Investigating the Response of Vegetation to Flash Droughts by Using Cross-Spectral Analysis and an Evapotranspiration-Based Drought Index
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. ET Dataset
2.3. Land Cover and Irrigation Datasets
2.4. NDVI Dataset
3. Methods
- (1)
- Drought index calculation, which estimates the Evaporative Stress Anomaly Index (ESAI) based on ET from the ETMonitor dataset and the Normalized Vegetation Anomaly Index (NVAI) based on the reconstructed daily NDVI dataset.
- (2)
- Flash drought identification, which identifies flash drought events and their characteristics using the Evaporative Stress Percentile (ESP) using ET from the ETMonitor dataset.
- (3)
- Detection of the vegetation response to water availability during flash drought, which applies the cross-spectral analysis method to detect the time lag between NVAI and ESAI.
- (4)
- Analysis of the advantages of the proposed method, which is compared with the results using the response time index method.
3.1. Drought Index Calculation
3.1.1. Evaporative Stress Anomaly Index
3.1.2. Normalized Vegetation Anomaly Index
3.2. Identification and Characteristics of Flash Drought
3.2.1. Flash Drought Identification
- (1)
- Onset: the ESP decreases from above the 40th percentile to below the 20th percentile with an average decline rate of no less than 6.5 percentile/week.
- (2)
- Termination: the flash drought terminates when the ESP value rises above the 20th percentile and lasts for at least two weeks.
- (3)
- Duration: flash droughts should last for at least 3 weeks.
3.2.2. Characteristics of Flash Drought
- (1)
- The number of flash droughts: the total number of flash drought events over the selected study period.
- (2)
- The duration of the flash drought: the number of days from the onset (the ESP dropped to below the 20th percentile) to the recovery (ESP above the 20th percentile again).
3.3. Cross-Spectral Method
- (1)
- Cross-coherence
- (2)
- Gain:
- (3)
- Phase spectrum
- (4)
- Consistency test
3.4. Response Time Index
4. Results
4.1. Flash Droughts over North China from 2001 to 2020
4.2. Time Lag of Vegetation Response to Flash Droughts over North China during March–September for the Period 2001–2020
4.2.1. Time Lag Obtained Using Cross-Spectral Analysis
4.2.2. Combination with the Response Time Index
4.3. Temporal Response of Different Vegetation Types to Water Availability during Flash Droughts
5. Discussion
5.1. Advantage of ET-Based Drought Indicator Derived from Satellite Remote Sensing Observations
5.2. Advantage of Cross-Spectral Analysis
5.3. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Y.M.; Ji, P.; Wu, P.L.; Sheffield, J.; Otkin, J.A. A global transition to flash droughts under climate change. Science 2023, 380, 187–191. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, X.; Xie, Z.; Wu, P.; Li, Y. Increasing flash droughts over China during the recent global warming hiatus. Sci. Rep. 2016, 6, 30571. [Google Scholar] [CrossRef]
- Qing, Y.M.; Wang, S.; Ancell, B.C.; Yang, Z.L. Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity. Nat. Commun. 2022, 13, 1139. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, L.; Wu, P.; Ji, P.; Sheffield, J.; Zhang, M. Anthropogenic shift towards higher risk of flash drought over China. Nat. Commun. 2019, 10, 4661. [Google Scholar] [CrossRef]
- Christian, J.I.; Hobbins, M.; Hoell, A.; Otkin, J.A.; Ford, T.W.; Cravens, A.E.; Powlen, K.A.; Wang, H.L.; Mishra, V. Flash drought: A state of the science review. Wires Water 2024, 11, e1714. [Google Scholar] [CrossRef]
