Advances in Research and Application of Techniques for Measuring Photosynthetically Active Radiation
Abstract
:1. Introduction
2. Traditional Commercial PAR Sensors: Principles, Limitations, and Current Applications
2.1. Principles and Sources of Error
2.2. Applications of Commercial PAR Sensors
3. Low-Cost PAR Sensors from a Citizen Science Perspective
3.1. Low-Cost Design Based on Photodiodes and Optical Filters
3.2. Innovative Applications of Multispectral Sensors
3.3. Other Types
Principle Type | Core Component Model | Calibration Product | Fitting Model | Accuracy | PAR Range () | Spectral Range (nm) | Cost | Reference |
---|---|---|---|---|---|---|---|---|
Multispectral sensor | AS7341 | LI-190R | Partial least squares regression | <1000 | 415–680 | 117 dollars | [36] | |
AS7265x | Apogee SQ-520 | Multiple linear regression | <350 | 410–940 | 50 dollars | [33] | ||
AS7265x | LI-190R; Calibration spectroradiometer | Multiple linear regression | Mean error 6.83% | <1500 | 410–940 | 5 dollars per Chip | [32] | |
AS7341 | LI-190 | Multiple linear regression | nRMSE = 0.02 | <600 | 415–680 | Unkown | [35] | |
AS7341 | LI-190 | Multiple linear regression | , RSME = 16 | <1600 | 415–680 | Sensor cost below 10 euros | [34] | |
Photodiode | TCS34715FN | LI-COR 190R | Multiple linear regression | Good linear relationship | <1300 | 300–1100 | Unknown | [38] |
VTB8440BH | Apogee SQ-520 | Linear regression | , Relative error 4.7% | <1800 | 330–720 | Unknown | [29] | |
BPW34 | LI-190R | Calculated using photocurrent magnitude and average quantum absorption efficiency | Relative error range from 80% to 0.7% (depending on light intensity) | <10 | 395–700 | unknown | [28] | |
PAR radiation sensor | PAR/LE | PSQ1 | Linear regression | <2500 | unknown | 427.6 Euros | [31] | |
LI-COR 190SA | Calibrated sensor by NEON | Linear regression | <1700 | Unknown | 685 dollars | [41] | ||
RGB sensor | BH1749NUC | Apogee SQ-110 | Multi-layer perceptron model | RMSE = 10.51 | <480 | 400–1100 | 90 dollars | [37] |
Visible and near-infrared light sensor | SI 1145 | LI-190R | Polynomial fitting | <1800 | near 400–700 | 110 dollars | [30] | |
Light intensity logger | HOBO | LI-1000 | Exponential fitting | <2000 | 150–1200 | Unkonwn | [42] | |
Light-emitting diode | Unkown | Apogee QSO; LI-190SA | Linear regression | <2500 | 380; 620 | Unkown | [39] |
4. Remote Sensing Estimation of PAR: Integration of Large-Scale Observations and Ground-Based Validation
4.1. Empirical Model
4.2. Machine Learning Methods
4.3. Satellite-Derived Products
Satellite-Derived Product | Category | Country | References |
---|---|---|---|
MODIS | Moderate-resolution imaging spectroradiometer | America | [49,113,122,127,128,129,130,131,132,133,134] |
ADEOS-II GLI | Imaging spectrometer | Japan | [124] |
Sentinel-3 OLCI | Multispectral imaging instrument | Europe | [135,136,137] |
CERES | Passive radiometer sensor | America | [125,126] |
SeaWiFS | Multispectral imaging instrument | America | [130,138] |
MERIS | Moderate-resolution imaging spectroradiometer | Europe | [130,139] |
CAMS-Rad | Solar radiation products | Europe | [140,141] |
5. Conclusions and Outlook
Funding
Conflicts of Interest
References
- McCree, K.J. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric. Meteorol. 1972, 10, 443–453. [Google Scholar] [CrossRef]
- Udo, S.; Aro, T. Global PAR related to global solar radiation for central Nigeria. Agric. For. Meteorol. 1999, 97, 21–31. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, D.; Hao, H.; Zhao, X.; Hao, W.; Liu, Q. Photosynthetically active radiation determining yields for an intercrop of maize with cabbage. Eur. J. Agron. 2015, 69, 32–40. [Google Scholar] [CrossRef]
- Chen, F.; Yang, X.; Yu, Q.; Han, B. Quantifying the effects of diffuse photosynthetically active radiation on water use efficiency in different ecosystems. Agric. For. Meteorol. 2024, 356, 110191. [Google Scholar] [CrossRef]
- Hill, I.; Park, D.; Bridges, W.; White, D. Soil water content and photosynthetically active radiation influences soil color assessment. Geoderma Reg. 2022, 31, e00581. [Google Scholar] [CrossRef]
- Rogers, C.; Chen, J.M.; Croft, H.; Gonsamo, A.; Luo, X.; Bartlett, P.; Staebler, R.M. Daily leaf area index from photosynthetically active radiation for long term records of canopy structure and leaf phenology. Agric. For. Meteorol. 2021, 304, 108407. [Google Scholar] [CrossRef]
- Newman, S.J.; Ritz, D.; Nicol, S. Behavioural reactions of Antarctic krill (Euphausia superba Dana) to ultraviolet and photosynthetically active radiation. J. Exp. Mar. Biol. Ecol. 2003, 297, 203–217. [Google Scholar] [CrossRef]
- Dye, D.G. Spectral composition and quanta-to-energy ratio of diffuse photosynthetically active radiation under diverse cloud conditions. J. Geophys. Res. Atmos. 2004, 109, D10203. [Google Scholar] [CrossRef]
- García-Rodríguez, A.; García-Rodríguez, S.; Díez-Mediavilla, M.; Alonso-Tristán, C. Photosynthetic active radiation, solar irradiance and the CIE standard sky classification. Appl. Sci. 2020, 10, 8007. [Google Scholar] [CrossRef]
- Alados, I.; Foyo-Moreno, I.; Alados-Arboledas, L. Photosynthetically active radiation: Measurements and modelling. Agric. For. Meteorol. 1996, 78, 121–131. [Google Scholar] [CrossRef]
- Stamford, J.D.; Stevens, J.; Mullineaux, P.M.; Lawson, T. LED lighting: A grower’s guide to light spectra. HortScience 2023, 58, 180–196. [Google Scholar] [CrossRef]
