Seasonal and Interannual Variations in M2 Tidal Current in Offshore Guangdong
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Comparison of Tidal Current
3.2. Seasonal Variations in M2 Tidal Current
3.3. Interannual Variations in M2 Tidal Current
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jay, D.A. Evolution of tidal amplitudes in the eastern Pacific Ocean. Geophys. Res. Lett. 2009, 36, L04603. [Google Scholar] [CrossRef]
- Devlin, A.T.; Jay, D.A.; Zaron, E.D.; Talke, S.A.; Pan, J.; Lin, H. Tidal variability related to sea level variability in the Pacific Ocean. J. Geophys. Res. Ocean. 2017, 122, 8445–8463. [Google Scholar] [CrossRef]
- Opel, L.; Schindelegger, M.; Ray, R.D. A likely role for stratification in long-term changes of the global ocean tides. Commun. Earth Environ. 2024, 5, 261. [Google Scholar] [CrossRef]
- Müller, M.; Cherniawsky, J.Y.; Foreman, M.G.G.; von Storch, J.-S. Seasonal variation of the M2 tide. Ocean Model. 2014, 64, 159–177. [Google Scholar] [CrossRef]
- Haigh, I.D.; Pickering, M.D.; Green, J.A.M.; Arbic, B.K.; Arns, A.; Dangendorf, S.; Hill, D.F.; Horsburgh, K.; Howard, T.; Idier, D.; et al. The tides they are a-changin’: A comprehensive review of past and future nonastronomical changes in tides, their driving mechanisms, and future implications. Rev. Geophys. 2020, 58, e2018RG00063. [Google Scholar] [CrossRef]
- Jay, D.A.; Leffler, K.; Degens, S. Long-term evolution of Columbia River tides. J. Waterw. Port Coast. Ocean. Eng. 2011, 137, 182–191. [Google Scholar] [CrossRef]
- Talke, S.A.; Jay, D.A. Changing tides: The role of natural and anthropogenic factor. Annu. Rev. Mar. Sci. 2020, 12, 121–151. [Google Scholar] [CrossRef]
- Kang, S.K.; Foreman, M.G.G.; Lie, H.J.; Lee, J.H.; Cherniawsky, J.Y.; Yum, K.D. Two-layer tidal modeling of the Yellow and East China Seas with application to seasonal variability of the M2 tide. J. Geophys. Res. 2002, 107, 3020. [Google Scholar] [CrossRef]
- Arbic, B.K.; Karsten, R.H.; Garrett, C. On tidal resonance in the global ocean and the back-effect of coastal tides upon open-ocean tides. Atmos. Ocean 2009, 47, 239–266. [Google Scholar] [CrossRef]
- Colosi, J.A.; Munk, W. Tales of the venerable Honolulu tide gauge. J. Phys. Oceanogr. 2006, 36, 967–996. [Google Scholar] [CrossRef]
- Müller, M. The influence of changing stratification conditions on barotropic tidal transport. Cont. Shelf Res. 2012, 47, 107–188. [Google Scholar] [CrossRef]
- Schindelegger, M.; Kotzian, D.P.; Ray, R.D.; Green, J.A.M.; Stolzenberger, S. Interannual changes in tidal conversion modulate M2 amplitudes in the Gulf of Maine. Geophys. Res. Lett. 2022, 49, e2022GL101671. [Google Scholar] [CrossRef]
- Fassoni-Andrade, A.C.; Durand, F.; Azevedo, A.; Bertin, X.; Santos, L.G.; Khan, J.M.; Testut, L.; Moreira, D.M. Seasonal to interannual variability of the tide in the Amazon estuary. Cont. Shelf Res. 2023, 255, 104945. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, X.; Hu, W.; Chen, J.; Guo, M. Dynamics of surface currents over Qingdao coastal waters in August 2008. J. Geophys. Res. 2011, 116, C10020. [Google Scholar] [CrossRef]
- Liu, Y.; Weisberg, R.H.; Merz, C.R. Assessment of CODAR SeaSonde and WERA HF Radars in Mapping Surface Currents on the West Florida Shelf. J. Atmos. Ocean. Technol. 2014, 31, 1363–1382. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, T.; Yang, F.; Liu, B.; Wu, L.; Wei, J. Comparisons of Tidal Currents in the Pearl River Estuary between High-Frequency Radar Data and Model Simulations. Appl. Sci. 2022, 12, 6509. [Google Scholar] [CrossRef]