- Otkin, J.A.; Svoboda, M.; Hunt, E.D.; Ford, T.W.; Andersoson, M.C.; Hain, C.; Basara, J.B. FLASH DROUGHTS A Review and Assessment of the Challenges Imposed by Rapid-Onset Droughts in the United States. Bull. Am. Meteorol. Soc. 2018, 99, 911–919. [Google Scholar] [CrossRef]
- Otkin, J.A.; Anderson, M.C.; Hain, C.; Mladenova, I.E.; Basara, J.B.; Svoboda, M. Examining Rapid Onset Drought Development Using the Thermal Infrared-Based Evaporative Stress Index. J. Hydrometeorol. 2013, 14, 1057–1074. [Google Scholar] [CrossRef]
- Tyagi, S.; Zhang, X.; Saraswat, D.; Sahany, S.; Mishra, S.K.; Niyogi, D. Flash Drought: Review of Concept, Prediction and the Potential for Machine Learning, Deep Learning Methods. Earths Future 2022, 10, e2022EF002723. [Google Scholar] [CrossRef]
- Otkin, J.A.; Woloszyn, M.; Wang, H.L.; Svoboda, M.; Skumanich, M.; Pulwarty, R.; Lisonbee, J.; Hoell, A.; Hobbins, M.; Haigh, T.; et al. Getting ahead of Flash Drought: From Early Warning to Early Action. Bull. Am. Meteorol. Soc. 2022, 103, E2188–E2202. [Google Scholar] [CrossRef]
- Fu, K.Q.; Wang, K.C. Quantifying Flash Droughts Over China From 1980 to 2017. J. Geophys. Res. Atmos. 2022, 127, e2022JD037152. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Li, M.X.; Ma, Z.G.; Jian, D.N.; Lv, M.X.; Yang, Q.; Duan, Y.W.; Amin, D. The intensification of flash droughts across China from 1981 to 2021. Clim. Dyn. 2023, 62, 1233–1247. [Google Scholar] [CrossRef]
- Zeng, Z.Q.; Wu, W.X.; Peñuelas, J.; Li, Y.M.; Jiao, W.Z.; Li, Z.L.; Ren, X.S.; Wang, K.; Ge, Q.S. Increased risk of flash droughts with raised concurrent hot and dry extremes under global warming. Npj Clim. Atmos. Sci. 2023, 6, 134. [Google Scholar] [CrossRef]
- Christian, J.I.; Martin, E.R.; Basara, J.B.; Furtado, J.C.; Otkin, J.A.; Lowman, L.E.L.; Hunt, E.D.; Mishra, V.; Xiao, X.M. Global projections of flash drought show increased risk in a warming climate. Commun. Earth Environ. 2023, 4, 165. [Google Scholar] [CrossRef]
- Christian, J.I.; Basara, J.B.; Hunt, E.D.; Otkin, J.A.; Xiao, X.M. Flash drought development and cascading impacts associated with the 2010 Russian heatwave. Environ. Res Lett. 2020, 15, 094078. [Google Scholar] [CrossRef]
- He, M.Z.; Kimball, J.S.; Yi, Y.H.; Running, S.; Guan, K.Y.; Jensco, K.; Maxwell, B.; Maneta, M. Impacts of the 2017 flash drought in the US Northern plains informed by satellite-based evapotranspiration and solar-induced fluorescence. Environ. Res. Lett. 2019, 14, 74019. [Google Scholar] [CrossRef]
- Wang, Y.M.; Yuan, X. High Temperature Accelerates Onset Speed of the 2022 Unprecedented Flash Drought Over the Yangtze River Basin. Geophys. Res. Lett. 2023, 50, e2023GL105375. [Google Scholar] [CrossRef]
- Dabrowska-Zielinska, K.; Bochenek, Z.; Malinska, A.; Bartold, M.; Gurdak, R.; Lagiewska, M.; Paradowski, K. Drought Assessment Applying Joined Meteorological and Satellite Data. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 6591–6594. [Google Scholar]
- Dabrowska-Zielinska, K.; Malinska, A.; Bochenek, Z.; Bartold, M.; Gurdak, R.; Paradowski, K.; Lagiewska, M. Drought Model DISS Based on the Fusion of Satellite and Meteorological Data under Variable Climatic Conditions. Remote Sens. 2020, 12, 2944. [Google Scholar] [CrossRef]
- Jia, L.; Hu, G.; Zhou, J.; Menenti, M. Assessing the sensitivity of two new indicators of vegetation response to water availability for drought monitoring. In Proceedings of the Land Surface Remote Sensing, SPIE, Kyoto, Japan, 29 October–1 November 2012; pp. 85241A-1–85241A-15. [Google Scholar]