- Kong, J.; Zhao, Y.; Fan, P.; Wang, Y.; Xu, X.; Wang, L.; Li, S.; Duan, W.; Liang, Z.; Dai, Z. Far-red light modulates grapevine growth by increasing leaf photosynthesis efficiency and triggering organ-specific transcriptome remodelling: Author. BMC Plant Biol. 2024, 24, 189. [Google Scholar] [CrossRef] [PubMed]
- Shomali, A.; De Diego, N.; Zhou, R.; Abdelhakim, L.; Vrobel, O.; Tarkowski, P.; Aliniaeifard, S.; Kamrani, Y.Y.; Ji, Y.; Ottosen, C.O. The crosstalk of far-red energy and signaling defines the regulation of photosynthesis, growth, and flowering in tomatoes. Plant Physiol. Biochem. 2024, 208, 108458. [Google Scholar] [CrossRef]
- Shomali, A.; Kamrani, Y.Y.; Zivcak, M.; Kovar, M.; Brestic, M. Beyond Photosynthetic Active Radiation: The Role of Far-Red Energy and Signalling in the Improvement of Photosynthesis. Plant Cell Environ. 2025. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Li, X.; Li, Z.; Qi, Y.; Song, J.; Cheng, F.; Dou, H.; Yang, Y. Partially Substituting Photosynthetic Photon Flux Density with Far-red Photons Differentially Alters Biomass Accumulation and Photochemical Efficiency of Greenhouse Lettuce. HortScience 2024, 59, 1691–1699. [Google Scholar] [CrossRef]
- Zhen, S.; van Iersel, M.W.; Bugbee, B. Photosynthesis in sun and shade: The surprising importance of far-red photons. New Phytol. 2022, 236, 538–546. [Google Scholar] [CrossRef]
- Yang, Z.; Albrow-Owen, T.; Cai, W.; Hasan, T. Miniaturization of optical spectrometers. Science 2021, 371, eabe0722. [Google Scholar] [CrossRef]
- Federer, C.; Tanner, C. Sensors for measuring light available for photosynthesis. Ecology 1966, 47, 654–657. [Google Scholar] [CrossRef]
- Norman, J.M.; Tanner, C.; Thurtell, G. Photosynthetic Light Sensor for Measurements in Plant Canopies 1. Agron. J. 1969, 61, 840–843. [Google Scholar] [CrossRef]
- Blonquist, M.; Johns, J. Accurate PAR measurement: Comparison of eight quantum sensor models. Proquest 2018, 28154655. [Google Scholar]
- Akitsu, T.; Nasahara, K.N.; Hirose, Y.; Ijima, O.; Kume, A. Quantum sensors for accurate and stable long-term photosynthetically active radiation observations. Agric. For. Meteorol. 2017, 237, 171–183. [Google Scholar] [CrossRef]
- Mizoguchi, Y.; Ohtani, Y.; Aoshima, T.; Hirakata, A.; Yuta, S.; Takanashi, S.; Iwata, H.; Nakai, Y. Comparison of the Characteristics of Five Quantum Sensors; Forestry and Forest Products Research Institute, Ministry of Agriculture, Forestry and Fisheries: Tokyo, Japan, 2010. [Google Scholar]
- Brzychczyk, B.; Hebda, T.; Fitas, J.; Giełżecki, J. The follow-up photobioreactor illumination system for the cultivation of photosynthetic microorganisms. Energies 2020, 13, 1143. [Google Scholar] [CrossRef]
- Rahman, M.M.; Stanley, J.; Lamb, D.; Trotter, M. Methodology for measuring fAPAR in crops using a combination of active optical and linear irradiance sensors: A case study in Triticale (X Triticosecale Wittmack). Precis. Agric. 2014, 15, 532–542. [Google Scholar] [CrossRef]
- Qu, L.P.; Dong, G.; Chen, J.; Xiao, J.; De Boeck, H.J.; Chen, J.; Jiang, S.; Batkhishig, O.; Legesse, T.G.; Xin, X.; et al. Soil environmental anomalies dominate the responses of net ecosystem productivity to heatwaves in three Mongolian grasslands. Sci. Total Environ. 2024, 944, 173742. [Google Scholar] [CrossRef] [PubMed]
- Scordo, F.; Seitz, C.; Suenaga, E.K.; Piccolo, M.C.; Chandra, S.; Amodeo, M.; Perillo, G.M. An inexpensive method for the measurement of photosynthetically active radiation profiles in waterbodies. Aquat. Sci. 2024, 86, 68. [Google Scholar] [CrossRef]
- Altikat, S. Prediction of CO2 emission from greenhouse to atmosphere with artificial neural networks and deep learning neural networks. Int. J. Environ. Sci. Technol. 2021, 18, 3169–3178. [Google Scholar] [CrossRef]
- Rajendran, J.; Leon-Salas, W.D.; Fan, X.; Zhang, Y.; Vizcardo, M.A.; Postigo, M. On the development of a low-cost photosynthetically active radiation (par) sensor. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–5. [Google Scholar]
- Caya, M.V.C.; Alcantara, J.T.; Carlos, J.S.; Cereno, S.S.B. Photosynthetically active radiation (PAR) sensor using an array of light sensors with the integration of data logging for agricultural application. In Proceedings of the 2018 3rd International Conference on Computer and Communication Systems (ICCCS), Nagoya, Japan, 27–30 April 2018; pp. 377–381. [Google Scholar]
- Dong, Y.; Hansen, H. Design of an Internet of Things (IoT)-Based Photosynthetically Active Radiation (PAR) Monitoring System. AgriEngineering 2024, 6, 773–785. [Google Scholar] [CrossRef]
- Coffin, A.; Bonnefoy-Claudet, C.; Chassaigne, M.; Jansen, A.; Gée, C. PARADe: A low-cost open-source device for photosynthetically active radiation (PAR) measurements. Smart Agric. Technol. 2021, 1, 100018. [Google Scholar] [CrossRef]
- Leon-Salas, W.D.; Rajendran, J.; Vizcardo, M.A.; Postigo-Malaga, M. Measuring photosynthetically active radiation with a multi-channel integrated spectral sensor. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May 2021; pp. 1–5. [Google Scholar]
- Stevens, J.D.; Murray, D.; Diepeveen, D.; Toohey, D. Adaptalight: An inexpensive PAR sensor system for daylight harvesting in a micro indoor smart hydroponic system. Horticulturae 2022, 8, 105. [Google Scholar] [CrossRef]
- Bäumker, E.; Zimmermann, D.; Schierle, S.; Woias, P. A novel approach to obtain PAR with a multi-channel spectral microsensor, suitable for sensor node integration. Sensors 2021, 21, 3390. [Google Scholar] [CrossRef]
