Temporal Variations in Land Surface Temperature within an Urban Ecosystem: A Comprehensive Assessment of Land Use and Land Cover Change in Kharkiv, Ukraine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Retrieval of Land Surface Temperature Using the Radiative Transfer Equation
2.3.2. Land Use/Land Cover Classification and Change Detection
2.3.3. Trend Analysis Methods and Statistical Distribution
2.3.4. Statistical Distribution of Urban Heat Island and Surface Urban Heat Island Value
3. Results
3.1. Establishing a Global Trend of Increasing Air Temperature and Land Surface Temperature
3.1.1. Analysis of Air Temperature
3.1.2. Analysis of Land Surface Temperature Based on Landsat
3.1.3. Analysis of Land Surface Temperature Based on MODIS
3.1.4. Comparison of Air Temperature and Land Surface Temperature by Landsat and MODIS
3.2. Land Use/Land Cover Transformation
3.3. Determining Land Surface Temperature Threshold Values for Different Land cover Classes Based on Temporal and Seasonal Variability
3.4. Land Use/Land cover Transformation Impacts on Surface Urban Heat Island Dynamics
4. Discussion
4.1. Climatic Dynamics of the Region
4.2. Land Surface Temperature Acquisition and Analysis Using Landsat and MODIS in Comparison with Air Temperature
4.3. Land Cover Classification
4.4. Seasonal and Annual Fluctuations in Land Surface Temperature across Different Land Cover Types and the Determination of Threshold Values
4.5. Expanding the Surface Urban Heat Island Effect
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Aeronautics and Space Administration Goddard Institute for Space Studies. Available online: https://data.giss.nasa.gov/gistemp/ (accessed on 15 January 2024).
- NOAA National Centers for Environmental Information, Monthly Global Climate Report for Annual 2023. 2024. Available online: https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202313/ (accessed on 14 February 2024).
- World Health Organization, Climate Change. Available online: https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health (accessed on 14 February 2024).
- Global Climate Change: Vital Signs of the Planet. Available online: https://climate.nasa.gov/ (accessed on 15 January 2024).
- Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Climate Change 2022 Mitigation of Climate Change. 2022. Available online: https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SPM.pdf (accessed on 14 February 2024).
- Climate Change: Evidence & Causes 2020, an overview from the Royal Society and the US National Academy of Sciences. Available online: https://royalsociety.org/-/media/Royal_Society_Content/policy/projects/climate-evidence-causes/climate-change-evidence-causes.pdf (accessed on 14 February 2024).
- Alavipanah, S.; Wegmann, M.; Qureshi, S.; Weng, Q.; Koellner, T. The Role of Vegetation in Mitigating Urban Land Surface Temperatures: A Case Study of Munich, Germany during the Warm Season. Sustainability 2015, 7, 4689–4706. [Google Scholar] [CrossRef]
- Amiri, R.; Weng, Q.; Alimohammadi, A.; Alavipanah, S.K. Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens. Environ. 2009, 113, 2606–2617. [Google Scholar] [CrossRef]
- Farid, N.; Moazzam, M.F.; Ahmad, S.R.; Coluzzi, R.; Lanfredi, M. Monitoring the Impact of Rapid Urbanization on Land Surface Temperature and Assessment of Surface Urban Heat Island Using Landsat in Megacity (Lahore) of Pakistan. Front. Remote Sens. 2022, 3, 897397. [Google Scholar] [CrossRef]
- Barbieri, T.; Despini, F.; Teggi, S. A Multi-Temporal Analyses of Land Surface Temperature Using Landsat-8 Data and OpenSource Software: The Case Study of Modena, Italy. Sustainability 2018, 10, 1678. [Google Scholar] [CrossRef]
- Wicki, A.; Parlow, E. Multiple Regression Analysis for Unmixing of Surface Temperature Data in an Urban Environment. Remote Sens. 2017, 9, 684. [Google Scholar] [CrossRef]
