google Scholar] [CrossRef]
- Byun, E.; Rezanezhad, F.; Fairbairn, L.; Slowinski, S.; Basiliko, N.; Price, J.S.; Quintom, W.L.; Roy-Léveillée, P.; Webster, K.; Van Cappellen, P. Temperature, Moisture and Freeze–Thaw Controls on CO2 Production in Soil Incubations from Northern Peatlands. Sci. Rep. 2021, 11, 23219. [Google Scholar] [CrossRef]
- Rowlandson, T.L.; Berg, A.A.; Roy, A.; Kim, E.; Lara, R.P.; Powers, J.; Lewis, K.; Houser, P.; McDonald, K.; Toose, P.; et al. Capturing Agricultural Soil Freeze/Thaw State Through Remote Sensing and Ground Observations: A Soil Freeze/Thaw Validation Campaign. Remote Sens. Environ. 2018, 211, 59–70. [Google Scholar] [CrossRef]
- Williamson, M.; Adams, J.R.; Berg, A.A.; Derksen, C.; Toose, P.; Walker, A. Plot-Scale Assessment of Soil Freeze/Thaw Detection and Variability with Impedance Probes: Implications for Remote Sensing Validation Networks. Hydrol. Res. 2018, 49, 1–16. [Google Scholar] [CrossRef]
- Mavrovic, A.; Pardo Lara, R.; Berg, A.; Demontoux, F.; Royer, A.; Roy, A. Soil Dielectric Characterization During Freeze-Thaw Transitions Using L-Band Coaxial and Soil Moisture Probes. Hydrol. Earth Syst. Sci. 2021, 25, 1117–1131. [Google Scholar] [CrossRef]
- Zhu, H.H.; Wu, B.; Cao, D.F.; Li, B.; Wen, Z.; Liu, X.F.; Shi, B. Characterizing Thermo-Hydraulic Behaviors of Seasonally Frozen Loess Via a Combined Opto-Electronic Sensing System: Field Monitoring and Assessment. J. Hydrol. 2023, 622, 129647. [Google Scholar] [CrossRef]
- Wollschläger, U.; Gerhards, H.; Yu, Q.; Roth, K. Multi-Channel Ground-Penetrating Radar to Explore Spatial Variations in Thaw Depth and Moisture Content in the Active Layer of a Permafrost Site. Cryosphere 2010, 4, 269–283. [Google Scholar] [CrossRef]
- Gusmeroli, A.; Liu, L.; Schaefer, K.; Zhang, T.; Schaefer, T.; Grosse, G. Active Layer Stratigraphy and Organic Layer Thickness at a Thermokarst Site in Arctic Alaska Identified Using Ground Penetrating Radar. Arct. Antarct. Alp. Res. 2015, 47, 195–202. [Google Scholar] [CrossRef]
- Cao, B.; Gruber, S.; Zhang, T.; Li, L.; Peng, X.; Wang, K.; Zheng, L.; Shao, W.; Guo, H. Spatial Variability of Active Layer Thickness Detected by Ground-Penetrating Radar in the Qilian Mountains, Western China. J. Geophys. Res. Earth Surf. 2017, 122, 574–591. [Google Scholar] [CrossRef]
- Jafarov, E.E.; Parsekian, A.D.; Schaefer, K.; Liu, L.; Chen, A.C.; Panda, S.K.; Zhang, T. Estimating Active Layer Thickness and Volumetric Water Content from Ground Penetrating Radar Measurements in Barrow, Alaska. Geosci. Data J. 2017, 4, 72–79. [Google Scholar] [CrossRef]
- Sudakova, M.S.; Sadurtdinov, M.R.; Tsarev, A.M.; Skvortsov, A.G.; Malkova, G.V. Ground-Penetrating Radar for Studies of Peatlands in Permafrost. Russ. Geol. Geophys. 2019, 60, 793–800. [Google Scholar] [CrossRef]
- Ryazantsev, P.; Kutenkov, S.; Kabonen, A. Study of Subarctic Palsa Permafrost under Various Thawing Conditions Based on Geophysical and Geospatial Models. Permafr. Periglac. Process. 2025; in print. [Google Scholar] [CrossRef]