- Kogan, F.N. Application of Vegetation Index and Brightness Temperature for Drought Detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, Y.; Chen, A.P.; Gao, M.D.; Slette, I.J.; Piao, S.L. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agric. For. Meteorol. 2019, 269, 239–248. [Google Scholar] [CrossRef]
- Caccamo, G.; Chisholm, L.A.; Bradstock, R.A.; Puotinen, M.L. Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems. Remote Sens. Environ. 2011, 115, 2626–2639. [Google Scholar] [CrossRef]
- Wu, D.; Qu, J.J.; Hao, X.J. Agricultural drought monitoring using MODIS-based drought indices over the USA Corn Belt. Int. J. Remote Sens. 2015, 36, 5403–5425. [Google Scholar] [CrossRef]
- Mu, Q.Z.; Zhao, M.S.; Kimball, J.S.; McDowell, N.G.; Running, S.W. A Remotely Sensed Global Terrestrial Drought Severity Index. Bull. Am. Meteorol. Soc. 2013, 94, 83–98. [Google Scholar] [CrossRef]
- Qiu, J.X.; Crow, W.T.; Wang, S.; Dong, J.Z.; Li, Y.; Garcia, M.; Shangguan, W. Microwave-based soil moisture improves estimates of vegetation response to drought in China. Sci. Total Environ. 2022, 849, 157535. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res. Atmos. 2007, 112, D10117. [Google Scholar] [CrossRef]
- Otkin, J.A.; Anderson, M.C.; Hain, C.; Svoboda, M.; Johnson, D.; Mueller, R.; Tadesse, T.; Wardlow, B.; Brown, J. Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agric. For. Meteorol. 2016, 218, 230–242. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ. 2003, 87, 85–98. [Google Scholar] [CrossRef]
- Chen, Q.; Timmermans, J.; Wen, W.; van Bodegom, P.M. A multi-metric assessment of drought vulnerability across different vegetation types using high resolution remote sensing. Sci. Total Environ. 2022, 832, 154970. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.; Azorín-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef]
- Zhan, C.; Liang, C.; Zhao, L.; Jiang, S.Z.; Niu, K.J.; Zhang, Y.L. Drought-related cumulative and time-lag effects on vegetation dynamics across the Yellow River Basin, China. Ecol. Indic. 2022, 143, 109409. [Google Scholar] [CrossRef]
- Zhong, S.B.; Sun, Z.H.; Di, L.P. Characteristics of vegetation response to drought in the CONUS based on long-term remote sensing and meteorological data. Ecol. Indic. 2021, 127, 107767. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Zhu, T.J.; Zhou, Z.Q.; Cai, H.J.; Cao, Z.D. Detecting nonlinear information about drought propagation time and rate with nonlinear dynamic system and chaos theory. J. Hydrol. 2023, 623, 129810. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.H.; Jiao, W.Z.; Zhao, L.J.; Zeng, X.M.; Xing, X.Y.; Zhang, L.N.; Hong, Y.X.; Lu, Q.Q. A new multi-variable integrated framework for identifying flash drought in the Loess Plateau and Qinling Mountains regions of China. Agric. Water Manag. 2022, 265, 107544. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Shi, H.Y.; Fu, Q.; Ding, Y.B.; Li, T.X.; Liu, S.N. Investigating the Propagation From Meteorological to Hydrological Drought by Introducing the Nonlinear Dependence With Directed Information Transfer Index. Water Resour. Res. 2021, 57, e2021WR030028. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, X. Rapid reduction in ecosystem productivity caused by flash droughts based on decade-long FLUXNET observations. Hydrol. Earth Syst. Sc. 2020, 24, 5579–5593. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, X.; Otkin, J.A. Remote sensing of the impact of flash drought events on terrestrial carbon dynamics over China. Carbon Balance Manag. 2020, 15, 20. [Google Scholar] [CrossRef]
