Improvement of Aerosol Coarse-Mode Detection through Additional Use of Infrared Wavelengths in the Inversion of Arctic Lidar Data
Abstract
:1. Introduction
2. Instruments
3. Retrieval of Micro-Physical Particle Properties from Optical Data of Different Devices
- −
- The total volume concentration ();
- −
- The effective radius () with ();
- −
- The mean wavelength-independent CRI;
- −
- The single scattering albedo (SSA) at .
4. Retrieval Results of Typical Arctic Aerosol Size Distribution
5. Retrieval Results of Micro-Physical Properties
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Figures
References
- Li, J.; Carlson, B.E.; Yung, Y.L.; Lv, D.; Hansen, J.; Penner, J.E.; Liao, H.; Ramaswamy, V.; Kahn, R.A.; Zhang, P.; et al. Scattering and absorbing aerosols in the climate system. Nat. Rev. Earth Environ. 2022, 3, 363–379. [Google Scholar] [CrossRef]
- Larson, E.; Portmann, R. Anthropogenic aerosol drives uncertainty in future climate mitigation efforts. Sci. Rep. 2019, 9, 16538. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Wendisch, M.; Brückner, M.; Crewell, S.; Ehrlich, A.; Notholt, J.; Lüpkes, C.; Macke, A.; Burrows, J.; Rinke, A.; Quaas, J.; et al. Atmospheric and surface processes, and feedback mechanisms determining Arctic amplification: A review of first results and prospects of the (AC) 3 project. Bull. Am. Meteorol. Soc. 2023, 104, E208–E242. [Google Scholar] [CrossRef]
- Willis, M.D.; Leaitch, W.R.; Abbatt, J.P. Processes Controlling the Composition and Abundance of Arctic Aerosol. Rev. Geophys. 2018, 56, 621–671. [Google Scholar] [CrossRef]
- Schmale, J.; Zieger, A.P. Aerosols in current and future Arctic climate. Nat. Clim. Chang. 2021, 11, 95–105. [Google Scholar] [CrossRef]
- Schmale, J.; Sharma, S.; Decesari, S.; Pernov, J.; Massling, A.; Hansson, H.C.; von Salzen, K.; Skov, H.; Andrews, E.; Quinn, P.K.; et al. Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories. Atmos. Chem. Phys. 2022, 22, 3067–3096. [Google Scholar] [CrossRef]
- Quinn, P.K.; Shaw, G.; Andrews, E.; Dutton, E.G.; Ruoho-Airola, T.; Gong, S.L. Arctic haze: Current trends and knowledge gaps. Tellus Chem. Phys. Meteorol. 2007, 59, 99–114. [Google Scholar] [CrossRef]
- Breider, T.J.; Mickley, L.J.; Jacob, D.J.; Ge, C.; Wang, J.; Payer Sulprizio, M.; Croft, B.; Ridley, D.A.; McConnell, J.R.; Sharma, S.; et al. Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980. J. Geophys. Res. Atmos. 2017, 122, 3573–3594. [Google Scholar] [CrossRef]
- Zielinski, T.; Bolzacchini, E.; Cataldi, M.; Ferrero, L.; Graßl, S.; Hansen, G.; Mateos, D.; Mazzola, M.; Neuber, R.; Pakszys, P.; et al. Study of chemical and optical properties of biomass burning aerosols during long-range transport events toward the arctic in summer 2017. Atmosphere 2020, 11, 84. [Google Scholar] [CrossRef]
- Tunved, P.; Ström, J.; Krejci, R. Arctic aerosol life cycle: Linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard. Atmos. Chem. Phys. 2013, 13, 3643–3660. [Google Scholar] [CrossRef]
- Udisti, R.; Bazzano, A.; Becagli, S.; Bolzacchini, E.; Caiazzo, L.; Cappelletti, D.; Ferrero, L.; Frosini, D.; Giardi, F.; Grotti, M.; et al. Sulfate source apportionment in the Ny-Ålesund (Svalbard Islands) Arctic aerosol. Rend. Fis. Acc. Lincei 2016, 27, 85–94. [Google Scholar] [CrossRef]
