Evaluating Arctic Thin Ice Thickness Retrieved from Latest Version of Multisource Satellite Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Product Data
2.1.1. SMOS
2.1.2. CryoSat-2
2.1.3. CS2SMOS
2.1.4. ICESat-2
2.2. Evaluation Data
2.2.1. Operation IceBridge (OIB)
2.2.2. Canadian Arctic Archipelago Station (CAA Station)
2.2.3. ULS Measurements in the Barents Sea (ULS_BS)
2.2.4. ULS Measurements in Fram Strait (ULS_FS)
2.3. Intercomparison Methods of Satellite Products
2.4. Evaluation Methods of Satellite Products
3. Results
3.1. Intercomparisons of Multisource Satellite Data
3.1.1. SMOS, CryoSat-2, and CS2SMOS over 2010–2023
3.1.2. SMOS, CryoSat-2, CS2SMOS, and ICESat-2 over 2018–2023
3.2. Evaluations of Multisource Satellite Data
3.2.1. SMOS, CryoSat-2, and CS2SMOS over 2010–2023
3.2.2. SMOS, CryoSat-2, CS2SMOS, and ICESat-2 over 2018–2023
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serreze, M.C.; Barrett, A.P.; Slater, A.G.; Woodgate, R.A.; Aagaard, K.; Lammers, R.B.; Steele, M.; Moritz, R.; Meredith, M.; Lee, C.M. The large-scale freshwater cycle of the Arctic. J. Geophys. Res. Ocean. 2006, 111, C11010. [Google Scholar] [CrossRef]
- Coachman, L.K.; Aagaard, K. Transports through Bering Strait: Annual and interannual variability. J. Geophys. Res. Ocean. 1988, 93, 15535–15539. [Google Scholar] [CrossRef]
- Fahrbach, E.; Meincke, J.; Østerhus, S.; Rohardt, G.; Schauer, U.; Tverberg, V.; Verduin, J. Direct measurements of volume transports through Fram Strait. Polar Res. 2001, 20, 217–224. [Google Scholar] [CrossRef]
- Rothrock, D.A.; Percival, D.B.; Wensnahan, M. The decline in arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data. J. Geophys. Res. Ocean. 2008, 113, C05003. [Google Scholar] [CrossRef]
- Lindsay, R.; Schweiger, A. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere 2015, 9, 269–283. [Google Scholar] [CrossRef]
- Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett. 2018, 13, 105005. [Google Scholar] [CrossRef]
- Kacimi, S.; Kwok, R. Arctic snow depth, ice thickness, and volume from ICESat-2 and CryoSat-2: 2018–2021. Geophys. Res. Lett. 2022, 49, e2021GL097448. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Y.; Chen, C.; Song, S.; Chen, Y. Impacts of Arctic Sea Fog on the Change of Route Planning and Navigational Efficiency in the Northeast Passage during the First Two Decades of the 21st Century. J. Mar. Sci. Eng. 2023, 11, 2149. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Zha, Y.; Wang, K.; Chen, C. Changing arctic northern sea route and transpolar sea route: A prediction of route changes and navigation potential before Mid-21st century. J. Mar. Sci. Eng. 2023, 11, 2340. [Google Scholar] [CrossRef]
- Haas, C.; Gerland, S.; Eicken, H.; Miller, H. Comparison of sea-ice thickness measurements under summer and winter conditions in the Arctic using a small electromagnetic induction device. Geophysics 1997, 62, 749–757. [Google Scholar] [CrossRef]
- Rothrock, D.A.; Wensnahan, M. The accuracy of sea ice drafts measured from US Navy submarines. J. Atmos. Ocean. Technol. 2007, 24, 1936–1949. [Google Scholar] [CrossRef]
- Richter-Menge, J.A.; Perovich, D.K.; Elder, B.C.; Claffey, K.; Rigor, I.; Ortmeyer, M. Ice mass-balance buoys: A tool for measuring and attributing changes in the thickness of the Arctic sea-ice cover. Ann. Glaciol. 2006, 44, 205–210. [Google Scholar] [CrossRef]
- Kurtz, N.T.; Farrell, S.L.; Studinger, M.; Galin, N.; Harbeck, J.P.; Lindsay, R.; Onana, V.D.; Panzer, B.; Sonntag, J.G. Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data. Cryosphere 2013, 7, 1035–1056. [Google Scholar] [CrossRef]
- Pfaffling, A.; Haas, C.; Reid, J.E. Direct helicopter EM—Sea-ice thickness inversion assessed with synthetic and field data. Geophysics 2007, 72, F127–F137. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Zwally, H.J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn. 2002, 34, 405–445. [Google Scholar] [CrossRef]
- Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Kwok, R.; Schweiger, A.; Zhang, J.; Haas, C. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett. 2013, 40, 732–737. [Google Scholar] [CrossRef]
- Mecklenburg, S.; Drusch, M.; Kerr, Y.H.; Font, J.; Martin-Neira, M.; Delwart, S.; Buenadicha, G.; Reul, N.; Daganzo-Eusebio, E.; Oliva, R. ESA’s soil moisture and ocean salinity mission: Mission performance and operations. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1354–1366. [Google Scholar] [CrossRef]
- Ricker, R.; Hendricks, S.; Kaleschke, L.; Tian-Kunze, X.; King, J.; Haas, C. A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere 2017, 11, 1607–1623. [Google Scholar] [CrossRef]
- Li, M.; Ke, C.Q.; Xie, H.; Miao, X.; Shen, X.; Xia, W. Arctic sea ice thickness retrievals from CryoSat-2: Seasonal and interannual comparisons of three different products. Int. J. Remote Sens. 2020, 41, 152–170. [Google Scholar] [CrossRef]
- Petty, A.A.; Kurtz, N.T.; Kwok, R.; Markus, T.; Neumann, T.A. Winter Arctic sea ice thickness from ICESat-2 freeboards. J. Geophys. Res. Ocean. 2020, 125, e2019JC015764. [Google Scholar] [CrossRef]
- Sallila, H.; Farrell, S.L.; McCurry, J.; Rinne, E. Assessment of contemporary satellite sea ice thickness products for Arctic sea ice. Cryosphere 2019, 13, 1187–1213. [Google Scholar] [CrossRef]
- Soriot, C.; Prigent, C.; Jimenez, C.; Frappart, F. Arctic sea ice thickness estimation from passive microwave satellite observations between 1.4 and 36 GHz. Earth Space Sci. 2023, 10, e2022EA002542. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Chen, C.; Li, L.; Xu, D.; Beardsley, R.C.; Shao, W. Assessment of radar freeboard, radar penetration rate, and snow depth for potential improvements in Arctic sea ice thickness retrieved from CryoSat-2. Cold Reg. Sci. Technol. 2025, 231, 104408. [Google Scholar] [CrossRef]
- Tian-Kunze, X.; Kaleschke, L.; Maaß, N.; Mäkynen, M.; Serra, N.; Drusch, M.; Krumpen, T. SMOS-derived thin sea ice thickness: Algorithm baseline, product specifications and initial verification. Cryosphere 2014, 8, 997–1018. [Google Scholar] [CrossRef]
- Tietsche, S.; Alonso-Balmaseda, M.; Rosnay, P.; Zuo, H.; Tian-Kunze, X.; Kaleschke, L. Thin Arctic sea ice in L-band observations and an ocean reanalysis. Cryosphere 2018, 12, 2051–2072. [Google Scholar] [CrossRef]
- Chen, F.; Wang, D.; Zhang, Y.; Zhou, Y.; Chen, C. Intercomparisons and evaluations of satellite-derived arctic sea ice thickness products. Remote Sens. 2024, 16, 508. [Google Scholar] [CrossRef]
- Kaleschke, L.; Tian-Kunze, X.; Maaß, N.; Mäkynen, M.; Drusch, M. Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period. Geophys. Res. Lett. 2012, 39, L05501. [Google Scholar] [CrossRef]
- Ricker, R.; Hendricks, S.; Helm, V.; Skourup, H.; Davidson, M. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation. Cryosphere 2014, 8, 1607–1622. [Google Scholar] [CrossRef]
- Warren, S.G.; Rigor, I.G.; Untersteiner, N.; Radionov, V.F.; Bryazgin, N.N.; Aleksandrov, Y.I.; Colony, R. Snow depth on Arctic sea ice. J. Clim. 1999, 12, 1814–1829. [Google Scholar] [CrossRef]
- Petty, A.A.; Kurtz, N.T.; Kwok, R.; Markus, T.; Neumann, T.A.; Keeney, N. ICESat-2 L4 Monthly Gridded Sea Ice Thickness, Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2023. [Google Scholar] [CrossRef]
- Petty, A.A.; Webster, M.; Boisvert, L.; Markus, T. The NASA Eulerian Snow on Sea Ice Model (NESOSIM) v1. 0: Initial model development and analysis. Geosci. Model Dev. 2018, 11, 4577–4602. [Google Scholar] [CrossRef]
- Kurtz, N.; Studinger, M.; Harbeck, J.; Onana, V.; Yi, D. IceBridge L4 Sea Ice Freeboard, Snow Depth, and Thickness, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2015. [Google Scholar] [CrossRef]
- Kurtz, N.; Studinger, M.; Harbeck, J.; Onana, V.; Yi, D. IceBridge Sea Ice Freeboard, Snow Depth, and Thickness Quick Look, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2016. [Google Scholar] [CrossRef]