- Comella, L.M.; Goldschmidtboeing, F.; Kluppel, J.; Hager, E.; Woias, P. An innovative sensor for the simultaneous measurement of Photosynthetic Active Radiation (PAR) and Leaf Area Index (LAI). In Proceedings of the 2022 IEEE Sensors, Dallas, TX, USA, 30 October 2022–2 November 2022; pp. 1–4. [Google Scholar]
- Larochelle, J.; Klueppel, J.; McCormick, R.; Biegert, K.; Comella, L.M. A Low Power Optical Sensor with Dynamically Adjustable Field of View for Photosynthetically Active Radiation (PAR) Measurement. IEEE Sensors J. 2024, 24, 7711–7728. [Google Scholar] [CrossRef]
- Zonzini, F.; Peppi, L.M.; De Renzis, L.; Vignati, G.; Manfrini, L.; De Marchi, L. High Precision Photosynthetically Active Radiation Estimation via a Sensor-near AI Architecture and Low-cost Sensors. In Proceedings of the 2024 IEEE Sensors Applications Symposium (SAS), Naples, Italy, 23–25 July 2024; pp. 1–6. [Google Scholar]
- Kutschera, A.; Lamb, J.J. Light meter for measuring photosynthetically active radiation. Am. J. Plant Sci. 2018, 9, 2420. [Google Scholar] [CrossRef]
- Mims, F.M., III. A 5-Year Study of a New Kind of Photosynthetically Active Radiation Sensor. Photochem. Photobiol. 2003, 77, 30–33. [Google Scholar] [CrossRef]
- Cruse, M.J.; Kucharik, C.J.; Norman, J.M. Using a simple apparatus to measure direct and diffuse photosynthetically active radiation at remote locations. PLoS ONE 2015, 10, e0115633. [Google Scholar] [CrossRef]
- Barnard, H.R.; Findley, M.C.; Csavina, J. PARduino: A simple and inexpensive device for logging photosynthetically active radiation. Tree Physiol. 2014, 34, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Long, M.H.; Rheuban, J.E.; Berg, P.; Zieman, J.C. A comparison and correction of light intensity loggers to photosynthetically active radiation sensors. Limnol. Oceanogr. Methods 2012, 10, 416–424. [Google Scholar] [CrossRef]
- Sanchez-Azofeifa, A.; Sharp, I.; Green, P.D.; Nightingale, J. Calibration of co-located identical PAR sensors using wireless sensor networks and characterization of the in situ fPAR variability in a tropical dry forest. Remote Sens. 2022, 14, 2752. [Google Scholar] [CrossRef]
- Nedbal, J.; Gao, L.; Suhling, K. Bottom-illuminated orbital shaker for microalgae cultivation. HardwareX 2020, 8, e00143. [Google Scholar] [CrossRef]
- Jin, H.; Eklundh, L. In situ calibration of light sensors for long-term monitoring of vegetation. IEEE Trans. Geosci. Remote Sens. 2014, 53, 3405–3416. [Google Scholar] [CrossRef]
- Yang, P.; Prikaziuk, E.; Verhoef, W.; van Der Tol, C. SCOPE 2.0: A model to simulate vegetated land surface fluxes and satellite signals. Geosci. Model Dev. 2021, 14, 4697–4712. [Google Scholar] [CrossRef]
- Levashova, N.; Lukyanenko, D.; Mukhartova, Y.; Olchev, A. Application of a three-dimensional radiative transfer model to retrieve the species composition of a mixed forest stand from canopy reflected radiation. Remote Sens. 2018, 10, 1661. [Google Scholar] [CrossRef]
- Bian, Z.; Lu, Y.; Du, Y.; Zhao, W.; Cao, B.; Hu, T.; Li, R.; Li, H.; Xiao, Q.; Liu, Q. Comparison between Physical and Empirical Methods for Simulating Surface Brightness Temperature Time Series. Remote Sens. 2022, 14, 3385. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, X.; Xi, B.; Xin, X.; Liu, Q.; He, H.; Xie, X.; Li, L.; Yu, S. Retrieving high-resolution surface photosynthetically active radiation from the MODIS and GOES-16 ABI data. Remote Sens. Environ. 2021, 260, 112436. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, H.; Liang, S.; Jia, A.; He, T.; Wang, D. A machine learning method trained by radiative transfer model inversion for generating seven global land and atmospheric estimates from VIIRS top-of-atmosphere observations. Remote Sens. Environ. 2022, 279, 113132. [Google Scholar] [CrossRef]
- Jin, C.; Yuan, Q.; Li, T.; Wang, Y.; Zhang, L. An optimized semi-empirical physical approach for satellite-based PM 2.5 retrieval: Embedding machine learning to simulate complex physical parameters. Geosci. Model Dev. 2023, 16, 4137–4154. [Google Scholar] [CrossRef]
- Jacovides, C.; Tymvios, F.; Asimakopoulos, D.; Theofilou, K.; Pashiardes, S. Global photosynthetically active radiation and its relationship with global solar radiation in the Eastern Mediterranean basin. Theor. Appl. Climatol. 2003, 74, 227–233. [Google Scholar] [CrossRef]
- Aguiar, L.J.; da Costa, J.M.; Aguiar, R.G.; Fischer, G.R. Estimates and measurements of photosynthetically active radiation and global solar irradiance in Rondonia. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2009; Volume 1100, pp. 435–438. [Google Scholar]
- Akitsu, T.; Kume, A.; Hirose, Y.; Ijima, O.; Nasahara, K.N. On the stability of radiometric ratios of photosynthetically active radiation to global solar radiation in Tsukuba, Japan. Agric. For. Meteorol. 2015, 209, 59–68. [Google Scholar] [CrossRef]
- Finch, D.; Bailey, W.; McArthur, L.; Nasitwitwi, M. Photosynthetically active radiation regimes in a southern African savanna environment. Agric. For. Meteorol. 2004, 122, 229–238. [Google Scholar] [CrossRef]
- Tsubo, M.; Walker, S. Relationships between photosynthetically active radiation and clearness index at Bloemfontein, South Africa. Theor. Appl. Climatol. 2005, 80, 17–25. [Google Scholar] [CrossRef]
- Chukwujindu, N.S.; Ogbulezie Julie, C.; Kabele, T.C.; Alwell, J.J.S. Modeling the Influence of Relative Humidity on Photosynthetically Active Radiation from Global Horizontal Irradiation in Six Tropical Ecological Zones in Nigeria. N. Y. Sci. J. 2016, 9, 40–55. [Google Scholar]