- Burnett, M.; Chen, D. The Impact of Seasonality and Land Cover on the Consistency of Relationship between Air Temperature and LST Derived from Landsat 7 and MODIS at a Local Scale: A Case Study in Southern Ontario. Land 2021, 10, 672. [Google Scholar] [CrossRef]
- Chao, Z.; Wang, L.; Che, M.; Hou, S. Effects of Different Urbanization Levels on Land Surface Temperature Change: Taking Tokyo and Shanghai for Example. Remote Sens. 2020, 12, 2022. [Google Scholar] [CrossRef]
- Ji, T.; Yao, Y.; Dou, Y.; Deng, S.; Yu, S.; Zhu, Y.; Liao, H. The Impact of Climate Change on Urban Transportation Resilience to Compound Extreme Events. Sustainability 2022, 14, 3880. [Google Scholar] [CrossRef]
- Li, Z.; Wu, H.; Duan, S.; Zhao, W.; Ren, H.; Liu, X.; Leng, P.; Tang, R.; Ye, X.; Zhu, J.; et al. Satellite remote sensing of global land surface temperature: Definition, methods, products, and applications. Rev. Geophys. 2023, 61, e2022RG000777. [Google Scholar] [CrossRef]
- Reiners, P.; Sobrino, J.; Kuenzer, C. Satellite-Derived Land Surface Temperature Dynamics in the Context of Global Change—A Review. Remote Sens. 2023, 15, 1857. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Yang, J.; Wu, Z.; Zhu, H. Remote sensing of urban thermal environments within local climate zones: A case study of two high-density subtropical Chinese cities. Urban Clim. 2020, 31, 100568. [Google Scholar] [CrossRef]
- Das, S.; Angadi, D.P. Land use-land cover (LULC) transformation and its relation with land surface temperature changes: A case study of Barrackpore Subdivision, West Bengal, India. Remote Sens. Appl. Soc. Environ. 2020, 19, 100322. [Google Scholar] [CrossRef]
- Jamei, Y.; Seyedmahmoudian, M.; Jamei, E.; Horan, B.; Mekhilef, S.; Stojcevski, A. Investigating the Relationship between Land Use/Land Cover Change and Land Surface Temperature Using Google Earth Engine; Case Study: Melbourne, Australia. Sustainability 2022, 14, 14868. [Google Scholar] [CrossRef]
- Choudhury, U.; Singh, S.K.; Kumar, A.; Meraj, G.; Kumar, P.; Kanga, S. Assessing Land Use/Land Cover Changes and Urban Heat Island Intensification: A Case Study of Kamrup Metropolitan District, Northeast India (2000–2032). Earth 2023, 4, 503–521. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Xu, X.; Pei, H.; Wang, C.; Xu, Q.; Xie, H.; Jin, Y.; Feng, Y.; Tong, X.; Xiao, C. Long-term analysis of the urban heat island effect using multisource Landsat images considering inter-class differences in land surface temperature products. Sci. Total Environ. 2023, 858, 159777. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Song, P.; Wang, K.; Li, A.; Hu, Y.; Zhang, K.; Jia, X.; Feng, Y.; Wu, M.; Qu, K.; et al. Investigating the Trends and Drivers between Urbanization and the Land Surface Temperature: A Case Study of Zhengzhou, China. Sustainability 2022, 14, 13845. [Google Scholar] [CrossRef]
- Husain, M.A.; Kumar, P.; Gonencgil, B. Assessment of Spatio-Temporal Land Use/Cover Change and Its Effect on Land Surface Temperature in Lahaul and Spiti, India. Land 2023, 12, 1294. [Google Scholar] [CrossRef]
- Edan, M.H.; Maarouf, R.M.; Hasson, J. Predicting the impacts of land use/land cover change on land surface temperature using remote sensing approach in Al Kut, Iraq. Phys. Chem. Earth Parts A/B/C 2021, 123, 103012. [Google Scholar] [CrossRef]
- Hellings, A.; Rienow, A. Mapping Land Surface Temperature Developments in Functional Urban Areas across Europe. Remote Sens. 2021, 13, 2111. [Google Scholar] [CrossRef]
- Li, S.; Qin, Z.; Zhao, S.; Gao, M.; Li, S.; Liao, Q.; Du, W. Spatiotemporal Variation of Land Surface Temperature in Henan Province of China from 2003 to 2021. Land 2022, 11, 1104. [Google Scholar] [CrossRef]
- Rousta, I.; Sarif, M.O.; Gupta, R.D.; Olafsson, H.; Ranagalage, M.; Murayama, Y.; Zhang, H.; Mushore, T.D. Spatiotemporal Analysis of Land Use/Land Cover and Its Effects on Surface Urban Heat Island Using Landsat Data: A Case Study of Metropolitan City Tehran (1988–2018). Sustainability 2018, 10, 4433. [Google Scholar] [CrossRef]