- Hansen, E.; Ervik, Å.; Eik, K.; Olsson, A.; Teigen, S.H. Long-term observations (2014–2020) of level ice draft, keel depth and ridge frequency in the Barents Sea. Cold Reg. Sci. Technol. 2023, 216, 103988. [Google Scholar] [CrossRef]
- Fissel, D.B.; Marko, J.R.; Melling, H. Advances in upward looking sonar technology for studying the processes of change in Arctic Ocean ice climate. J. Oper. Oceanogr. 2008, 1, 9–18. [Google Scholar] [CrossRef]
- Melling, H.; Johnston, P.H.; Riedel, D.A. Measurements of the underside topography of sea ice by moored subsea sonar. J. Atmos. Ocean. Technol. 1995, 12, 589–602. [Google Scholar] [CrossRef]
- Fukamachi, Y.; Simizu, D.; Ohshima, K.I.; Eicken, H.; Mahoney, A.R.; Iwamoto, K.; Moriya, E.; Nihashi, S. Sea-ice thickness in the coastal northeastern Chukchi Sea from moored ice-profiling sonar. J. Glaciol. 2017, 63, 888–898. [Google Scholar] [CrossRef]
- Sumata, H.; Divine, D.; de Steur, L. Monthly Mean Sea Ice Draft from the Fram Strait Arctic Outflow Observatory Since 1990; Norwegian Polar Institute: Tromsø, Norway, 2021. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.F. Variability of Arctic sea ice thickness and volume from CryoSat-2. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140157. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Chen, D.; Chen, X.; Zhou, Q.; Peng, Y.; Li, J.; Sang, Y. CCHZ-DISO: A timely new assessment system for data quality or model performance from Da Dao Zhi Jian. Geophys. Res. Lett. 2022, 49, e2022GL100681. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, G.; Li, H.; Chen, C.; Shao, W.; Zhou, Y.; Wang, D. A Spatiotemporal Comparison and Assessment of Multisource Satellite Derived Sea Ice Thickness in the Arctic Thinner Ice Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 8710–8723. [Google Scholar] [CrossRef]
- Bourke, R.H.; Paquette, R.G. Estimating the thickness of sea ice. J. Geophys. Res. Ocean. 1989, 94, 919–923. [Google Scholar] [CrossRef]
- Merkouriadi, I.; Liston, G. Quantifying Pan-Arctic Snow Depth and Density Trends Caused by Snow-Ice Formation; Finnish Meteorological Institute: Helsinki, Finland, 2023. [Google Scholar] [CrossRef]
- Xie, Y.; Yan, Q. Stand-alone retrieval of sea ice thickness from FY-3E GNOS-R data. IEEE Geosci. Remote Sens. Lett. 2024, 21, 2000305. [Google Scholar] [CrossRef]
- Xie, Y.; Yan, Q. Retrieval of sea ice thickness using FY-3E/GNOS-II data. Satell. Navig. 2024, 5, 17. [Google Scholar] [CrossRef]
2010−2023 | 2018−2023 | ||||||
---|---|---|---|---|---|---|---|
SMOS | CryoSat-2 | CS2SMOS | SMOS | CryoSat-2 | CS2SMOS | ICESat-2 | |
OIB L4 | 1.6385 | 1.3786 | 1.2145 | / | / | / | / |
OIB Quick Look | 1.6573 | 1.1939 | 1.0958 | / | / | / | / |
CAA station | 1.6478 | 1.1613 | 1.6489 | 1.6515 | 1.1906 | 1.6073 | 1.5605 |
ULS_BS | 1.4810 | 1.3991 | 1.3901 | 1.4947 | 1.4183 | 1.4450 | 1.2041 |
ULS_FS | 1.4976 | 1.1232 | 0.8227 | / | / | / | / |
Overall performance | 1.6660 | 1.2607 | 1.2052 | 1.5127 | 1.3983 | 1.4813 | 1.3228 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Lian, J.; Zhang, Y.; Guo, H.; Chen, C.; Shao, W.; Zhou, Y.; Wang, D.; Hu, S. Evaluating Arctic Thin Ice Thickness Retrieved from Latest Version of Multisource Satellite Products. Remote Sens. 2025, 17, 1680. https://doi.org/10.3390/rs17101680
Li H, Lian J, Zhang Y, Guo H, Chen C, Shao W, Zhou Y, Wang D, Hu S. Evaluating Arctic Thin Ice Thickness Retrieved from Latest Version of Multisource Satellite Products. Remote Sensing. 2025; 17(10):1680. https://doi.org/10.3390/rs17101680
Chicago/Turabian StyleLi, Huan, Jiarui Lian, Yu Zhang, Hailong Guo, Changsheng Chen, Weizeng Shao, Yi Zhou, Deshuai Wang, and Song Hu. 2025. "Evaluating Arctic Thin Ice Thickness Retrieved from Latest Version of Multisource Satellite Products" Remote Sensing 17, no. 10: 1680. https://doi.org/10.3390/rs17101680
APA StyleLi, H., Lian, J., Zhang, Y., Guo, H., Chen, C., Shao, W., Zhou, Y., Wang, D., & Hu, S. (2025). Evaluating Arctic Thin Ice Thickness Retrieved from Latest Version of Multisource Satellite Products. Remote Sensing, 17(10), 1680. https://doi.org/10.3390/rs17101680