- Grassl, S.; Ritter, C. Properties of Arctic Aerosol Based on Sun Photometer Long-Term Measurements in Ny-Ålesund, Svalbard. Remote Sens. 2019, 11, 1362. [Google Scholar] [CrossRef]
- Ritter, C.; Neuber, R.; Schulz, A.; Markowicz, K.; Stachlewska, I.; Lisok, J.; Makuch, P.; Pakszys, P.; Markuszewski, P.; Rozwadowska, A.; et al. 2014 iAREA campaign on aerosol in Spitsbergen–Part 2: Optical properties from Raman-lidar and in-situ observations at Ny-Ålesund. Atmos. Environ. 2016, 141, 1–19. [Google Scholar] [CrossRef]
- Lüers, J.; Bareiss, J. Direct near-surface measurements of sensible heat fluxes in the Arctic tundra applying eddy covariance and laser scintillometry—The Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006). Theor. Appl. Climatol. 2011, 105, 387–402. [Google Scholar] [CrossRef]
- Rader, F.; Traversi, R.; Severi, M.; Becagli, S.; Müller, K.J.; Nakoudi, K.; Ritter, C. Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data. Atmosphere 2021, 12, 271. [Google Scholar] [CrossRef]
- Weitkamp, C. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere; Springer Series in Optical Sciences; Springer: New York, NY, USA, 2005; Volume 102. [Google Scholar]
- Böckmann, C. Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions. Appl. Opt. 2001, 40, 1329–1342. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Böckmann, C.; Kolgotin, A.; Schneidenbach, L.; Chemyakin, E.; Rosemann, J.; Znak, P.; Romanov, A. Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET. Atmos. Meas. Technol. 2016, 9, 5007–5035. [Google Scholar] [CrossRef]
- Hoffmann, A.; Osterloh, L.; Stone, R.; Lampert, A.; Ritter, C.; Stock, M.; Tunved, P.; Hennig, T.; Böckmann, C.; Li, S.M.; et al. Remote sensing and in-situ measurements of tropospheric aerosol, a PAMARCMiP case study. Atmos. Environ. 2012, 52, 56–66. [Google Scholar] [CrossRef]
- Ferrero, L.; Ritter, C.; Cappelletti, D.; Moroni, B.; Močnik, G.; Mazzola, M.; Lupi, A.; Becagli, S.; Traversi, R.; Cataldi, M.; et al. Aerosol optical properties in the Arctic: The role of aerosol chemistry and dust composition in a closure experiment between Lidar and tethered balloon vertical profiles. Sci. Total Environ. 2019, 686, 452–467. [Google Scholar] [CrossRef]
- Thomas, M.A.; Devasthale, A.; Tjernström, M.; Ekman, A.M. The relation between aerosol vertical distribution and temperature inversions in the Arctic in winter and spring. Geophys. Res. Lett. 2019, 46, 2836–2845. [Google Scholar] [CrossRef]
- Nakoudi, K.; Ritter, C.; Böckmann, C.; Kunkel, D.; Eppers, O.; Rozanov, V.; Mei, L.; Pefanis, V.; Jäkel, E.; Herber, A.; et al. Does the intra-Arctic modification of long-range transported aerosol affect the local radiative budget? (A case study). Remote Sens. 2020, 12, 2112. [Google Scholar] [CrossRef]
- Moroni, B.; Becagli, S.; Bolzacchini, E.; Busetto, M.; Cappelletti, D.; Crocchianti, S.; Ferrero, L.; Frosini, D.; Lanconelli, C.; Lupi, A.; et al. Vertical profiles and chemical properties of aerosol particles upon Ny-Ålesund (Svalbard Islands). Adv. Meteorol. 2015, 2015, 292081. [Google Scholar] [CrossRef]
