Declining Snow Resources Since 2000 in Arid Northwest China Based on Integrated Remote Sensing Indicators
Abstract
1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Source
3.1.1. Snow Cover Area
3.1.2. Snow Phenology
3.1.3. Snow Depth
3.1.4. Snow Water Equivalent
3.1.5. Meteorological Data
3.1.6. Digital Elevation Model
3.2. Research Methods
3.2.1. Snow Indicators
- (a)
- Snow cover area
- (b)
- Snow phenology
- (c)
- SD and SWE
- (d)
- Snow mass
3.2.2. Trend Analysis
3.2.3. Consistency Evaluation
4. Results and Discussion
4.1. Variation in SCA
4.1.1. SCA in Arid Northwest China
4.1.2. Annual SCA in Each Subregion
4.2. Spatiotemporal Variations in SP
4.3. Spatiotemporal Variations in SD and SWE
4.4. Consistency Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bookhagen, B.; Burbank, D.W. Toward a Complete Himalayan Hydrological Budget: Spatiotemporal Distribution of Snowmelt and Rainfall and Their Impact on River Discharge. J. Geophys. Res. Earth Surf. 2010, 115, 2009JF001426. [Google Scholar] [CrossRef]
- Deng, G.; Tang, Z.; Hu, G.; Wang, J.; Sang, G.; Li, J. Spatiotemporal Dynamics of Snowline Altitude and Their Responses to Climate Change in the Tienshan Mountains, Central Asia, during 2001–2019. Sustainability 2021, 13, 3992. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, X.; Deng, G.; Wang, X.; Jiang, Z.; Sang, G. Spatiotemporal Variation of Snowline Altitude at the End of Melting Season across High Mountain Asia, Using MODIS Snow Cover Product. Adv. Space Res. 2020, 66, 2629–2645. [Google Scholar] [CrossRef]
- Tang, Z.; Deng, G.; Hu, G.; Zhang, H.; Pan, H.; Sang, G. Satellite Observed Spatiotemporal Variability of Snow Cover and Snow Phenology over High Mountain Asia from 2002 to 2021. J. Hydrol. 2022, 613, 128438. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, R.; Liu, G.; Liu, Z.; Wang, X. Trends and Variability in Snowmelt in China under Climate Change 2021. Hydrol. Earth Syst. Sci. 2021, 2021, 1–35. [Google Scholar]
- Deng, J.; Huang, X.; Feng, Q.; Ma, X.; Liang, T. Toward Improved Daily Cloud-Free Fractional Snow Cover Mapping with Multi-Source Remote Sensing Data in China. Remote Sens. 2015, 7, 6986–7006. [Google Scholar] [CrossRef]
- Deng, G.; Liu, X.; Shen, Q.; Zhang, T.; Chen, Q.; Tang, Z. Remote Sensing Data Assimilation to Improve the Seasonal Snow Cover Simulations Over the Heihe River Basin, Northwest China. Int. J. Climatol. 2024, 44, 5621–5640. [Google Scholar] [CrossRef]
- Brown, R.D.; Mote, P.W. The Response of Northern Hemisphere Snow Cover to a Changing Climate. J. Clim. 2009, 22, 2124–2145. [Google Scholar] [CrossRef]
- Fan, Y.; Yu, J.; Liu, W. Cross-Comparison of Snow Albedo Products Derived from Satellite (Sentinel-2 and Landsat 8) Optical Data. IOP Conf. Ser. Earth Environ. Sci. 2021, 658, 012048. [Google Scholar] [CrossRef]
- Bormann, K.J.; Brown, R.D.; Derksen, C.; Painter, T.H. Estimating Snow-Cover Trends from Space. Nat. Clim. Change 2018, 8, 924–928. [Google Scholar] [CrossRef]
- Kuraś, P.K.; Weiler, M.; Alila, Y. The Spatiotemporal Variability of Runoff Generation and Groundwater Dynamics in a Snow-Dominated Catchment. J. Hydrol. 2008, 352, 50–66. [Google Scholar] [CrossRef]