- Ramzan, M.; Saqib, Z.A.; Hussain, E.; Khan, J.A.; Nazir, A.; Dasti, M.Y.S.; Ali, S.; Niazi, N.K. Remote Sensing-Based Prediction of Temporal Changes in Land Surface Temperature and Land Use-Land Cover (LULC) in Urban Environments. Land 2022, 11, 1610. [Google Scholar] [CrossRef]
- Tan, J.; Yu, D.; Li, Q.; Tan, X.; Zhou, W. Spatial relationship between land-use/land-cover change and land surface temperature in the Dongting Lake area, China. Sci. Rep. 2020, 10, 9245. [Google Scholar] [CrossRef]
- Liu, P.; Liu, C.; Li, Q. Effects of landscape pattern on land surface temperature in Nanchang, China. Sci. Rep. 2024, 14, 3832. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Li, Z.; Wu, F.; Ma, H.; Xu, Z.; Jiang, W.; Wang, S.; Yang, J. Spatiotemporal Evolution of the Urban Thermal Environment Effect and Its Influencing Factors: A Case Study of Beijing, China. ISPRS Int. J. Geo-Inf. 2022, 11, 278. [Google Scholar] [CrossRef]
- Song, Z.; Yang, H.; Huang, X.; Yu, W.; Huang, J.; Ma, M. The spatiotemporal pattern and influencing factors of land surface temperature change in China from 2003 to 2019. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102537. [Google Scholar] [CrossRef]
- García, D.H.; Riza, M.; Díaz, J.A. Land Surface Temperature Relationship with the Land Use/Land Cover Indices Leading to Thermal Field Variation in the Turkish Republic of Northern Cyprus. Earth Syst Environ. 2023, 7, 561–580. [Google Scholar] [CrossRef]
- Gogoi, P.P.; Vinoj, V.; Swain, D.; Roberts, G.; Dash, G.; Tripathy, S. Land use and land cover change effect on surface temperature over Eastern India. Sci. Rep. 2019, 9, 8859. [Google Scholar] [CrossRef]
- Duan, S.B.; Li, Z.L.; Li, H.; Göttsche, F.M.; Wu, H.; Zhao, W.; Leng, P.; Zhang, X.; Coll, C. Validation of Collection 6 MODIS Land Surface Temperature Product Using in Situ Measurements. Remote Sens. Environ. 2019, 225, 16–29. [Google Scholar] [CrossRef]
- How Jin Aik, D.; Ismail, M.H.; Muharam, F.M. Land Use/Land Cover Changes and the Relationship with Land Surface Temperature Using Landsat and MODIS Imageries in Cameron Highlands, Malaysia. Land 2020, 9, 372. [Google Scholar] [CrossRef]
- Liu, J.; Hagan, D.F.T.; Liu, Y. Global Land Surface Temperature Change (2003–2017) and Its Relationship with Climate Drivers: AIRS, MODIS, and ERA5-Land Based Analysis. Remote Sens. 2021, 13, 44. [Google Scholar] [CrossRef]
- Mao, K.; Qin, Z.; Shi, J.; Gong, P. A practical split-window algorithm for retrieving land-surface temperature from MODIS data. Int. J. Remote Sens. 2005, 26, 3181–3204. [Google Scholar] [CrossRef]
- Sobrino, J.A.; García-Monteiro, S.; Julien, Y. Surface Temperature of the Planet Earth from Satellite Data over the Period 2003–2019. Remote Sens. 2020, 12, 2036. [Google Scholar] [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1 km SIN Grid V061; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [Google Scholar] [CrossRef]
- Tariq, A.; Mumtaz, F.; Zeng, X.; Yousuf, M.; Baloch, J.; Farhan, M.; Moazzam, U. Spatio-temporal variation of seasonal heat islands mapping of Pakistan during 2000–2019, using day-time and night-time land surface temperatures MODIS and meteorological stations data. Remote Sens. Appl. Soc. Environ. 2022, 27, 100779. [Google Scholar] [CrossRef]
- Yang, H.; Xi, C.; Zhao, X.; Mao, P.; Wang, Z.; Shi, Y.; He, T.; Li, Z. Measuring the Urban Land Surface Temperature Variations Under Zhengzhou City Expansion Using Landsat-Like Data. Remote Sens. 2020, 12, 801. [Google Scholar] [CrossRef]
- Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the Free and Open Landsat Data Policy. Remote Sens. Environ. 2019, 224, 382–385. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristobal, J. Land Surface Temperature Retrieval Methods from Landsat-8 Thermal Infrared Sensor Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Wang, H.; Mao, K.; Yuan, Z.; Shi, J.; Cao, M.; Qin, Z.; Duan, S.; Tang, B. A method for land surface temperature retrieval based on model-data-knowledge-driven and deep learning. Remote Sens. Environ. 2021, 265, 112665. [Google Scholar] [CrossRef]
- Bhanage, V.; Kulkarni, S.; Sharma, R.; Lee, H.S.; Gedam, S. Enumerating and Modelling the Seasonal alterations of Surface Urban Heat and Cool Island: A Case Study over Indian Cities. Urban Sci. 2023, 7, 38. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenez-Munoz, J.C.; Soria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martinez, P. Land Surface Emissivity Retrieval from Different VNIR and TIR Sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Wang, L.; Lu, Y.; Yao, Y. Comparison of Three Algorithms for the Retrieval of Land Surface Temperature from Landsat 8 Images. Sensors 2019, 19, 5049. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS-comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef]
- Ali, S.; Parvin, F.; Ahmad, A. Retrieval of Land Surface Temperature from Landsat 8 OLI and TIRS: A Comparative Analysis Between Radiative Transfer Equation-Based Method and Split-Window Algorithm. Remote Sens. Earth Syst. Sci. 2023, 6, 1–21. [Google Scholar] [CrossRef]
- Sekertekin, A.; Bonafoni, S. Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote Sens. 2020, 12, 294. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Xin, J.; Yang, J.; Sun, D.; Han, T.; Song, C.; Shi, Z. Seasonal Differences in Land Surface Temperature under Different Land Use/Land Cover Types from the Perspective of Different Climate Zones. Land 2022, 11, 1122. [Google Scholar] [CrossRef]
- Akomolafe, G.F.; Rosazlina, R. Land use and land cover changes influence the land surface temperature and vegetation in Penang Island, Peninsular Malaysia. Sci. Rep. 2022, 12, 21250. [Google Scholar] [CrossRef]
- Belenok, V.; Hebryn-Baidy, L.; Bielousova, N.; Gladilin, V.; Kryachok, S.; Tereshchenko, A.; Alpert, S.; Bodnar, S. Machine learning based combinatorial analysis for land use and land cover assessment in Kyiv City (Ukraine). J. Appl. Remote Sens. 2023, 17, 014506. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Khazaei, M.; Alavipanah, S.K.; Weng, Q. Google Earth Engine for large-scale land use and land cover mapping: An object-based classification approach using spectral, textural and topographical factors. GIScience Remote Sens. 2021, 58, 914–928. [Google Scholar] [CrossRef]
- Aswad, F.K.; Yousif, A.A.; Ibrahim, S.A. Trend Analysis Using Mann-Kendall and Sen’s Slope Estimator Test for Annual and Monthly Rainfall for Sinjar District, Iraq. J. Duhok Univ. 2020, 23, 501–508. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Li, X.; Meng, L.; Wang, X.; Wu, S.; Sodoudi, S. A new method to quantify surface urban heat island intensity. Sci. Total Environ. 2018, 624, 262–272. [Google Scholar] [CrossRef]
- Jia, X.; Song, P.; Yun, G.; Li, A.; Wang, K.; Zhang, K.; Du, C.; Feng, Y.; Qu, K.; Wu, M.; et al. Effect of Landscape Structure on Land Surface Temperature in Different Essential Urban Land Use Categories: A Case Study in Jiaozuo, China. Land 2022, 11, 1687. [Google Scholar] [CrossRef]
- Ullah, S.; Tahir, A.A.; Akbar, T.A.; Hassan, Q.K.; Dewan, A.; Khan, A.J.; Khan, M. Remote Sensing-Based Quantification of the Relationships between Land Use Land Cover Changes and Surface Temperature over the Lower Himalayan Region. Sustainability 2019, 11, 5492. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, J.; Sun, D.; Ma, X.; Yu, W.; Xiao, X.; Xia, J. Warming, and cooling effects of local climate zones on urban thermal environment. Front. Public. Health 2022, 10, 1072174. [Google Scholar] [CrossRef]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Tang, L.; Zhan, Q.; Fan, Y.; Liu, H.; Fan, Z. Exploring the impacts of greenspace spatial patterns on land surface temperature across different urban functional zones: A case study in Wuhan metropolitan area, China. Ecol. Indic. 2023, 146, 109787. [Google Scholar] [CrossRef]