- Klinge, M.; Schneider, F.; Dulamsuren, C.; Arndt, K.; Bayarsaikhan, U.; Sauer, D. Interrelations between Relief, Vegetation, Disturbances, and Permafrost in the Forest-Steppe of Central Mongolia. Earth Surf. Process. Landf. 2021, 46, 1766–1782. [Google Scholar] [CrossRef]
- Campbell, S.W.; Briggs, M.; Roy, S.G.; Douglas, T.A.; Saari, S. Ground-Penetrating Radar, Electromagnetic Induction, Terrain, and Vegetation Observations Coupled with Machine Learning to Map Permafrost Distribution at Twelvemile Lake, Alaska. Permafr. Periglac. Process. 2021, 32, 407–426. [Google Scholar] [CrossRef]
- Huang, Y.; Niu, F.; He, P.; Pan, W.; Yuan, K.; Su, W. Effectiveness Evaluation of Cooling Measures for Express Highway Construction in Permafrost Regions Based on GPR and ERT. Cold Reg. Sci. Technol. 2024, 228, 104339. [Google Scholar] [CrossRef]
- Harris, R.H.; Evans, S.G.; Marshall, S.T.; Godsey, S.E.; Parsekian, A.D. Using Ground-Penetrating Radar to Infer Ice Wedge Characteristics Proximal to Water Tracks. J. Geophys. Res. Earth Surf. 2025, 130, e2024JF007832. [Google Scholar] [CrossRef]
- Neradovsky, L.G. Permafrost Soils Influence on EM Energy Attenuation. J. Geophys. 2009, 2, 57–67. (In Russian) [Google Scholar]
- Neradovsky, L.G. Effect of Ground Temperatures on Electromagnetic Field Attenuation in Developed Areas of the Yakutian Permafrost Region. Earth’s Cryosphere 2010, 14, 56–65. (In Russian) [Google Scholar]
- Song, L.; Yang, W.; Huang, J.; Li, H.; Zhang, X. GPR Utilization in Artificial Freezing Engineering. J. Geophys. Eng. 2013, 10, 034004. [Google Scholar] [CrossRef]
- Steelman, C.M.; Endres, A.L.; Van der Kruk, J. Field Observations of Shallow Freeze and Thaw Processes Using High-Frequency Ground-Penetrating Radar. Hydrol. Process. 2010, 24, 2022–2033. [Google Scholar] [CrossRef]
- Jadoon, K.Z.; Weihermüller, L.; McCabe, M.F.; Moghadas, D.; Vereecken, H.; Lambot, S. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar. Remote Sens. 2015, 7, 12041–12056. [Google Scholar] [CrossRef]
- Shen, Y.; Zuo, R.; Liu, J.; Tian, Y.; Wang, Q. Characterization and Evaluation of Permafrost Thawing Using GPR Attributes in the Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2018, 151, 302–313. [Google Scholar] [CrossRef]
- Wang, Q.; Shen, Y. Calculation and Interpretation of Ground Penetrating Radar for Temperature and Relative Water Content of Seasonal Permafrost in Qinghai-Tibet Plateau. Electronics 2019, 8, 731. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, X.; Shen, Y.; Li, M. Characterization and Evaluation of Thaw-Slumping Using GPR Attributes in the Qinghai-Tibet Plateau. Remote Sens. 2023, 15, 2273. [Google Scholar] [CrossRef]
- Elina, G.A.; Lukashov, A.D.; Yurkovskaya, T.K. Late Glacial and Holocene Palaeovegetation and Palaeogeography of Eastern Fennoscandia; Finnish Environment Institute: Helsinki, Finland, 2010; Volume 4. [Google Scholar]