- Hancock, S.; Baxter, R.; Evans, J.; Huntley, B. Evaluating Global Snow Water Equivalent Products for Testing Land Surface Models. Remote Sens. Environ. 2013, 128, 107–117. [Google Scholar] [CrossRef]
- Wang, J.; Che, T.; Dai, L.Y.; Yue, S.N.; Zheng, Z.J. Spatio-Temporal Comparison of Snow Depth between Passive Microwave Remote Sensing Inversion Data and Meteorological Station Observation Data. Natl. Remote Sens. Bull. 2023, 27, 2060–2071. [Google Scholar] [CrossRef]
- Wang, J.; Hao, X.; He, D.; Wang, J.; Li, H.; Zhao, Q. Snow Discrimination Algorithm in the Northern Hemisphere Based on AVHRR Image. J. Glaciol. Geocryol. 2022, 44, 316–326. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhou, M.; Liu, C.; Huang, X. Retrieved Snow Depth over the Tibetan Plateau Using Random Forest Algorithm with AMSR2 Passive Microwave Data. J. Glaciol. Geocryol. 2020, 42, 1077–1086. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, L.; Pan, J.; Shi, J.; Wu, S.; Wang, J.; Pan, F. Comparison of Machine Learning-Based Snow Depth Estimates and Development of a New Operational Retrieval Algorithm over China. Remote Sens. 2022, 14, 2800. [Google Scholar] [CrossRef]
- Li, H.; Ke, C.-Q.; Zhu, Q.; Li, M.; Shen, X. A Deep Learning Approach to Retrieve Cold-Season Snow Depth over Arctic Sea Ice from AMSR2 Measurements. Remote Sens. Environ. 2022, 269, 112840. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Progress and Prospects of Climate Change Impacts on Hydrology in the Arid Region of Northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, M.; Wang, S.; Wang, J.; Yang, S.; Chen, R. Variation Characteristics of Snow Cover Days in Winter in Arid Region of Northwest China in Last 50 Years. J. Nat. Resour. 2018, 33, 127–138. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Qin, Q. Evolution and Driving Factors of Snow Phenology in the Chinese Tianshan Mountainous Region. Remote Sens. Technol. Appl. 2022, 37, 1350–1360. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Xiao, P.; Zhang, K.; Wu, S. Elevation-dependent Response of Snow Phenology to Climate Change from a Remote Sensing Perspective: A Case Survey in the Central Tianshan Mountains from 2000 to 2019. Int. J. Climatol. 2022, 42, 1706–1722. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Chen, P. Spatio-Temporal Variation of Snow Cover in Altai Mountains of Xinjiang in Recent 20 Years and Its Influencing Factors. Arid Zone Res. 2023, 40, 1040. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, R.; Liu, Z.; Zhang, W. Estimating Snow Water Equivalent Using Observed Snow Depth Data in China. J. Hydrol. Reg. Stud. 2024, 51, 101664. [Google Scholar] [CrossRef]
- McGrath, D.; Webb, R.; Shean, D.; Bonnell, R.; Marshall, H.-P.; Painter, T.H.; Molotch, N.P.; Elder, K.; Hiemstra, C.; Brucker, L. Spatially Extensive Ground-Penetrating Radar Snow Depth Observations During NASA’s 2017 SnowEx Campaign: Comparison With In Situ, Airborne, and Satellite Observations. Water Resour. Res. 2019, 55, 10026–10036. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Q.; Luo, Y.; Shen, Y.; Pan, X.; Li, L.; Li, Z. Ponder on the Issues of Water Resources in the Arid Region of Northwest China. Arid Land Geogr. 2012, 35, 1–9. [Google Scholar] [CrossRef]