- Fang, G.; Kwok, Y.K.; Yu, K.; Zhu, Y. Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Cont. Shelf Res. 1999, 19, 845–869. [Google Scholar] [CrossRef]
- Zu, T.; Gan, J.; Erofeeva, S.Y. Numerical study of the tide and tidal dynamics in the South China Sea. Deep-Sea Res. Part I Oceanogr. Res. Pap. 2008, 55, 137–154. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Zhu, X. Tidal characteristics analysis in the South China Sea by 18.6 years satellite altimetry data. Mar. Forecast. 2014, 31, 35–40, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, R.; Chen, C.; Xia, H.; Beardsley, R.C.; Shi, M.; Lai, Z.; Lin, H.; Feng, Y.; Liu, C.; Xu, Q.; et al. Observed wintertime tidal and subtidal currents over the continental shelf in the northern South China Sea. J. Geophys. Res. Ocean. 2014, 119, 5289–5310. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, J.; Zhang, W.; Zeng, G.; Chen, D.; Shang, S. Numerical study on tides in the Taiwan Strait and its adjacent areas. Mar. Sci. Bull. 2009, 11, 23–36. [Google Scholar]
- Wu, W.; Yan, Y.; Song, D. Study on the tidal dynamics in Daya Bay, China—Part I. Observation and numerical simulation of tidal dynamic system. J. Trop. Oceanogr. 2017, 36, 34–45, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yan, Y.; Wu, W.; Song, D.; Bao, X. Study on the tidal dynamics in Daya Bay, China—Part II. The generation of double high waters and double-peak flood-current flows. J. Trop. Oceanogr. 2017, 36, 46–54, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Pan, H.; Devlin, A.T.; Xu, T.; Lv, X.; Wei, Z. Anomalous 18.61-Year Nodal Cycles in the Gulf of Tonkin Revealed by Tide Gauges and Satellite Altimeter Records. Remote Sens. 2022, 14, 3672. [Google Scholar] [CrossRef]
- Feng, X.; Tsimplis, M.N.; Woodworth, P.L. Nodal variations and long-term changes in the main tides on the coasts of China. J. Geophys. Res. Ocean. 2015, 120, 1215–1232. [Google Scholar] [CrossRef]
- Pan, H.; Wang, Y.; Lv, X. The study of the trends of tidal amplitudes of major constituents in the South China Sea. Haiyang Xuebao 2021, 43, 26–34, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Liu, Z.; Zhao, Y.; Wang, M. Seasonal variability of tides in the deep northern South China Sea. Sci. China Earth Sci. 2019, 62, 671–683, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Cai, S.; Liu, F. Interannual and intra-annual variation characteristics of runoff in downstream areas of Pearl River basin during 1960–2017. Bull. Soil Water Conserv. 2019, 39, 23–31, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Harrison, P.J.; Yin, K.; Lee, J.H.W.; Gan, J.; Liu, H. Physical-biological coupling in the Pearl River Estuary. Cont. Shelf Res. 2008, 28, 1405–1415. [Google Scholar] [CrossRef]
- Ou, S.; Zhang, H.; Wang, D. Dynamics of the buoyant plume off the Pearl River Estuary in summer. Environ. Fluid Mech. 2009, 9, 471–492. [Google Scholar] [CrossRef]
- Zu, T.; Wang, D.; Gan, J.; Guan, W. On the role of wind and tide in generating variability of Pearl River plume during summer in a coupled wide estuary and shelf system. J. Mar. Syst. 2014, 136, 65–79. [Google Scholar] [CrossRef]
- Shu, Y.; Chen, J.; Yao, J.; Pan, J.; Wang, W.; Mao, H.; Wang, D. Effects of the Pearl River plume on the vertical structure of coastal currents in the Northern South China Sea during summer 2008. Ocean Dyn. 2014, 64, 1743–1752. [Google Scholar] [CrossRef]
- Zhu, D.; Shao, h.; Li, Y.; Li, L. Quality analyses of radial currents measured by a demonstration system of OSMAR HF radar in Fujian Province. J. Oceanogr. Taiwan Strait 2007, 26, 7–16, (In Chinese with English Abstract). [Google Scholar]