- Majnooni-Heris, A. Estimating photosynthetically active radiation (PAR) using air temperature and sunshine durations. J. Biodivers. Environ. Sci. 2014, 5, 371–377. [Google Scholar]
- Szeicz, G. Solar radiation for plant growth. J. Appl. Ecol. 1974, 11, 617–636. [Google Scholar] [CrossRef]
- Meek, D.W.; Hatfield, J.L.; Howell, T.A.; Idso, S.B.; Reginato, R.J. A generalized relationship between photosynthetically active radiation and solar radiation 1. Agron. J. 1984, 76, 939–945. [Google Scholar] [CrossRef]
- Aguiar, L.J.; Fischer, G.R.; Ladle, R.J.; Malhado, A.C.; Justino, F.B.; Aguiar, R.G.; da Costa, J.M.N. Modeling the photosynthetically active radiation in South West Amazonia under all sky conditions. Theor. Appl. Climatol. 2012, 108, 631–640. [Google Scholar] [CrossRef]
- Nagaraja Rao, C. Photosynthetically active components of global solar radiation: Measurements and model computations. Arch. Meteorol. Geophys. Bioclimatol. Ser. A Meteorol. Atmopsheric Phys. 1984, 34, 353–364. [Google Scholar] [CrossRef]
- Britton, C.; Dodd, J. Relationships of photosynthetically active radiation and shortwave irradiance. Agric. Meteorol. 1976, 17, 1–7. [Google Scholar] [CrossRef]
- Jacovides, C.; Timvios, F.; Papaioannou, G.; Asimakopoulos, D.; Theofilou, C. Ratio of PAR to broadband solar radiation measured in Cyprus. Agric. For. Meteorol. 2004, 121, 135–140. [Google Scholar] [CrossRef]
- Wang, Q.; Kakubari, Y.; Kubota, M.; Tenhunen, J. Variation on PAR to global solar radiation ratio along altitude gradient in Naeba Mountain. Theor. Appl. Climatol. 2007, 87, 239–253. [Google Scholar] [CrossRef]
- Noriega Gardea, M.M.Á.; Corral Martínez, L.F.; Anguiano Morales, M.; Trujillo Schiaffino, G.; Salas Peimbert, D.P. Modeling photosynthetically active radiation: A review. Atmósfera 2021, 34, 357–370. [Google Scholar]
- Xia, X.; Li, Z.; Wang, P.; Cribb, M.; Chen, H.; Zhao, Y. Analysis of photosynthetic photon flux density and its parameterization in Northern China. Agric. For. Meteorol. 2008, 148, 1101–1108. [Google Scholar] [CrossRef]
- Li, R.; Zhao, L.; Ding, Y.; Wang, S.; Ji, G.; Xiao, Y.; Liu, G.; Sun, L. Monthly ratios of PAR to global solar radiation measured at northern Tibetan Plateau, China. Sol. Energy 2010, 84, 964–973. [Google Scholar] [CrossRef]
- Trisolino, P.; di Sarra, A.; Anello, F.; Bommarito, C.; Di Iorio, T.; Meloni, D.; Monteleone, F.; Pace, G.; Piacentino, S.; Sferlazzo, D. A long-term time series of global and diffuse photosynthetically active radiation in the Mediterranean: Interannual variability and cloud effects. Atmos. Chem. Phys. 2018, 18, 7985–8000. [Google Scholar] [CrossRef]
- Grant, R.H.; Slusser, J.R. Estimation of photosynthetic photon flux density from 368-nm spectral irradiance. J. Atmos. Ocean. Technol. 2004, 21, 481–487. [Google Scholar] [CrossRef]
- Kathilankal, J.C.; O’Halloran, T.L.; Schmidt, A.; Hanson, C.V.; Law, B.E. Development of a semi-parametric PAR (Photosynthetically Active Radiation) partitioning model for the United States, version 1.0. Geosci. Model Dev. 2014, 7, 2477–2484. [Google Scholar] [CrossRef]
- Hu, B.; Wang, Y. Comparison of multi-empirical estimation models of photosynthetically active radiation under all sky conditions in Northeast China. Theor. Appl. Climatol. 2014, 116, 119–129. [Google Scholar] [CrossRef]
- Tsubo, M.; Walker, S. Relationships between diffuse and global solar radiation in southern Africa. S. Afr. J. Sci. 2003, 99, 360–362. [Google Scholar]
- Jacovides, C.; Boland, J.; Asimakopoulos, D.; Kaltsounides, N. Comparing diffuse radiation models with one predictor for partitioning incident PAR radiation into its diffuse component in the eastern Mediterranean basin. Renew. Energy 2010, 35, 1820–1827. [Google Scholar] [CrossRef]
- Ge, S.; Smith, R.G.; Jacovides, C.P.; Kramer, M.G.; Carruthers, R.I. Dynamics of photosynthetic photon flux density (PPFD) and estimates in coastal northern California. Theor. Appl. Climatol. 2011, 105, 107–118. [Google Scholar] [CrossRef]
- Mizoguchi, Y.; Yasuda, Y.; Ohtani, Y.; Watanabe, T.; Kominami, Y.; Yamanoi, K. A practical model to estimate photosynthetically active radiation using general meteorological elements in a temperate humid area and comparison among models. Theor. Appl. Climatol. 2014, 115, 583–589. [Google Scholar] [CrossRef]
- Foyo Moreno, I.; Alados-Arboledas, I.; Alados Arboledas, L. A new conventional regression model to estimate hourly photosynthetic photon flux density under all sky conditions. Int. J. Climatol. 2017, 37, 1067–1075. [Google Scholar] [CrossRef]
- Foyo-Moreno, I.; Alados, I.; Alados-Arboledas, L. A new empirical model to estimate hourly diffuse photosynthetic photon flux density. Atmos. Res. 2018, 203, 189–196. [Google Scholar] [CrossRef]
- Perez, R.; Ineichen, P.; Seals, R.; Michalsky, J.; Stewart, R. Modeling daylight availability and irradiance components from direct and global irradiance. Sol. Energy 1990, 44, 271–289. [Google Scholar] [CrossRef]
- Janjai, S.; Sripradit, A.; Wattan, R.; Buntoung, S.; Pattarapanitchai, S.; Masiri, I. Research Article A Simple Semi-Empirical Model for the Estimation of Photosynthetically Active Radiation from Satellite Data in the Tropics. Int. J. Photoenergy 2013, 2013, 857072. [Google Scholar] [CrossRef]
- Hu, B.; Wang, Y.; Liu, G. Measurements and estimations of photosynthetically active radiation in Beijing. Atmos. Res. 2007, 85, 361–371. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Zhoub, Y. Measuring and modelling photosynthetically active radiation in Tibet Plateau during April–October. Agric. For. Meteorol. 2000, 102, 207–212. [Google Scholar] [CrossRef]