- Rönkkö, M.; Seppälä, M. Surface Characteristics Affecting Active Layer Formation in Palsas, Finnish Lapland. In Proceedings of the Eighth International Conference on Permafrost, Zürich, Switzerland, 21–25 July 2003; Phillips, M., Springman, S.M., Arenson, L.U., Eds.; Swets & Zeitlinger: Lisse, The Netherlands, 2003; pp. 995–1000. [Google Scholar]
- Brown, J.; Ferrians, O.; Heginbottom, J.A.; Melnikov, E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2; National Snow and Ice Data Center: Boulder, CO, USA, 2002. [Google Scholar] [CrossRef]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); Open-File Report 1073; U.S. Department of the Interior: Washington, DC, USA; U.S. Geological Survey: Reston, VA, USA, 2011. [Google Scholar]
- Romanenko, F.A.; Garankina, E.V. Permafrost Formation and Structure at the South Border of Cryolithozone, the Kola Peninsula. Earth’s Cryosphere 2012, 16, 72–80. [Google Scholar]
- Olvmo, M.; Holmer, B.; Thorsson, S.; Reese, H.; Lindberg, F. Sub-Arctic Palsa Degradation and the Role of Climatic Drivers in the Largest Coherent Palsa Mire Complex in Sweden (Vissátvuopmi), 1955–2016. Sci. Rep. 2020, 10, 8937. [Google Scholar] [CrossRef]
- Fewster, R.E.; Morris, P.J.; Ivanovic, R.F.; Swindles, G.T.; Peregon, A.M.; Smith, C.J. Imminent Loss of Climate Space for Permafrost Peatlands in Europe and Western Siberia. Nat. Clim. Change 2022, 12, 373–379. [Google Scholar] [CrossRef]
- Leppiniemi, O.; Karjalainen, O.; Aalto, J.; Luoto, M.; Hjort, J. Environmental Spaces for Palsas and Peat Plateaus Are Disappearing at a Circumpolar Scale. Cryosphere 2023, 17, 3157–3176. [Google Scholar] [CrossRef]
- Krutskikh, N.; Ryazantsev, P.; Ignashov, P.; Kabonen, A. The Spatial Analysis of Vegetation Cover and Permafrost Degradation for a Subarctic Palsa Mire Based on UAS Photogrammetry and GPR Data in the Kola Peninsula. Remote Sens. 2023, 15, 1896. [Google Scholar] [CrossRef]
- Kujala, K.; Seppälä, M.; Holappa, T. Physical Properties of Peat and Palsa Formation. Cold Reg. Sci. Technol. 2008, 52, 408–414. [Google Scholar] [CrossRef]
- Spaans, E.J.A.; Baker, J.M. The Soil Freezing Characteristic: Its Measurement and Similarity to the Soil Moisture Characteristic. Soil Sci. Soc. Am. J. 1996, 60, 13–19. [Google Scholar] [CrossRef]
- Kojima, Y.; Nakano, Y.; Kato, C.; Noborio, K.; Kamiya, K.; Horton, R. A New Thermo-Time Domain Reflectometry Approach to Quantify Soil Ice Content at Temperatures Near the Freezing Point. Cold Reg. Sci. Technol. 2020, 174, 103060. [Google Scholar] [CrossRef]
- Annan, A.P. Ground Penetrating Radar. In Near Surface Geophysics; Butler, D.K., Ed.; Society of Exploration Geophysicists: Tulsa, OK, USA, 2005; pp. 357–438. [Google Scholar]
- Kapustin, V.V.; Sinitsin, A.V. The Application of Attribute Analysis for the Solution of Applied Problems of GPR Profiling. J. Geophys. 2015, 2, 17–23. (In Russian) [Google Scholar]
- Patterson, D.E.; Smith, M.W. The Measurement of Unfrozen Water Content by Time Domain Reflectometry: Results from Laboratory Tests. Can. Geotech. J. 1981, 18, 131–144. [Google Scholar] [CrossRef]
- Smerdon, B.D.; Mendoza, C.A. Hysteretic Freezing Characteristics of Riparian Peatlands in the Western Boreal Forest of Canada. Hydrol. Process. 2010, 24, 955–1094. [Google Scholar] [CrossRef]