- Wen, B.; Li, Z.; Zhou, H.; Shi, Z.; Wu, S.; Wang, X.; Yang, H.; Li, S. Sea surface currents detection at the eastern China Sea by HF ground wave radar OSMAR-S. Acta Electron. Sin. 2009, 37, 2778–2782. [Google Scholar] [CrossRef]
- Lai, Y.; Zhou, H.; Yang, J.; Zeng, Y.; Wen, B. Submesoscale eddies in the Taiwan Strait observed by high-frequency radars: Detection algorithms and eddy properties. J. Atmos. Ocean. Technol. 2017, 34, 939–953. [Google Scholar] [CrossRef]
- Huang, C.; Zeng, L.; Wang, D.; Wang, Q.; Wang, P.; Zu, T. Submesoscale eddies in eastern Guangdong identified using high-frequency radar observations. Deep Sea Res. Part II Top. Stud. Oceanogr. 2023, 207, 105220. [Google Scholar] [CrossRef]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Ding, W. Distribution of tides and tidal currents in the South China Sea. Oceanol. Limnol. Sin. 1986, 17, 468–480, (In Chinese with English Abstract). [Google Scholar]
- Tian, Y.; Wen, B.; Tan, J.; Li, Z. Study on pattern distortion and DOA estimation performance of crossed-loop/monopole antenna in HF radar. IEEE Trans. Antennas Propag. 2017, 65, 6095–6106. [Google Scholar] [CrossRef]
- Tian, Y.; Wen, B.; Li, Z.; Yin, Y.; Huang, W. Analysis and validation of an improved method for measuring HF surface wave radar antenna pattern. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 659–663. [Google Scholar] [CrossRef]
- Gao, X.; Wei, Z.; Lv, X.; Wang, Y.; Fang, G. Numerical study of tidal dynamics in the South China Sea with adjoint method. Ocean Model. 2015, 92, 101–114. [Google Scholar] [CrossRef]
- Bai, X.; Lamb, K.G.; Liu, Z.; Hu, J. Intermittent Generation of Internal Solitary-Like Waves on the Northern Shelf of the South China Sea. Geophys. Res. Lett. 2023, 50, e2022GL102502. [Google Scholar] [CrossRef]
Observation Instrument | Period | M2 | ||
---|---|---|---|---|
Semi-Major (m/s) | Semi-Minor (m/s) | Phase (°) | ||
ADCP 1 | 23 October 2019–25 October 2019 | 0.334 | 0.036 | 278.0 |
OSMAR-S 2 | 1 January 2019–31 December 2019 | 0.395 | 0.019 | 277.7 |
OSMAR-S 2 | 1 January 2020–31 December 2020 | 0.379 | 0.028 | 279.0 |
Buoy | 1 January 2018–31 December 2018 | 0.286 | 0.045 | 273.4 |
Observation Instrument | Period | M2 | ||
---|---|---|---|---|
Semi-Major (m/s) | Semi-Minor (m/s) | Phase (°) | ||
ADCP 1 | 12 November 2019–14 November 2019 | 0.169 | 0.012 | 139.2 |
OSMAR-071G 2 | 1 January 2019–31 December 2019 | 0.107 | 0.012 | 104.7 |
OSMAR-071G 2 | 1 January 2020–31 December 2020 | 0.111 | 0.012 | 142.2 |
OSMAR-071G 2 | 1 January 2021–31 December 2021 | 0.105 | 0.009 | 141.7 |
OSMAR-071G 2 | 1 January 2022–31 December 2022 | 0.110 | 0.010 | 139.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Zu, T.; Zeng, L.; Shi, R.; Wang, Q.; Wang, P.; Tian, Y.; Zhai, R.; Xu, X. Seasonal and Interannual Variations in M2 Tidal Current in Offshore Guangdong. Remote Sens. 2025, 17, 1781. https://doi.org/10.3390/rs17101781
Huang C, Zu T, Zeng L, Shi R, Wang Q, Wang P, Tian Y, Zhai R, Xu X. Seasonal and Interannual Variations in M2 Tidal Current in Offshore Guangdong. Remote Sensing. 2025; 17(10):1781. https://doi.org/10.3390/rs17101781
Chicago/Turabian StyleHuang, Caijing, Tingting Zu, Lili Zeng, Rui Shi, Qiang Wang, Ping Wang, Yingwei Tian, Rongwei Zhai, and Xinjun Xu. 2025. "Seasonal and Interannual Variations in M2 Tidal Current in Offshore Guangdong" Remote Sensing 17, no. 10: 1781. https://doi.org/10.3390/rs17101781
APA StyleHuang, C., Zu, T., Zeng, L., Shi, R., Wang, Q., Wang, P., Tian, Y., Zhai, R., & Xu, X. (2025). Seasonal and Interannual Variations in M2 Tidal Current in Offshore Guangdong. Remote Sensing, 17(10), 1781. https://doi.org/10.3390/rs17101781