- Tan, P.Y.; Ismail, M.R.B. Photosynthetically active radiation and comparison of methods for its estimation in equatorial Singapore. Theor. Appl. Climatol. 2016, 123, 873–883. [Google Scholar] [CrossRef]
- Bai, J. Observations and estimations of PAR and solar visible radiation in North China. J. Atmos. Chem. 2012, 69, 231–252. [Google Scholar] [CrossRef]
- Wang, L.; Gong, W.; Ma, Y.; Hu, B.; Zhang, M. Photosynthetically active radiation and its relationship with global solar radiation in Central China. Int. J. Biometeorol. 2014, 58, 1265–1277. [Google Scholar] [CrossRef]
- Hu, B.; Liu, H.; Wang, Y. Investigation of the variability of photosynthetically active radiation in the Tibetan Plateau, China. Renew. Sustain. Energy Rev. 2016, 55, 240–248. [Google Scholar] [CrossRef]
- Janjai, S.; Wattan, R.; Sripradit, A. Modeling the ratio of photosynthetically active radiation to broadband global solar radiation using ground and satellite-based data in the tropics. Adv. Space Res. 2015, 56, 2356–2364. [Google Scholar] [CrossRef]
- Niu, Z.; Wang, L.; Niu, Y.; Hu, B.; Zhang, M.; Qin, W. Spatiotemporal variations of photosynthetically active radiation and the influencing factors in China from 1961 to 2016. Theor. Appl. Climatol. 2019, 137, 2049–2067. [Google Scholar] [CrossRef]
- Stanhill, G.; Fuchs, M. The relative flux density of photosynthetically active radiation. J. Appl. Ecol. 1977, 14, 317–322. [Google Scholar] [CrossRef]
- Howell, T.; Meek, D.; Hatfield, J. Relationship of photosynthetically active radiation to shortwave radiation in the San Joaquin Valley. Agric. Meteorol. 1983, 28, 157–175. [Google Scholar] [CrossRef]
- Sun, Z.; Liang, H.; Liu, J.; Shi, G. Estimation of photosynthetically active radiation using solar radiation in the UV–visible spectral band. Sol. Energy 2017, 153, 611–622. [Google Scholar] [CrossRef]
- García-Rodríguez, A.; Granados-López, D.; García-Rodríguez, S.; Díez-Mediavilla, M.; Alonso-Tristán, C. Modelling Photosynthetic Active Radiation (PAR) through meteorological indices under all sky conditions. Agric. For. Meteorol. 2021, 310, 108627. [Google Scholar] [CrossRef]
- Vindel, J.M.; Valenzuela, R.X.; Navarro, A.A.; Zarzalejo, L.F.; Paz-Gallardo, A.; Souto, J.A.; Méndez-Gómez, R.; Cartelle, D.; Casares, J.J. Modeling photosynthetically active radiation from satellite-derived estimations over mainland Spain. Remote Sens. 2018, 10, 849. [Google Scholar] [CrossRef]
- Trisolino, P.; di Sarra, A.; Meloni, D.; Pace, G. Determination of global and diffuse photosynthetically active radiation from a multifilter shadowband radiometer. Appl. Opt. 2016, 55, 8280–8286. [Google Scholar] [CrossRef] [PubMed]
- Musleh, Y.J.; Rahman, T. Predictive models for photosynthetic active radiation irradiance in temperate climates. Renew. Sustain. Energy Rev. 2024, 200, 114599. [Google Scholar] [CrossRef]
- Hu, B.; Yu, Y.; Liu, Z.; Wang, Y. Analysis of photosynthetically active radiation and applied parameterization model for estimating of PAR in the North China Plain. J. Atmos. Chem. 2016, 73, 345–362. [Google Scholar] [CrossRef]
- Peng, S.; Du, Q.; Lin, A.; Hu, B.; Xiao, K.; Xi, Y. Observation and estimation of photosynthetically active radiation in Lhasa (Tibetan Plateau). Adv. Space Res. 2015, 55, 1604–1612. [Google Scholar] [CrossRef]
- Nwokolo, S.C.; Proutsos, N.; Meyer, E.L.; Ahia, C.C. Machine learning and physics-based hybridization models for evaluation of the effects of climate change and urban expansion on photosynthetically active radiation. Atmosphere 2023, 14, 687. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, L.; Gong, W.; Xiong, Y.; Hu, B. Observation and estimation of photosynthetic photon flux density in Southern China. Theor. Appl. Climatol. 2015, 120, 701–712. [Google Scholar] [CrossRef]
- Wang, L.; Gong, W.; Hu, B.; Zhu, Z. Analysis of photosynthetically active radiation in Northwest China from observation and estimation. Int. J. Biometeorol. 2015, 59, 193–204. [Google Scholar] [CrossRef]
- Hu, B.; Wang, Y. The climatological characteristics of photosynthetically active radiation in arid and semi-arid regions of China. J. Atmos. Chem. 2012, 69, 175–186. [Google Scholar] [CrossRef]
- Udo, S.; Aro, T. New empirical relationships for determining global PAR from measurements of global solar radiation, infrared radiation or sunshine duration. Int. J. Climatol. A J. R. Meteorol. Soc. 2000, 20, 1265–1274. [Google Scholar] [CrossRef]
- Nwokolo, S.; Ogbulezie, J.; Toge, C.; John-Jaja, S. Photosynthetically active radiation estimation and modeling over different climatic zones in Nigeria. J. Agric. Ecol. Res. Int. 2016. [Google Scholar]
- Nwokolo, S.C.; Amadi, S.O. A global review of empirical models for estimating photosynthetically active radiation. Trends Renew. Energy 2018, 4, 236–327. [Google Scholar] [CrossRef]
- Noriega-Gardea, M.M.A.; Corral-Martínez, L.F.; Anguiano-Morales, M.; Trujillo-Schiaffino, G.; Salas-Peimbert, D.P. Empirical model for the estimation of photosynthetically active radiation in the city of Chihuahua and its zone of influence. Theor. Appl. Climatol. 2023, 152, 1221–1229. [Google Scholar] [CrossRef]
- Proutsos, N.; Liakatas, A.; Alexandris, S. Ratio of photosynthetically active to total incoming radiation above a Mediterranean deciduous oak forest. Theor. Appl. Climatol. 2019, 137, 2927–2939. [Google Scholar] [CrossRef]
- Wang, L.; Kisi, O.; Zounemat-Kermani, M.; Hu, B.; Gong, W. Modeling and comparison of hourly photosynthetically active radiation in different ecosystems. Renew. Sustain. Energy Rev. 2016, 56, 436–453. [Google Scholar] [CrossRef]