- Shen, Y. National 1:250000 Three-Level River Basin Data Set. Natl. Cryosphere Desert Data Cent. 2019. [Google Scholar] [CrossRef]
- Deng, G.; Tang, Z.; Dong, C.; Shao, D.; Wang, X. Development and Evaluation of a Cloud-Gap-Filled MODIS Normalized Difference Snow Index Product over High Mountain Asia. Remote Sens. 2024, 16, 192. [Google Scholar] [CrossRef]
- Gafurov, A.; Bárdossy, A. Cloud Removal Methodology from MODIS Snow Cover Product. Hydrol. Earth Syst. Sci. 2009, 13, 1361–1373. [Google Scholar] [CrossRef]
- Zhao, Q.; Hao, X.; Wang, J.; Sun, X.; Li, H. A Dataset of Snow Cover Phenology in China Based on MODIS during 2000–2020. China Sci. Data 2022, 7. [Google Scholar] [CrossRef]
- Hu, Y.; Che, T.; Dai, L.; Xiao, L. Snow Depth Fusion Based on Machine Learning Methods for the Northern Hemisphere. Remote Sens. 2021, 13, 1250. [Google Scholar] [CrossRef]
- Wei, Q.; Zhong, X.; Zhao, W.; Zhang, T. Spatiotemporal Characteristics of Snow Water Resources in the Third Pole and the Arctic. J. Glaciol. Geocryol. 2023, 45, 665–675. [Google Scholar] [CrossRef]
- Takala, M.; Luojus, K.; Pulliainen, J.; Derksen, C.; Lemmetyinen, J.; Kärnä, J.-P.; Koskinen, J.; Bojkov, B. Estimating Northern Hemisphere Snow Water Equivalent for Climate Research through Assimilation of Space-Borne Radiometer Data and Ground-Based Measurements. Remote Sens. Environ. 2011, 115, 3517–3529. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Nicolas, J.; Peubey, C.; Radu, R.; Simmons, A.; Soci, C.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Qin, Y.; Ding, J.; Zhao, Q.; Liu, Y. Spatial-Temporal Variation of Snow Cover in the Tianshan Mountains from 2001 to 2015, and Its Relation to Temperature and Precipitation. J. Glaciol. Geocryol. 2018, 40, 249–260. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H. New Methods for Studying the Spatiotemporal Variation of Snow Cover Based on Combination Products of MODIS Terra and Aqua. J. Hydrol. 2009, 371, 192–200. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Kendall, M.G. A New Measure of Rank Correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Y.; Hajigul, S.; Ali, M.; Liu, Y.; Zhao, X.; Yang, X.; Huo, W.; Yang, F.; Zhou, C. Characteristics of Surface Radiation Budget in Gurbantunggut Desert. J. Desert Res. 2021, 41, 47. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Jiang, J.; Chen, J.; Song, C. Variation Pattern of Soil Water Content in Longitudinal Dune in the Southern Part of Gurbantêggêt Desert: How SnowMelt and Frozen Soil Change Affect the Soil Moisture. J. Glaciol. Geocryol. 2006, 28, 262–268. [Google Scholar] [CrossRef]
- Sun, H.; Chen, Y.; Li, W.; Li, F.; Chen, Y.; Hao, X.; Yang, Y. Variation and Abrupt Change of Climate in Ili River Basin, Xinjiang. J. Geogr. Sci. 2010, 20, 652–666. [Google Scholar] [CrossRef]