- Veselovskii, I.; Kolgotin, A.; Griaznov, V.; Müller, D.; Wandinger, U.; Whiteman, D.N. Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding. Appl. Opt. 2002, 41, 3685–3699. [Google Scholar] [CrossRef] [PubMed]
- Kolgotin, A.; Müller, D.; Romanov, A. Particle Microphysical Parameters and the Complex Refractive Index from 3β + 2α HSRL/Raman Lidar Measurements: Conditions of Accurate Retrieval, Retrieval Uncertainties and Constraints to Suppress the Uncertainties. Atmosphere 2023, 14, 1159. [Google Scholar] [CrossRef]
- Sorrentino, A.; Sannino, A.; Spinelli, N.; Piana, M.; Boselli, A.; Tontodonato, V.; Castellano, P.; Wang, X. A Bayesian parametric approach to the retrieval of the atmospheric number size distribution from lidar data. Atmos. Meas. Technol. 2022, 15, 149–164. [Google Scholar] [CrossRef]
- Illingworth, A.J.; Cimini, D.; Haefele, A.; Haeffelin, M.; Hervo, M.; Kotthaus, S.; Löhnert, U.; Martinet, P.; Mattis, I.; O’connor, E.; et al. How can existing ground-based profiling instruments improve European weather forecasts? Bull. Am. Meteorol. Soc. 2019, 100, 605–619. [Google Scholar] [CrossRef]
- Pentikäinen, P.; O’Connor, E.J.; Manninen, A.J.; Ortiz-Amezcua, P. Methodology for deriving the telescope focus function and its uncertainty for a heterodyne pulsed Doppler lidar. Atmos. Meas. Technol. 2020, 13, 2849–2863. [Google Scholar] [CrossRef]
- Shangguan, M.; Qiu, J.; Yuan, J.; Shu, Z.; Zhou, L.; Xia, H. Doppler Wind Lidar from UV to NIR: A Review with Case Study Examples. Front. Remote Sens. 2022, 2, 787111. [Google Scholar] [CrossRef]
- Heese, B.; Flentje, H.; Althausen, D.; Ansmann, A.; Frey, S. Ceilometer lidar comparison: Backscatter coefficient retrieval and signal-to-noise ratio determination. Atmos. Meas. Technol. 2010, 3, 1763–1770. [Google Scholar] [CrossRef]
- Román, R.; Benavent-Oltra, J.A.; Casquero-Vera, J.A.; Lopatin, A.; Cazorla, A.; Lyamani, H.; Denjean, C.; Fuertes, D.; Pérez-Ramírez, D.; Torres, B.; et al. Retrieval of aerosol profiles combining sunphotometer and ceilometer measurements in GRASP code. Atmos. Res. 2018, 204, 161–177. [Google Scholar] [CrossRef]
- Morris, V.; Winston, H.A. Laser Ceilometer CL51 Demonstration Field Campaign Report; Technical Report; DOE Office of Science Atmospheric Radiation Measurement (ARM) Program: Washington, DC, USA, 2016.
- Hoffmann, A. Comparative Aerosol Studies Based on Multi-Wavelength Raman LIDAR at Ny-Ålesund, Spitsbergen. Ph.D. Thesis, Universität Potsdam, Potsdam, Germany, 2011. [Google Scholar]
- Dube, J.; Böckmann, C.; Ritter, C. Lidar-Derived Aerosol Properties from Ny-Ålesund, Svalbard during the MOSAiC Spring 2020. Remote Sens. 2022, 14, 2578. [Google Scholar] [CrossRef]
- Ritter, C.; Burgos, M.A.; Böckmann, C.; Mateos, D.; Lisok, J.; Markowicz, K.; Moroni, B.; Cappelletti, D.; Udisti, R.; Maturilli, M.; et al. Microphysical properties and radiative impact of an intense biomass burning aerosol event measured over Ny-Ãlesund, Spitsbergen in July 2015. Tellus Chem. Phys. Meteorol. 2018, 70, 1–23. [Google Scholar] [CrossRef]