- Kikon, N.; Kumar, D.; Ahmed, S.A. Quantitative assessment of land surface temperature and vegetation indices on a kilometer grid scale. Environ Sci. Pollut. Res. 2023, 30, 107236–107258. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H.; Diwan, P. Analytical study of seasonal variability in land surface temperature with normalised difference vegetation index, normalised difference water index, normalised difference built-up index, and normalised multiband drought index. J. Appl. Remote Sens. 2019, 13, 024518. [Google Scholar] [CrossRef]
- Nabizada, A.F.; Rousta, I.; Dalvi, M.; Olafsson, H.; Siedliska, A.; Baranowski, P.; Krzyszczak, J. Spatial and Temporal Assessment of Remotely Sensed Land Surface Temperature Variability in Afghanistan during 2000–2021. Climate 2022, 10, 111. [Google Scholar] [CrossRef]
- Nill, L.; Ullmann, T.; Kneisel, C.; Sobiech-Wolf, J.; Baumhauer, R. Assessing Spatiotemporal Variations of Landsat Land Surface Temperature and Multispectral Indices in the Arctic Mackenzie Delta Region between 1985 and 2018. Remote Sens. 2019, 11, 2329. [Google Scholar] [CrossRef]
- Piyoosh, A.K.; Ghosh, S.K. Chapter 4—Satellite image-based spectral indices for assessing linkage of land use/land cover change and land surface temperature. Dev. Environ. Sci. 2023, 14, 57–90. [Google Scholar] [CrossRef]
- Roy, B.; Bari, E. Examining the relationship between land surface temperature and landscape features using spectral indices with Google Earth Engine. Heliyon 2022, 8, e10668. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Majumder, A.; Swain, S.; Gareema; Pateriya, B.; Al-Ansari, N. Analysis of Decadal Land Use Changes and Its Impacts on Urban Heat Island (UHI) Using Remote Sensing-Based Approach: A Smart City Perspective. Sustainability 2022, 14, 11892. [Google Scholar] [CrossRef]
- Hassan, T.; Zhang, J.; Prodhan, F.A.; Pangali Sharma, T.P.; Bashir, B. Surface Urban Heat Islands Dynamics in Response to LULC and Vegetation across South Asia (2000–2019). Remote Sens. 2021, 13, 3177. [Google Scholar] [CrossRef]
- Li, L.; Zhan, W.; Du, H.; Lai, J.; Wang, C.; Fu, H.; Huang, F.; Liu, Z.; Wang, C.; Li, J.; et al. Long-Term and Fine-Scale Surface Urban Heat Island Dynamics Revealed by Landsat Data Since the 1980s: A Comparison of Four Megacities in China. J. Geophys. Res. Atmos. 2022, 127, e2021JD035598. [Google Scholar] [CrossRef]
- Xia, H.; Chen, Y.; Song, S.; Li, J.; Quan, J.; Zhou, G. Analysis of surface urban heat islands based on local climate zones via spatiotemporally enhanced land surface temperature. Remote Sens. Environ. 2022, 273, 112972. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef]
- Shi, H.; Xian, G.; Auch, R.; Gallo, K.; Zhou, Q. Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology. Land 2021, 10, 867. [Google Scholar] [CrossRef]
- Almeida, C.; Teodoro, A.C.; Gonçalves, A. Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments 2021, 8, 105. [Google Scholar] [CrossRef]
- Schwaab, J.; Meier, R.; Mussetti, G.; Seneviratne, S.; Bürgi, C.; Davin, E.E. The role of urban trees in reducing land surface temperatures in European cities. Nat. Commun. 2021, 12, 6763. [Google Scholar] [CrossRef]
- Report on the State of the Environment in the Kharkiv Region in 2022. Available online: https://kharkivoda.gov.ua/content/documents/1234/123378/Attaches/2022regionalna_dopovid_za_2022_rik_harkivska_oblast.pdf (accessed on 10 October 2023).
- Environmental Passport of the Kharkiv Region in 2022. Available online: https://kharkivoda.gov.ua/content/documents/1234/123379/Attaches/ekologichniy_pasport_2022_rik.pdf (accessed on 10 October 2023).