- Quinton, W.L.; Baltzer, J.L. The Active-Layer Hydrology of a Peat Plateau with Thawing Permafrost (Scotty Creek, Canada). Hydrogeol. J. 2013, 21, 201–220. [Google Scholar] [CrossRef]
- Oleszczuk, R.; Brandyk, T.; Gnatowski, T.; Szatylowicz, J. Calibration of TDR for Moisture Determination in Peat Deposits. Int. Agrophys. 2004, 18, 145–151. [Google Scholar]
- Parsekian, A.D.; Slater, L.; Giménez, D. Application of Ground-Penetrating Radar to Measure Near-Saturation Soil Water Content in Peat Soils. Water Resour. Res. 2012, 48, W02533. [Google Scholar] [CrossRef]
- Zhao, Y.; Si, B. Thermal Properties of Sandy and Peat Soils Under Unfrozen and Frozen Conditions. Soil Tillage Res. 2019, 189, 64–72. [Google Scholar] [CrossRef]
- Kalyuzhny, I.L.; Lavrov, S.A. Thermophysical Properties of the Active Layer of the Kola Peninsula Bogs. Her. Kola Sci. Cent. RAS 2019, 4, 16–28. (In Russian) [Google Scholar]
- Léger, E.; Saintenoy, A.; Serhir, M.; Costard, F.; Grenier, C. Brief Communication: Monitoring Active Layer Dynamic Using a Lightweight Nimble Ground-Penetrating Radar System. A Laboratory Analog Test Case. Cryosphere 2023, 17, 1271–1277. [Google Scholar] [CrossRef]
- Devoie, É.; Craig, J.; Dominico, M.; Carpino, O.; Connon, R.; Rudy, A.; Quinton, W. Mechanisms of Discontinuous Permafrost Thaw in Peatlands. J. Geophys. Res. Earth Surf. 2021, 126, e2021JF006204. [Google Scholar] [CrossRef]
- Kalyuzhny, I.L. Content of Non-Frozen Moisture in a Seasonally Frozen Active Layer of the Kola Peninsula Marshes. Her. Kola Sci. Cent. RAS 2019, 3, 55–64. (In Russian) [Google Scholar]
- Mustamo, P.; Ronkanen, A.K.; Berglund, Ö.; Berglund, K.; Kløve, B. Thermal Conductivity of Unfrozen and Partially Frozen Managed Peat Soils. Soil Tillage Res. 2019, 191, 245–255. [Google Scholar] [CrossRef]
- Nagare, R.M.; Schincariol, R.A.; Quinton, W.L.; Hayashi, M. Effects of Freezing on Soil Temperature, Freezing Front Propagation and Moisture Redistribution in Peat: Laboratory Investigations. Hydrol. Earth Syst. Sci. 2012, 16, 501–515. [Google Scholar] [CrossRef]
- Pardo Lara, R.; Berg, A.A.; Warland, J.; Tetlock, E. In Situ Estimates of Freezing/Melting Point Depression in Agricultural Soils Using Permittivity and Temperature Measurements. Water Resour. Res. 2020, 56, e2019WR026020. [Google Scholar] [CrossRef]
- Romanovsky, V.E.; Osterkamp, T.E. Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. Permafr. Periglac. Process. 2000, 11, 219–239. [Google Scholar] [CrossRef]
- Gamayunov, N.I.; Stotland, D.M.; Agafonova, O.N.; Tovbin, I.B. Investigation of Heat and Mass Transport During Freezing in Peat Soils. Sov. Soil Sci. 1990, 22, 88–97. [Google Scholar]
- Watanabe, K.; Wake, T. Measurement of Unfrozen Water Content and Relative Permittivity of Frozen Unsaturated Soil Using NMR and TDR. Cold Reg. Sci. Technol. 2009, 59, 34–41. [Google Scholar] [CrossRef]
- Pavlova, N.N. Thermal Properties of the Active Layer of Bogs; Proceedings of the State Hydrological Institute: Leningrad, Russia, 1969; Volume 177, pp. 119–155. (In Russian) [Google Scholar]