- Shang, X.; Mielonen, T.; Lipponen, A.; Giannakaki, E.; Leskinen, A.; Buchard, V.; Darmenov, A.S.; Kukkurainen, A.; Arola, A.; O’Connor, E.; et al. Mass concentration estimates of long-range-transported Canadian biomass burning aerosols from a multi-wavelength Raman polarization lidar and a ceilometer in Finland. Atmos. Meas. Technol. 2021, 14, 6159–6179. [Google Scholar] [CrossRef]
- Gryning, S.E.; Batchvarova, E.; Floors, R.; Münkel, C.; Sørensen, L.L.; Skov, H. Observed aerosol-layer depth at Station Nord in the high Arctic. Int. J. Climatol. 2023, 43, 3247–3263. [Google Scholar] [CrossRef]
- Wiegner, M.; Mattis, I.; Pattantyús-Ábrahám, M.; Bravo-Aranda, J.A.; Poltera, Y.; Haefele, A.; Hervo, M.; Görsdorf, U.; Leinweber, R.; Gasteiger, J.; et al. Aerosol backscatter profiles from ceilometers: Validation of water vapor correction in the framework of CeiLinEx2015. Atmos. Meas. Technol. 2019, 12, 471–490. [Google Scholar] [CrossRef]
- Vakkari, V.; Baars, H.; Bohlmann, S.; Bühl, J.; Komppula, M.; Mamouri, R.E.; O’Connor, E.J. Aerosol particle depolarization ratio at 1565 nm measured with a Halo Doppler lidar. Atmos. Chem. Phys. 2021, 21, 5807–5820. [Google Scholar] [CrossRef]
- Le, V.; Lobo, H.; O’Connor, E.J.; Vakkari, V. Long-term aerosol particle depolarization ratio measurements with HALO Photonics Doppler lidar. Atmos. Meas. Technol. 2024, 17, 921–941. [Google Scholar] [CrossRef]
- Samaras, S.; Nicolae, D.; Böckmann, C.; Vasilescu, J.; Binietoglou, I.; Labzovskii, L.; Toanca, F.; Papayannis, A. Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols. J. Comput. Phys. 2015, 299, 156–174. [Google Scholar] [CrossRef]
- Böckmann, C.; Mironova, I.; Müller, D.; Schneidenbach, L.; Nessler, R. Microphysical aerosol parameters from multiwavelength lidar. J. Opt. Soc. Am. A 2005, 22, 518–528. [Google Scholar] [CrossRef]
- Böckmann, C.; Kirsche, A. Iterative regularization method for lidar remote sensing. Comput. Phys. Commun. 2006, 174, 607–615. [Google Scholar] [CrossRef]
- Osterloh, L.; Böckmann, C.; Mamouri, R.E.; Papayannis, A. An Adaptive Base Point Algorithm for the Retrieval of Aerosol Microphysical Properties. Open Atmos. Sci. J. 2011, 5, 61–73. [Google Scholar] [CrossRef]
- Engl, H.W.; Hanke, M.; Neubauer, A. Regularization of Inverse Problems; Mathematics and Its Applications; Springer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Samaras, S.; Böckmann, C.; Ritter, C. Modeling a Spheroidal Particle Ensemble and Inversion by Generalized Runge-Kutta Regularizers from Limited Data. AppliedMath 2022, 2, 547–573. [Google Scholar] [CrossRef]
- Kirsche, A.; Böckmann, C. Padé iteration method for regularization. Appl. Math. Comput. 2006, 180, 648–663. [Google Scholar] [CrossRef]
- Kirsch, A. An Introduction to the Mathematical Theory of Inverse Problems; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- Samoilova, S.; Kokhanenko, G.; Balin, Y. Advantages of an Additional Raman Channel in Laser Sounding at Wavelengths of 355–1064 nm for Retrieving Microphysical Parameters of Atmospheric Aerosol. Atmos. Ocean. Opt. 2024, 36, 701–715. [Google Scholar] [CrossRef]
- Osterloh, L.; Böckmann, C.; Nicolae, D.; Nemuc, A. Regularized inversion of microphysical atmospheric particle parameters: Theory and application. J. Comput. Phys. 2013, 237, 79–94. [Google Scholar] [CrossRef]