- Kharkiv Sustainable Energy and Climate Action Plan 2030 (SECAP). Available online: https://inkharkiv.com/documents (accessed on 15 November 2023).
- Zaiets, D. Kharkiv’s shattered landscapes: Observations from the front line of the war in Ukraine. Eur. Soc. 2023, 1–25. [Google Scholar] [CrossRef]
- Landsat 8-9 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) Level-2. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-8-9-olitirs-collection-2-level-2 (accessed on 22 April 2023).
- Landsat 4-5 TM Surface Reflectance. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-4-5-tm-collection-2-level-2-science (accessed on 22 April 2023).
- Malakar, N.K.; Hulley, G.C.; Hook, S.J.; Laraby, K.; Cook, M.; Schott, J.R. An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5717–5735. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Xu, H. A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [Google Scholar] [CrossRef]
- Takeuchi, W.; Yasuoka, Y. Development of normalized vegetation, soil and water indices derived from satellite remote sensing data. C-9.4. Remote Sens. Appl. 2004, 43, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Bouzekri, S.; Lasbet, A.; Lachehab, A. A New Spectral Index for Extraction of Built-Up Area Using Landsat-8 Data. J. Indian. Soc. Remote Sens. 2015, 43, 867–873. [Google Scholar] [CrossRef]
- Estoque, R.; Murayama, Y. Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS imageries: A comparative assessment of various spectral indices. Ecol. Indic. 2015, 56, 205–217. [Google Scholar] [CrossRef]
- Li, C.; Shao, Z.; Zhang, L.; Huang, X.; Zhang, M. A Comparative Analysis of Index-Based Methods for Impervious Surface Mapping Using Multiseasonal Sentinel-2 Satellite Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3682–3694. [Google Scholar] [CrossRef]
- Congalton, R. Assessing positional and thematic accuracies of maps generated from remotely sensed data. In Remote Sensing Handbook, Data Characterization, Classification, and Accuracies; Thenkabail, P., Ed.; CRC/Taylor & Francis: Boca Raton, FL, USA, 2015; Volume I, pp. 583–601. [Google Scholar]
- Topographic Map of Ukraine General Staff Scale 1:100,000. Available online: https://www.shram.kiev.ua/maps/map1k-ua/m-37-073.shtml (accessed on 28 May 2023).
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sheather, S.J. Density estimation. Stat. Sci. 2004, 19, 588–597. [Google Scholar] [CrossRef]
- Aitchison, J.; Lauder, I. Kernel density estimationfor compositional data. J. R. Stat. Soc. Ser. C Appl. Stat. 1985, 34, 129–137. [Google Scholar] [CrossRef]
- Wang, C.; Zeng, B.; Shao, J. Application of bootstrap method in Kolmogorov-Smirnov test. In Proceedings of the 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, Xi’an, China, 17–19 June 2011; pp. 287–291. [Google Scholar]
- Royston, P. Approximating the Shapiro-Wilk W-test for non-normality. Stat. Comput. 1992, 2, 117–119. [Google Scholar] [CrossRef]
Collection/Product | LULC | LST | Cloud % | Period | Total Data |
---|---|---|---|---|---|
Landsat 5 Level 2, Collection 2, Tier 1 | SR_B1-SR_B7 (30 m) | ST_B6 (100 m) | 0–10 | April–September 1984–2011 | 61 |