- Ma, N.; Yu, K.; Zhang, Y.; Zhai, J.; Zhang, Y.; Zhang, H. Ground Observed Climatology and Trend in Snow Cover Phenology across China with Consideration of Snow-Free Breaks. Clim. Dyn. 2020, 55, 2867–2887. [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Jin, R.; Armstrong, R.; Zhang, T. Snow Depth Derived from Passive Microwave Remote-Sensing Data in China. Ann. Glaciol. 2008, 49, 145–154. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Zhong, X.; Wang, S.; Xiao, X.; Ma, L.; Su, H.; Zhao, W.; Zhang, T. Changes of Snow Cover in the Third Pole and the Arctic. J. Glaciol. Geocryol. 2021, 43, 61–69. [Google Scholar] [CrossRef]
- Cao, X.; Zhu, C.; Chen, G.; Sun, S.; Zhao, H.; Zhu, W.; Zhou, B. Surface Greenness Change and Topographic Differentiation over Qaidam Basin from 2000 to 2021. Ecol. Environ. 2022, 31, 1080–1090. [Google Scholar] [CrossRef]
- Blau, M.T.; Kad, P.; Turton, J.V.; Ha, K.-J. Uneven Global Retreat of Persistent Mountain Snow Cover alongside Mountain Warming from ERA5-Land. Npj Clim. Atmos. Sci. 2024, 7, 278. [Google Scholar] [CrossRef]
- Mankin, J.S.; Diffenbaugh, N.S. Influence of Temperature and Precipitation Variability on Near-Term Snow Trends. Clim. Dyn. 2015, 45, 1099–1116. [Google Scholar] [CrossRef]
- Kraft, M.; McNamara, J.P.; Marshall, H.-P.; Glenn, N.F. Forest Impacts on Snow Accumulation and Melt in a Semi-Arid Mountain Environment. Front. Water 2022, 4, 1004123. [Google Scholar] [CrossRef]
- Roth, T.R.; Nolin, A.W. Forest Impacts on Snow Accumulation and Ablation across an Elevation Gradient in a Temperate Montane Environment. Hydrol. Earth Syst. Sci. 2017, 21, 5427–5442. [Google Scholar] [CrossRef]
- Musselman, K.N.; Clark, M.P.; Liu, C.; Ikeda, K.; Rasmussen, R. Slower Snowmelt in a Warmer World. Nat. Clim. Change 2017, 7, 214–219. [Google Scholar] [CrossRef]
- Gottlieb, A.R.; Mankin, J.S. Evidence of Human Influence on Northern Hemisphere Snow Loss. Nature 2024, 625, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Pulliainen, J.; Luojus, K.; Derksen, C.; Mudryk, L.; Lemmetyinen, J.; Salminen, M.; Ikonen, J.; Takala, M.; Cohen, J.; Smolander, T.; et al. Patterns and Trends of Northern Hemisphere Snow Mass from 1980 to 2018. Nature 2020, 581, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, N. Spatiotemporal Variability of Snow Cover and Snow Water Equivalent in the Last Three Decades over Eurasia. J. Hydrol. 2018, 559, 238–251. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, T.; Su, H.; Xiao, X.-X.; Wang, S.; Hu, Y.-T.; Wang, H.-J.; Zheng, L.; Zhang, W.; Xu, M.; et al. Impacts of Landscape and Climatic Factors on Snow Cover in the Altai Mountains, China. Adv. Clim. Change Res. 2021, 12, 95–107. [Google Scholar] [CrossRef]
- Chen, X.; Liang, S.; Cao, Y.; He, T.; Wang, D. Observed Contrast Changes in Snow Cover Phenology in Northern Middle and High Latitudes from 2001–2014. Sci. Rep. 2015, 5, 16820. [Google Scholar] [CrossRef]
- Sospedra-Alfonso, R.; Melton, J.R.; Merryfield, W.J. Effects of Temperature and Precipitation on Snowpack Variability in the Central Rocky Mountains as a Function of Elevation. Geophys. Res. Lett. 2015, 42, 4429–4438. [Google Scholar] [CrossRef]