- Pavlova, N.N. Phase Composition of Water and Thermophysical Characteristics of Frozen Peat in the Study of Infiltration. Sov. Hydrol. 1970, 4, 361–378. [Google Scholar]
- Koopmans, R.W.R.; Miller, R.D. Soil Freezing and Soil Water Characteristic Curves. Soil Sci. Soc. Am. J. 1966, 30, 680–685. [Google Scholar] [CrossRef]
- Bircher, S.; Andreasen, M.; Vuollet, J.; Vehviläinen, J.; Rautiainen, K.; Jonard, F.; Weihermüller, L.; Zakharova, E.; Wigneron, J.-P.; Kerr, Y.H. Soil Moisture Sensor Calibration for Organic Soil Surface Layers. Geosci. Instrum. Methods Data Syst. 2016, 5, 109–125. [Google Scholar] [CrossRef]
- Naasz, R.; Michel, J.C.; Charpentier, S. Measuring Hysteretic Hydraulic Properties of Peat and Pine Bark Using a Transient Method. Soil Sci. Soc. Am. J. 2005, 69, 13–22. [Google Scholar] [CrossRef]
- Westin, B.; Zuidhoff, F.S. Ground Thermal Conditions in a Frost-Crack Polygon, a Palsa and a Mineral Palsa (Lithalsa) in the Discontinuous Permafrost Zone, Northern Sweden. Permafr. Periglac. Process. 2001, 12, 325–335. [Google Scholar] [CrossRef]
- Delisle, G.; Allard, M.; Phillips, M.; Springman, S.M.; Arenson, L.U. Numerical Simulation of the Temperature Field of a Palsa Reveals Strong Influence of Convective Heat Transport by Groundwater. In Proceedings of the 8th International Permafrost Conference, Zurich, Switzerland, 21–25 July 2003; pp. 21–25. [Google Scholar]
- Arcone, S.A.; Peapples, P.R.; Liu, L. Propagation of a Ground-Penetrating Radar (GPR) Pulse in a Thin-Surface Waveguide. Geophysics 2003, 68, 1922–1933. [Google Scholar] [CrossRef]
- Van der Kruk, J.; Steelman, C.M.; Endres, A.L.; Vereecken, H. Dispersion Inversion of Electromagnetic Pulse Propagation Within Freezing and Thawing Soil Waveguides. Geophys. Res. Lett. 2009, 36, L18503. [Google Scholar] [CrossRef]
- Batbaatar, J.; Gillespie, A.R.; Sletten, R.S.; Mushkin, A.; Amit, R.; Trombotto Liaudat, D.; Liu, L.; Petrie, G. Toward the Detection of Permafrost Using Land-Surface Temperature Mapping. Remote Sens. 2020, 12, 695. [Google Scholar] [CrossRef]
- Bohidar, R.N.; Hermance, J.F. The GPR Refraction Method. Geophysics 2002, 67, 1474–1485. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryazantsev, P. Can Ground-Penetrating Radar Detect Thermal Gradients in the Active Layer of Frozen Peatlands? Remote Sens. 2025, 17, 1805. https://doi.org/10.3390/rs17111805
Ryazantsev P. Can Ground-Penetrating Radar Detect Thermal Gradients in the Active Layer of Frozen Peatlands? Remote Sensing. 2025; 17(11):1805. https://doi.org/10.3390/rs17111805
Chicago/Turabian StyleRyazantsev, Pavel. 2025. "Can Ground-Penetrating Radar Detect Thermal Gradients in the Active Layer of Frozen Peatlands?" Remote Sensing 17, no. 11: 1805. https://doi.org/10.3390/rs17111805
APA StyleRyazantsev, P. (2025). Can Ground-Penetrating Radar Detect Thermal Gradients in the Active Layer of Frozen Peatlands? Remote Sensing, 17(11), 1805. https://doi.org/10.3390/rs17111805