Landsat 8/9 Level 2, Collection 2, Tier 1 | SR_B2-SR_B7 (30 m) | ST_B10 (100 m) | 0–10 | April–September 2012–2023 | 45 |
MOD11A1.061 | - | LST_Day (1 km) | - | April–September 2000–2022 | 138 |
CRU TS Version 4.07 | - | Tair | - | Average monthly 1984–2022 | 456 |
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Yearly |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Slope | 0.009 | 0.076 | 0.066 | 0.036 | 0.023 | 0.059 | 0.059 | 0.074 | 0.045 | 0.029 | 0.082 | 0.063 | 0.052 |
p-value | 0.788 | 0.077 | 0.057 | 0.119 | 0.292 | 0.003 | 0.001 | 0 | 0.028 | 0.097 | 0.003 | 0.047 | 0 |
R2 | 0.002 | 0.076 | 0.088 | 0.059 | 0.028 | 0.204 | 0.234 | 0.405 | 0.115 | 0.068 | 0.200 | 0.095 | 0.414 |
τ | −0.039 | 0.205 | 0.187 | 0.113 | 0.097 | 0.334 | 0.359 | 0.493 | 0.259 | 0.160 | 0.324 | 0.188 | 0.487 |
p (τ) | 0.712 | 0.056 | 0.083 | 0.298 | 0.368 | 0.002 | 0 | 0 | 0.016 | 0.139 | 0.003 | 0.083 | 0 |
Month, Observations | 4 (11) | 5 (16) | 6 (14) | 7 (17) | 8 (20) | 9 (15) |
---|---|---|---|---|---|---|
Slope | −0.102 | −0.089 | 0.052 | 0.091 | 0.133 | 0.071 |
p-value | 0.199 | 0.246 | 0.545 | 0.131 | 0.042 | 0.531 |
R2 | 0.176 | 0.102 | 0.031 | 0.146 | 0.213 | 0.031 |
τ | −0.273 | −0.124 | 0.231 | 0.309 | 0.295 | 0.181 |
p (τ) | 0.283 | 0.559 | 0.279 | 0.091 | 0.074 | 0.380 |
Month | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|
Slope | 0.045 | −0.019 | 0.203 | 0.043 | 0.083 | 0.131 |
p-value | 0.545 | 0.844 | 0.023 | 0.567 | 0.221 | 0.116 |
R2 | 0.018 | 0.002 | 0.222 | 0.016 | 0.071 | 0.113 |
τ | 0.107 | −0.004 | 0.281 | 0.209 | 0.170 | 0.304 |
p (τ) | 0.497 | 1 | 0.064 | 0.172 | 0.271 | 0.044 |
Slope | Intercept | R2 | p-Value | τ | RMSE | |
---|---|---|---|---|---|---|
LST Landsat | 1.261 | 9.82 | 0.663 | 2.18 × 10−13 | 0.626 | 3.815 |
LST MODIS | 0.94 | 11.289 | 0.879 | 1.27 × 10−24 | 0.711 | 1.476 |
July, Year | 1984 | 1990 | 1996 | 2001 | 2006 | 2011 | 2018 | 2023 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA |
Water | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.98 | 1 | 1 | 1 | 1 | 1 | 0.99 | 1 | 0.99 |
Dense vegetation | 0.88 | 0.99 | 0.95 | 0.9 | 0.96 | 0.95 | 0.96 | 0.93 | 0.94 | 0.77 | 0.86 | 0.89 | 0.87 | 0.74 | 0.88 | 0.9 |
Urban area | 0.98 | 0.95 | 0.99 | 0.96 | 0.99 | 0.94 | 0.99 | 0.96 | 0.98 | 1 | 0.91 | 1 | 0.72 | 1 | 0.93 | 0.95 |
Bare land | 0.83 | 0.83 | 0.94 | 0.75 | 0.91 | 0.98 | 0.86 | 0.9 | 0.94 | 0.73 | 0.85 | 0.85 | 0.96 | 0.82 | 0.78 | 0.98 |
Sparse vegetation | 0.81 | 0.73 | 0.71 | 0.9 | 0.92 | 0.94 | 0.89 | 0.91 | 0.64 | 0.87 | 0.76 | 0.64 | 0.8 | 0.63 | 0.87 | 0.67 |
OA | 0.91 | 0.91 | 0.95 | 0.94 | 0.89 | 0.88 | 0.84 | 0.9 | ||||||||
Kappa | 0.88 | 0.89 | 0.94 | 0.92 | 0.85 | 0.85 | 0.8 | 0.87 |
Class | Med LST | Lower Threshold (LT) | Upper Threshold (UT) | St. dev. |
---|---|---|---|---|
Bare land | 38.20 | 32.47 | 45.49 | 2.45 |
Dense vegetation | 35.52 | 27.41 | 45.45 | 2.24 |
Sparse vegetation | 37.71 | 31.93 | 44.44 | 2.16 |
Urban | 39.51 | 33.48 | 46.51 | 2.09 |
Water | 35.96 | 29.61 | 44.65 | 2.29 |