- Dong, B.; Sutton, R.T.; Shaffrey, L.; Harvey, B. Recent Decadal Weakening of the Summer Eurasian Westerly Jet Attributable to Anthropogenic Aerosol Emissions. Nat. Commun. 2022, 13, 1148. [Google Scholar] [CrossRef]
- Henderson, G.R.; Peings, Y.; Furtado, J.C.; Kushner, P.J. Snow–Atmosphere Coupling in the Northern Hemisphere. Nat. Clim. Change 2018, 8, 954–963. [Google Scholar] [CrossRef]
- Musselman, K.N.; Molotch, N.P.; Margulis, S.A.; Kirchner, P.B.; Bales, R.C. Influence of Canopy Structure and Direct Beam Solar Irradiance on Snowmelt Rates in a Mixed Conifer Forest. Agric. For. Meteorol. 2012, 161, 46–56. [Google Scholar] [CrossRef]
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the World, Water Towers for Humanity: Typology, Mapping, and Global Significance. Water Resour. Res. 2007, 43, 2006WR005653. [Google Scholar] [CrossRef]
- Qin, D.; Liu, S.; Li, P. Snow Cover Distribution, Variability, and Response to Climate Change in Western China. J. Clim. 2006, 19, 1820–1833. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, R.; Liu, Z.; Zhao, Y.; Liu, Y.; Wu, W. Spatiotemporal Variability of Rain-on-Snow Events in the Arid Region of Northwest China. J. Arid Land 2024, 16, 483–499. [Google Scholar] [CrossRef]
Region | ATM | QDB | GTD | HIR | NKM | TRR | NTM | THB | IRB |
Elevation (m) | 1312 | 3600 | 730 | 1725 | 2879 | 2428 | 1274 | 1214 | 2058 |
β | p-Value | Trend Categories | Trend Characteristics |
---|---|---|---|
β > 0 | p ≤ 0.01 | 4 | Extremely significant increase |
0.01 < p ≤ 0.05 | 3 | Significant increase | |
0.05 < p ≤ 0.10 | 2 | Slightly significant increase | |
p > 0.10 | 1 | Not significantly increase | |
β = 0 | - | 0 | No change |
β < 0 | p > 0.10 | −1 | Not significantly reduction |
0.05 < p ≤ 0.10 | −2 | Slightly significant reduction | |
0.01 < p ≤ 0.05 | −3 | Significantly reduction | |
p ≤ 0.01 | −4 | Extremely significant reduction |
Spearman Rank Correlation Coefficient | p Value | |
---|---|---|
SCA and SWE | 0.8455 | 0.001 ** |
SCA and SD | 0.9639 | 1 × 10−6 ** |
SCD and SWE | 0.8459 | 0.001 ** |
SCD and SD | 0.9634 | 1 × 10−6 ** |
SWE and SD | 0.8636 | 0.0006 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, S.; Zhang, W.; Chen, A.; Jiang, L.; Wu, X.; Huo, Y. Declining Snow Resources Since 2000 in Arid Northwest China Based on Integrated Remote Sensing Indicators. Remote Sens. 2025, 17, 1697. https://doi.org/10.3390/rs17101697
Bai S, Zhang W, Chen A, Jiang L, Wu X, Huo Y. Declining Snow Resources Since 2000 in Arid Northwest China Based on Integrated Remote Sensing Indicators. Remote Sensing. 2025; 17(10):1697. https://doi.org/10.3390/rs17101697
Chicago/Turabian StyleBai, Siyu, Wei Zhang, An’an Chen, Luyuan Jiang, Xuejiao Wu, and Yixue Huo. 2025. "Declining Snow Resources Since 2000 in Arid Northwest China Based on Integrated Remote Sensing Indicators" Remote Sensing 17, no. 10: 1697. https://doi.org/10.3390/rs17101697
APA StyleBai, S., Zhang, W., Chen, A., Jiang, L., Wu, X., & Huo, Y. (2025). Declining Snow Resources Since 2000 in Arid Northwest China Based on Integrated Remote Sensing Indicators. Remote Sensing, 17(10), 1697. https://doi.org/10.3390/rs17101697