- Osterloh, L.; Böckmann, C.; Nicolae, D.; Nemuc, A. Corrigendum to “Regularized inversion of microphysical atmospheric particle parameters: Theory and application” [J. Comput. Phys. 237 (2013) 79–94]. J. Comput. Phys. 2014, 275, 696. [Google Scholar] [CrossRef]
- Jin, J.; Henzing, B.; Segers, A. How aerosol size matters in aerosol optical depth (AOD) assimilation and the optimization using the Ångström exponent. Atmos. Chem. Phys. 2023, 23, 1641–1660. [Google Scholar] [CrossRef]
- Klett, J.D. Lidar inversion with variable backscatter/extinction ratios. Appl. Opt. 1985, 24, 1638–1643. [Google Scholar] [CrossRef]
Kind of Investigated PVSD | Median Radii | Mode Widths | |
---|---|---|---|
1. Synthetic monomodal PVSD [19] | 0.1 (-) | 2.3 (-) | 1.0 (-) |
2. Retrieved bimodal PVSD [35] | 0.54 (1.44) | 1.38 (1.16) | 10.46 (0.2) |
3. Retrieved bimodal PVSD [35] | 0.016 (2.26) | 2.03 (1.09) | 30,899 (0.04) |
4. Retrieved bimodal PVSD [36] | 0.24 (1.2) | 1.56 (1.18) | 168 (2.1) |
5. Retrieved bimodal PVSD [36] | 0.26 (1.04) | 1.42 (1.25) | 326 (1.1) |
6. Retrieved bimodal PVSD [36] | 0.23 (0.97) | 1.61 (1.36) | 367 (3.4) |
Example | SSA532 | ||
---|---|---|---|
No. 1 Exact | 0.553 | 0.0924 | 0.9436 |
Retrieval | 0.552 (0.587) | 0.0919 (0.0991) | 0.9543 (0.9397) |
No. 2 | 0.785 | 13.77 | 0.9117 |
0.756 (0.763) | 13.59 (13.20) | 0.9075(0.9313) | |
No. 3 | 0.0766 | 7.054 | 0.9350 |
0.0651 (0.0585) | 6.593 (3.988) | 0.9391 (0.9509) | |
No. 4 | 0.556 | 40.89 | 0.9498 |
0.518 (0.565) | 42.71 (46.59) | 0.9481 (0.9391) | |
No. 5 | 0.390 | 48.23 | 0.9662 |
0.375 (0.459) | 50.76 (63.06) | 0.9664 (0.9613) | |
No. 6 | 0.498 | 71.74 | 0.9539 |
0.479 (0.517) | 74.86 (80.18) | 0.9522 (0.9490) |
Uncertainty Realization | Real (RI) | Imag (RI) | SSA532 | ||
---|---|---|---|---|---|
Exact Solution | 1.5 | 0.0050 | 0.553 | 0.0924 | 0.9436 |
“Exact” input | 1.495 (1.495) | 0.0040 (0.0051) | 0.552 (0.587) | 0.0919 (0.0991) | 0.9543 (0.9397) |
high, high | 1.495 (1.486) | 0.0055 (0.0051) | 0.533 (0.569) | 0.0978 (0.1062) | 0.9413 (0.9465) |
low, low | 1.511 (1.502) | 0.0053 (0.0050) | 0.549 (0.571) | 0.0837 (0.0886) | 0.9422 (0.9420) |
low, high | 1.477 (1.481) | 0.0055 (0.0053) | 0.635 (0.637) | 0.1060 (0.1038) | 0.9329 (0.9366) |
high, low | 1.492 (1.524) | 0.0050 (0.0051) | 0.496 (0.397) | 0.0922 (0.0792) | 0.9415 (0.9467) |
all low | 1.478 (1.479) | 0.0054 (0.0051) | 0.612 (0.563) | 0.1009 (0.0961) | 0.9367 (0.9449) |
all high | 1.504 (1.494) | 0.0049 (0.0050) | 0.555 (0.598) | 0.0929 (0.1006) | 0.9458 (0.9409) |
all low, low, high | 1.469 (1.468) | 0.0056 (0.0053) | 0.630 (0.612) | 0.1060 | 0.9323 |
all low, high, low | 1.495 (1.517) | 0.0058 (0.0050) | 0.477 (0.396) | 0.0887 (0.0797) | 0.9349 |
all high, low, high | 1.480 (1.483) | 0.0047 (0.0055) | 0.646 | 0.1073 (0.1058) | 0.9404 (0.9332) |
all high, high, low | 1.491 (1.531) | 0.0050 (0.0054) | 0.526 (0.389) | 0.0957 (0.0800) | 0.9405 (0.9436) |
Mean value | 1.490 (1.496) | 0.0052 (0.0052) | 0.565 (0.542) | 0.0966 (0.0946) | 0.9403 (0.9419) |
Standard deviation | 0.012 (0.020) | 0.0005 (0.0002) | 0.058 (0.098) | 0.0077 (0.0108) | 0.0063 (0.0046) |