- Ehteram, M.; Seifi, A.; Banadkooki, F.B. Application of Machine Learning Models in Agricultural and Meteorological Sciences; Springer Nature: London, UK, 2023. [Google Scholar]
- Lopez, G.; Rubio, M.; Martınez, M.; Batlles, F. Estimation of hourly global photosynthetically active radiation using artificial neural network models. Agric. For. Meteorol. 2001, 107, 279–291. [Google Scholar] [CrossRef]
- Jacovides, C.; Tymvios, F.; Boland, J.; Tsitouri, M. Artificial Neural Network models for estimating daily solar global UV, PAR and broadband radiant fluxes in an eastern Mediterranean site. Atmos. Res. 2015, 152, 138–145. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X. Hourly photosynthetically active radiation estimation in Midwestern United States from artificial neural networks and conventional regressions models. Int. J. Biometeorol. 2016, 60, 1247–1259. [Google Scholar] [CrossRef] [PubMed]
- Ferrera-Cobos, F.; Vindel, J.; Valenzuela, R.; González, J. Models for estimating daily photosynthetically active radiation in oceanic and mediterranean climates and their improvement by site adaptation techniques. Adv. Space Res. 2020, 65, 1894–1909. [Google Scholar] [CrossRef]
- Virani, V.; Kumar, N.; Mote, B. Integration of Remote Sensing and Meteorological Data for Rapid Sugarcane Yield Estimation Using Machine Learning. J. Indian Soc. Remote. Sens. 2024, 53, 1109–1124. [Google Scholar] [CrossRef]
- Nwokolo, S.C.; Ogbulezie, J.C.; Obiwulu, A.U. Impacts of climate change and meteo-solar parameters on photosynthetically active radiation prediction using hybrid machine learning with Physics-based models. Adv. Space Res. 2022, 70, 3614–3637. [Google Scholar] [CrossRef]
- Mercier, T.M.; Sabet, A.; Rahman, T. Vision transformer models to measure solar irradiance using sky images in temperate climates. Appl. Energy 2024, 362, 122967. [Google Scholar] [CrossRef]
- Parida, P.K.; Eagan, S.; Ramanujam, K.; Sengodan, R.; Uthandi, S.; Ettiyagounder, P.; Rajagounder, R. Machine learning approaches for estimation of the fraction of absorbed photosynthetically active radiation and net photosynthesis rate of maize using multi-spectral sensor. Heliyon 2024, 10, e34117. [Google Scholar] [CrossRef]
- Brown, M.G.; Skakun, S.; He, T.; Liang, S. Intercomparison of machine-learning methods for estimating surface shortwave and photosynthetically active radiation. Remote Sens. 2020, 12, 372. [Google Scholar] [CrossRef]
- Liang, J.; Yu, X.; Hong, W.; Cai, Y. Information extraction of UV-NIR spectral data in waste water based on Large Language Model. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 318, 124475. [Google Scholar] [CrossRef]
- Greener, J.G.; Kandathil, S.M.; Moffat, L.; Jones, D.T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 2022, 23, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.J.; Yang, M.; Ren, Z.J. Machine learning in environmental research: Common pitfalls and best practices. Environ. Sci. Technol. 2023, 57, 17671–17689. [Google Scholar] [CrossRef] [PubMed]
- Foloni-Neto, H.; Ciotti, Á.M. Predicting Underwater Photosynthetically Active Radiation (PAR) Using Random Forests in the São Sebastião Channel, Brazil. Ocean Sci. J. 2024, 59, 38. [Google Scholar] [CrossRef]
- Tang, W.; Qin, J.; Yang, K.; Jiang, Y.; Pan, W. Mapping long-term and high-resolution global gridded photosynthetically active radiation using the ISCCP H-series cloud product and reanalysis data. Earth Syst. Sci. Data 2022, 14, 2007–2019. [Google Scholar] [CrossRef]
- Frouin, R.; Pinker, R.T. Estimating photosynthetically active radiation (PAR) at the earth’s surface from satellite observations. Remote Sens. Environ. 1995, 51, 98–107. [Google Scholar] [CrossRef]
- Frouin, R.; Murakami, H. Estimating photosynthetically available radiation at the ocean surface from ADEOS-II global imager data. J. Oceanogr. 2007, 63, 493–503. [Google Scholar] [CrossRef]
- Su, W.; Charlock, T.P.; Rose, F.G.; Rutan, D. Photosynthetically active radiation from Clouds and the Earth’s Radiant Energy System (CERES) products. J. Geophys. Res. Biogeosci. 2007, 112, G02022. [Google Scholar] [CrossRef]
- Onyekwelu, I.; Sharda, V. A Bayesian Regression Approach for Estimating Photosynthetically Active Radiation Using Satellite Data: Implications for Soybean Yield Prediction using the CROPGRO Model. Earth Syst. Environ. 2024, 8, 1059–1076. [Google Scholar] [CrossRef]
- Liang, S.; Zheng, T.; Liu, R.; Fang, H.; Tsay, S.C.; Running, S. Estimation of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data. J. Geophys. Res. Atmos. 2006, 111, D15208. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, S.; Zhou, G.; Wu, H.; Zhao, X. Generating Global LAnd Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sens. Environ. 2014, 152, 318–332. [Google Scholar] [CrossRef]
- Li, L.; Xin, X.; Zhang, H.; Yu, J.; Liu, Q.; Yu, S.; Wen, J. A method for estimating hourly photosynthetically active radiation (PAR) in China by combining geostationary and polar-orbiting satellite data. Remote Sens. Environ. 2015, 165, 14–26. [Google Scholar] [CrossRef]
- Tao, X.; Liang, S.; Wang, D. Assessment of five global satellite products of fraction of absorbed photosynthetically active radiation: Intercomparison and direct validation against ground-based data. Remote Sens. Environ. 2015, 163, 270–285. [Google Scholar] [CrossRef]