Month | Water Mean | Dense Veg. Mean | urban Mean | Bare Land Mean | Sparse Veg. Mean | Water LT | Water UT | Dense Veg. LT | Dense Veg. UT | Urban LT | Urban UT | Bare Land LT | Bare Land UT | Sparse Veg. LT | Sparse Veg. UT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 21.09 | 20.85 | 22.00 | 21.73 | 21.82 | 14.74 | 27.43 | 15.7 | 26.01 | 17.57 | 26.42 | 17.15 | 26.31 | 17.41 | 26.31 |
5 | 31.24 | 30.12 | 33.8 | 34.85 | 32.58 | 23.05 | 39.43 | 22.18 | 38.07 | 27.53 | 40.07 | 27.01 | 42.65 | 25.95 | 39.2 |
6 | 37.29 | 36.28 | 40.5 | 40.54 | 38.75 | 28.64 | 45.94 | 27.64 | 44.93 | 33.58 | 47.41 | 32.32 | 48.76 | 31.55 | 45.86 |
7 | 37.13 | 36.71 | 40.69 | 39.69 | 38.72 | 29.85 | 44.42 | 28.62 | 44.8 | 33.83 | 47.54 | 32.76 | 46.62 | 32.17 | 45.25 |
8 | 34.85 | 34.12 | 37.21 | 36.91 | 35.83 | 28.18 | 41.52 | 27.39 | 40.85 | 31.36 | 43.05 | 30.24 | 43.58 | 30.19 | 41.45 |
9 | 26.58 | 25.58 | 27.19 | 27.95 | 27.02 | 20.73 | 32.45 | 20.76 | 30.4 | 23.12 | 31.26 | 22.7 | 33.21 | 22.52 | 31.55 |
July | rx,y | p (rx,y) | ρ | p(ρ) | τ | p (τ) |
---|---|---|---|---|---|---|
SUHI mean and LST mean | 0.167 | 0.521 | 0.236 | 0.359 | 0.141 | 0.432 |
SUHI mean and Tair | −0.113 | 0.664 | −0.065 | 0.804 | −0.052 | 0.772 |
SUHI mean and urban area | 0.511 | 0.035 | 0.581 | 0.014 | 0.421 | 0.02 |
SUHI mean and vegetation area | −0.442 | 0.075 | −0.59 | 0.012 | −0.439 | 0.016 |
August | ||||||
SUHI mean and LST mean | 0.559 | 0.01 | 0.585 | 0.007 | 0.423 | 0.009 |
SUHI mean and Tair | 0.406 | 0.076 | 0.415 | 0.069 | 0.296 | 0.069 |
SUHI mean and urban area | 0.539 | 0.014 | 0.518 | 0.019 | 0.405 | 0.014 |
SUHI mean and vegetation area | −0.605 | 0.005 | −0.515 | 0.02 | −0.416 | 0.012 |
July | Slope | Intercept | R2 | p-Value | SE | τ | p (τ) |
---|---|---|---|---|---|---|---|
SUHI mean | 0.022 | −43.254 | 0.409 | 0.005 | 0.007 | 0.459 | 0.01 |
August | |||||||
SUHI mean | 0.028 | −54.647 | 0.345 | 0.006 | 0.009 | 0.423 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rees, G.; Hebryn-Baidy, L.; Belenok, V. Temporal Variations in Land Surface Temperature within an Urban Ecosystem: A Comprehensive Assessment of Land Use and Land Cover Change in Kharkiv, Ukraine. Remote Sens. 2024, 16, 1637. https://doi.org/10.3390/rs16091637
Rees G, Hebryn-Baidy L, Belenok V. Temporal Variations in Land Surface Temperature within an Urban Ecosystem: A Comprehensive Assessment of Land Use and Land Cover Change in Kharkiv, Ukraine. Remote Sensing. 2024; 16(9):1637. https://doi.org/10.3390/rs16091637
Chicago/Turabian StyleRees, Gareth, Liliia Hebryn-Baidy, and Vadym Belenok. 2024. "Temporal Variations in Land Surface Temperature within an Urban Ecosystem: A Comprehensive Assessment of Land Use and Land Cover Change in Kharkiv, Ukraine" Remote Sensing 16, no. 9: 1637. https://doi.org/10.3390/rs16091637
APA StyleRees, G., Hebryn-Baidy, L., & Belenok, V. (2024). Temporal Variations in Land Surface Temperature within an Urban Ecosystem: A Comprehensive Assessment of Land Use and Land Cover Change in Kharkiv, Ukraine. Remote Sensing, 16(9), 1637. https://doi.org/10.3390/rs16091637