Deviation from exact value | 0.015 (0.020) | 0.0005 (0.0002) | 0.059 (0.099) | 0.0089 (0.0110) | 0.0072 (0.0049) |
Percentile 25 | 1.477 (1.481) | 0.0050 (0.0050) | 0.533 (0.397) | 0.0922 (0.0800) | 0.9349 (0.9420) |
Percentile 50 | 1.492 (1.490) | 0.0054 (0.0051) | 0.584 (0.570) | 0.0968 (0.0983) | 0.9405 (0.9466) |
Percentile 75 | 1.495 (1.517) | 0.0055 (0.0053) | 0.635 (0.612) | 0.1060 (0.1038) | 0.9415 (9.3320) |
Uncertainty Realization | Real (RI) | Imag (RI) | SSA532 | ||
---|---|---|---|---|---|
Exact Solution | 1.5 | 0.0050 | 0.556 | 40.89 | 0.9498 |
“Exact” input | 1.496 (1.496) | 0.0050 (0.0056) | 0.518 (0.565) | 42.71 | 0.9481 (0.9391) |
high, high | 1.495 (1.489) | 0.0050 (0.0055) | (0.562) | 43.98 (50.52) | 0.9515 |
low, low | 1.517 (1.503) | 0.0051 (0.0051) | 0.476 (0.574) | 36.27 (42.73) | 0.9508 |
low, high | 1.477 (1.474) | 0.0046 (0.0047) | 0.609 | 52.22 (55.12) | 0.9502 (0.9478) |
high, low | 1.529 (1.512) | 0.0051 (0.0041) | 0.304 (0.324) | 35.04 (40.29) | 0.9541 (0.9568) |
all low | 1.499 (1.486) | 0.0050 (0.0049) | 0.482 (0.551) | 40.18 | 0.9516 (0.9466) |
all high | 1.498 (1.500) | 0.0053 (0.0054) | 0.500 (0.584) | 44.72 (47.23) | 0.9426 (0.9406) |
all low, low, high | 1.474 (1.470) | 0.0050 (0.0041) | 0.601 | 51.75 (53.06) | 0.9472 (0.9554) |
all low, high, low | 1.520 (1.511) | 0.0046 (0.0044) | 0.305 (0.325) | 35.37 (39.19) | 0.9573 (0.9560) |
all high, low, high | 1.480 (1.479) | 0.0044 (0.0045) | 0.620 (0.630) | 53.34 (54.58) | 0.9521 (0.9504) |
all high, high, low | 1.520 (1.510) | 0.0049 (0.0049) | 0.299 (0.299) | 38.09 | 0.9513 |
Mean value | 1.500 (1.494) | 0.0049 (0.0048) | 0.473 (0.515) | 43.06 (47.25) | 0.9506 (0.9475) |
Standard deviation | 0.019 (0.015) | 0.0003 (0.0005) | 0.121 (0.130) | 6.87 (5.53) | 0.0038 (0.0064) |
Deviation from exact value | 0.018 (0.015) | 0.0003 (0.0006) | 0.149 (0.138) | 7.23 (8.67) | 0.0039 (0.0068) |
Percentile 25 | 1.480 (1.479) | 0.0046 (0.0044) | 0.305 (0.325) | 36.27 (42.73) | 0.9502 (0.9438) |
Percentile 50 | 1.498 (1.494) | 0.0050 (0.0049) | 0.484 (0.568) | 42.08 (46.89) | 0.9516 (0.9472) |
Percentile 75 | 1.520 (1.510) | 0.0053 (0.0051) | 0.601 (0.620) | 51.75 (53.06) | 0.9541 (0.9554) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böckmann, C.; Ritter, C.; Graßl, S. Improvement of Aerosol Coarse-Mode Detection through Additional Use of Infrared Wavelengths in the Inversion of Arctic Lidar Data. Remote Sens. 2024, 16, 1576. https://doi.org/10.3390/rs16091576
Böckmann C, Ritter C, Graßl S. Improvement of Aerosol Coarse-Mode Detection through Additional Use of Infrared Wavelengths in the Inversion of Arctic Lidar Data. Remote Sensing. 2024; 16(9):1576. https://doi.org/10.3390/rs16091576
Chicago/Turabian StyleBöckmann, Christine, Christoph Ritter, and Sandra Graßl. 2024. "Improvement of Aerosol Coarse-Mode Detection through Additional Use of Infrared Wavelengths in the Inversion of Arctic Lidar Data" Remote Sensing 16, no. 9: 1576. https://doi.org/10.3390/rs16091576
APA StyleBöckmann, C., Ritter, C., & Graßl, S. (2024). Improvement of Aerosol Coarse-Mode Detection through Additional Use of Infrared Wavelengths in the Inversion of Arctic Lidar Data. Remote Sensing, 16(9), 1576. https://doi.org/10.3390/rs16091576