- Gould, R.W.; Ko, D.S.; Ladner, S.D.; Lawson, T.A.; MacDonald, C.P. Comparison of satellite, model, and in situ values of photosynthetically available radiation (PAR). J. Atmos. Ocean. Technol. 2019, 36, 535–555. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Z.; Wang, J.; Gao, X.; Yang, C.; Yang, F.; Wu, G. Temporal upscaling of MODIS instantaneous FAPAR improves forest gross primary productivity (GPP) simulation. Int. J. Appl. Earth Obs. Geoinf. 2023, 121, 103360. [Google Scholar] [CrossRef]
- Li, R.; Wang, D.; Devadiga, S.; Sarkar, S.; Román, M.O. MCD18 V6. 2: A New Version of MODIS Downward Shortwave Radiation and Photosynthetically Active Radiation Products. IEEE Geosci. Remote Sens. Lett. 2024, 22, 1–5. [Google Scholar]
- Tang, W.; Qin, J.; Yang, K.; Niu, X.; Min, M.; Liang, S. An efficient algorithm for calculating photosynthetically active radiation with MODIS products. Remote Sens. Environ. 2017, 194, 146–154. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The global monitoring for environment and security (GMES) sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Harmel, T.; Chami, M. Estimation of daily photosynthetically active radiation (PAR) in presence of low to high aerosol loads: Application to OLCI-like satellite data. Opt. Express 2016, 24, A1390–A1407. [Google Scholar] [CrossRef]
- Pecci, M.; Colella, S.; Di Iorio, T.; Meloni, D.; Monteleone, F.; Pace, G.; Sferlazzo, D.M.; di Sarra, A.G. Validation of photosynthetically active radiation by OLCI on Sentinel-3 against ground-based measurements in the central Mediterranean and possible aerosol effects. Eur. J. Remote Sens. 2024, 57, 2307617. [Google Scholar] [CrossRef]
- Frouin, R.; Franz, B.; Wang, M. Algorithm to estimate PAR from SeaWiFS data Version 1.2-Documentation. NASA Tech Memo 2003, 206892, 46–50. [Google Scholar]
- Tan, J.; Frouin, R.; Jolivet, D.; Compiègne, M.; Ramon, D. Evaluation of the NASA OBPG MERIS ocean surface PAR product in clear sky conditions. Opt. Express 2020, 28, 33157–33175. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Bright, J.M. Worldwide validation of 8 satellite-derived and reanalysis solar radiation products: A preliminary evaluation and overall metrics for hourly data over 27 years. Sol. Energy 2020, 210, 3–19. [Google Scholar] [CrossRef]
- Thomas, C.; Wandji Nyamsi, W.; Arola, A.; Pfeifroth, U.; Trentmann, J.; Dorling, S.; Laguarda, A.; Fischer, M.; Aculinin, A. Smart Approaches for Evaluating Photosynthetically Active Radiation at Various Stations Based on MSG Prime Satellite Imagery. Atmosphere 2023, 14, 1259. [Google Scholar] [CrossRef]
- Singh, R.K.; Vader, A.; Mundy, C.J.; Søreide, J.E.; Iken, K.; Dunton, K.H.; Castro de la Guardia, L.; Sejr, M.K.; Bélanger, S. Satellite-derived photosynthetically available radiation at the coastal Arctic seafloor. Remote Sens. 2022, 14, 5180. [Google Scholar] [CrossRef]
- Liu, R.; Ren, H.; Liu, S.; Liu, Q.; Yan, B.; Gan, F. Generalized FPAR estimation methods from various satellite sensors and validation. Agric. For. Meteorol. 2018, 260, 55–72. [Google Scholar] [CrossRef]
- Li, Z.; Tang, H.; Zhang, B.; Yang, G.; Xin, X. Evaluation and intercomparison of MODIS and GEOV1 global leaf area index products over four sites in North China. Sensors 2015, 15, 6196–6216. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhan, X.; Xiao, Z.; Shi, H.; Jiang, J. Simultaneous estimation of LAI, PAR, FAPAR, and surface albedo at multiple spatial scales from top-of-atmosphere satellite observations with different spatial resolutions. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–21. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Wientjes, E.; Douwstra, P.; Trouwborst, G.; Van Ieperen, W.; Croce, R.; Harbinson, J. Photosynthetic quantum yield dynamics: From photosystems to leaves. Plant Cell 2012, 24, 1921–1935. [Google Scholar] [CrossRef]
- Liu, J.; Van Iersel, M.W. Photosynthetic physiology of blue, green, and red light: Light intensity effects and underlying mechanisms. Front. Plant Sci. 2021, 12, 619987. [Google Scholar] [CrossRef]
- Zhou, W.L.; Liu, W.K.; Yang, Q. Quality changes in hydroponic lettuce grown under pre-harvest short-duration continuous light of different intensities. J. Hortic. Sci. Biotechnol. 2012, 87, 429–434. [Google Scholar] [CrossRef]
- Wu, B.S.; Mansoori, M.; Schwalb, M.; Islam, S.; Naznin, M.T.; Addo, P.W.; MacPherson, S.; Orsat, V.; Lefsrud, M. Light emitting diode effect of red, blue, and amber light on photosynthesis and plant growth parameters. J. Photochem. Photobiol. B Biol. 2024, 256, 112939. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.T.; Zhang, Y.Q.; Yang, Q.C.; Tao, L. Overhead supplemental far-red light stimulates tomato growth under intra-canopy lighting with LEDs. J. Integr. Agric. 2019, 18, 62–69. [Google Scholar] [CrossRef]
- Zhen, S.; van Iersel, M.; Bugbee, B. Why far-red photons should be included in the definition of photosynthetic photons and the measurement of horticultural fixture efficacy. Front. Plant Sci. 2021, 12, 693445. [Google Scholar] [CrossRef]
- Wu, B.S.; Addo, P.W.; MacPherson, S.; Orsat, V.; Lefsrud, M. Updates to McCree’s photosynthetically active radiation curve—55 years later. J. Photochem. Photobiol. B Biol. 2025, 262, 113069. [Google Scholar] [CrossRef] [PubMed]
Parameter Type | Parameters | Parameter Significance | References |
---|---|---|---|
Atmospheric optical parameters | Aerosol optical depth (AOD) | Describes the ability of aerosols to absorb and scatter solar radiation | [54,67,68,69] |
Aerosol transmittance () | The extent to which radiation passing through the atmosphere is absorbed by aerosols present in the atmosphere | [70] | |
Albedo () | The portion of incident radiation that is reflected by the surface | [71] | |
Attenuation factor under clear skies () | The ratio of observed PAR under clear skies to extraterrestrial PAR | [72] | |
Clearness index () | The ratio of total solar radiation to extraterrestrial solar radiation | [57,73,74,75,76,77,78] | |
Clearness of the sky () and brightness of the skylight () | Characterization of sky conditions | [10,77,78,79] | |
Cloud index (n) | The attenuation of solar radiation by cloud cover | [80] | |
Solar radiation correction parameter | Correction to the Sun–Earth distance () | The ratio of the daily Earth–Sun distance to its annual mean value | [80] |
Extraterrestrial global solar irradiance () | Solar irradiance at the top of the atmosphere, also known as the “solar constant”, with a value of | [57] | |
Extraterrestrial photosynthetic photon flux density () | Extraterrestrial photon flux density per unit area for photosynthetically active radiation | [81] | |
Extraterrestrial PAR constant () | The value of at the top of the atmosphere, which is 45% of the solar irradiance at the top of the atmosphere () | [80] | |
Radiation measurement parameters | Diffuse irradiance () | The amount of radiation received per unit area at the surface that is scattered by molecules and particles in the atmosphere | [78] |
Diffuse PAR fraction () | The ratio of diffuse PAR solar radiation to global PAR solar radiation | [74] | |
PAR irradiance () | The incident energy per unit area in the 400–700 nm wavelength range per unit time | [82] | |
Photosynthetic photon flux density () | The number of incident photons in the 400–700 nm wavelength range per unit area per unit time | [82] | |
Photometric radiation illuminance (L) | Incident luminous flux per unit area on the surface | [83] | |
Visible irradiance () | Radiation in the 400–700 nm wavelength range | [84] | |
Atmospheric physical parameters | Dewpoint temperature () | The temperature at which water vapor in the air begins to condense, forming dew or fog | [10,75] |
Water vapor pressure (e) | Related to atmospheric water vapor content | [61,76] | |
Precipitable water (w) | The total amount of water vapor contained in a unit vertical column of the atmosphere | [85] | |
Relative humidity () | The amount of water vapor present in air, expressed as a percentage of the amount needed for saturation at the same temperature | [57,71] | |
Weather and geometric parameters | Solar elevation angle () | The angle between the horizon and the center of the Sun’s disc | [10] |
Solar zenith angle () | The angle between the zenith and the center of the Sun’s disc | [70,80,84] | |
Sunshine duration () | The total duration during which the direct solar irradiance exceeds () | [86] | |
Relative sunshine () | The ratio of measured to theoretical sunshine duration | [68] | |
Total ozone column () | The total amount of ozone in the column extending vertically from the Earth’s surface to the top of the atmosphere | [80,87] | |
Auxiliary radiation parameters | Optical air mass (m) | Measurement of the optical path length of light traveling from the Sun through the atmosphere to sea level relative to the optical path length of the same light source at the zenith | [76,80,88] |
PAR clearness index () | The ratio between incident Qp and extraterrestrial Qp | [57] | |
Scattering factor () | The ratio of diffuse irradiance to global irradiance, used as an indicator of the scattering effects of atmospheric components | [84] |
Model Formula | Location | References |
---|---|---|
Washington, DC, USA | [89] | |
University of California, USA | [90] | |
Nunn; West Lafayette; Starkville; Geneva; Logan (USA) | [70] | |
USA | [91] | |
(clear sky) (overcast) | Athalassa, Cyprus | [52] |
Granada, Spain | [77] | |
(clear sky) | Burgos, Spain | [92] |
(Partly cloudy) | Burgos, Spain | [92] |
(Overcast) | Burgos, Spain | [92] |
Spain | [93] | |
Lampedusa, Italy | [94] | |
Europe (Temperate Climate) | [95] | |
Lhasa, Tibet | [82] | |
Lhasa, Haibei, China | [86] | |
North China Plain | [96] | |
Tibetan Plateau, China | [86] | |
Lhasa, Tibetan Plateau, China | [97] | |
Lhasa, Haibei, China | [86] | |
China; India | [98] | |
China; India | [98] | |
China; India | [98] | |
China; India | [98] | |
Sanya, China | [99] | |
Fukang, China | [100] | |
Arid and semiarid region of China | [101] | |
Wudaoliang, Tibetan Plateau, China | [68] | |
National University of Singapore, Singapore | [83] | |
Four monitoring stations of Thailand | [87] | |
Ilorin, Nigeria | [102] | |
Ilorin, Nigeria | [102] | |
Abeokuta, Nigeria | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Cai, Y.; Pei, X.; Yu, X. Advances in Research and Application of Techniques for Measuring Photosynthetically Active Radiation. Remote Sens. 2025, 17, 1765. https://doi.org/10.3390/rs17101765
Liu J, Cai Y, Pei X, Yu X. Advances in Research and Application of Techniques for Measuring Photosynthetically Active Radiation. Remote Sensing. 2025; 17(10):1765. https://doi.org/10.3390/rs17101765
Chicago/Turabian StyleLiu, Jiahui, Yefan Cai, Xiangcan Pei, and Xiangyang Yu. 2025. "Advances in Research and Application of Techniques for Measuring Photosynthetically Active Radiation" Remote Sensing 17, no. 10: 1765. https://doi.org/10.3390/rs17101765
APA StyleLiu, J., Cai, Y., Pei, X., & Yu, X. (2025). Advances in Research and Application of Techniques for Measuring Photosynthetically Active Radiation. Remote Sensing, 17(10), 1765. https://doi.org/10.3390/rs17101765