- Poonia, V.; Goyal, M.K.; Jha, S.; Dubey, S. Terrestrial ecosystem response to flash droughts over India. J. Hydrol. 2022, 605, 127402. [Google Scholar] [CrossRef]
- Sungmin, O.; Park, S.K. Flash drought drives rapid vegetation stress in arid regions in Europe. Environ. Res. Lett. 2023, 18, 014028. [Google Scholar] [CrossRef]
- Zheng, X.D.; Huang, S.Z.; Peng, J.; Leng, G.Y.; Huang, Q.; Fang, W.; Guo, Y. Flash Droughts Identification Based on an Improved Framework and Their Contrasting Impacts on Vegetation Over the Loess Plateau, China. Water Resour. Res. 2022, 58, e2021WR031464. [Google Scholar] [CrossRef]
- Yang, L.Y.; Wang, W.G.; Wei, J. Assessing the response of vegetation photosynthesis to flash drought events based on a new identification framework. Agric. For. Meteorol. 2023, 339, 109545. [Google Scholar] [CrossRef]
- Zuo, D.P.; Han, Y.N.; Xu, Z.X.; Li, P.J.; Ban, C.G.; Sun, W.C.; Pang, B.; Peng, D.Z.; Kan, G.Y.; Zhang, R.; et al. Time-lag effects of climatic change and drought on vegetation dynamics in an alpine river basin of the Tibet Plateau, China. J. Hydrol. 2021, 600, 126532. [Google Scholar] [CrossRef]
- Zhao, A.Z.; Yu, Q.Y.; Feng, L.L.; Zhang, A.B.; Pei, T. Evaluating the cumulative and time-lag effects of drought on grassland vegetation: A case study in the Chinese Loess Plateau. J. Environ. Manag. 2020, 261, 110214. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.H.; Zhao, X.; Liang, S.L.; Zhou, T.; Huang, K.C.; Tang, B.J.; Zhao, W.Q. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.Q.; Liu, S.N.; Ding, Y.B.; Fu, Q.; Wang, Y.; Cai, H.J.; Shi, H.Y. Assessing the responses of vegetation to meteorological drought and its influencing factors with partial wavelet coherence analysis. J. Environ. Manag. 2022, 311, 114879. [Google Scholar] [CrossRef]
- van Hoek, M.; Jia, L.; Zhou, J.; Zheng, C.L.; Menenti, M. Early Drought Detection by Spectral Analysis of Satellite Time Series of Precipitation and Normalized Difference Vegetation Index (NDVI). Remote Sens. 2016, 8, 422. [Google Scholar] [CrossRef]
- Li, H.M.; Ning, S.W.; Zhou, Y.L.; Wu, C.G.; Cui, Y.; Jin, J.L.; Xu, X.Y.; Rong, A.; Cheng, Y. Spatial and temporal analysis of drought resistance of different vegetation in the Ta-pieh Mountains based on multi-source data. J. Water Clim. Chang. 2023, 14, 4198–4219. [Google Scholar] [CrossRef]
- Pendergrass, A.G.; Meehl, G.A.; Pulwarty, R.; Hobbins, M.; Hoell, A.; AghaKouchak, A.; Bonfils, C.J.W.; Gallant, A.J.E.; Hoerling, M.; Hoffmann, D.; et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Chang. 2020, 10, 191–199. [Google Scholar] [CrossRef]
- Anderson, M.C.; Zolin, C.A.; Sentelhas, P.C.; Hain, C.R.; Semmens, K.; Yilmaz, M.T.; Gao, F.; Otkin, J.A.; Tetrault, R. The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts. Remote Sens. Environ. 2016, 174, 82–99. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.K. Global Flash Drought Analysis: Uncertainties From Indicators and Datasets. Earths Future 2022, 10, e2022EF002660. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Anderson, M.; Holmes, T.; Hain, C.; Reichle, R.; Koster, R.; Middleton, E.; Zeng, F.W. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales. Remote Sens. Environ. 2018, 219, 339–352. [Google Scholar] [CrossRef]
- Li, P.; Jia, L.; Lu, J.; Jiang, M.; Zheng, C. A New Evapotranspiration-Based Drought Index for Flash Drought Identification and Monitoring. Remote Sens. 2024, 16, 780. [Google Scholar] [CrossRef]
- Mu, Q.Z.; Zhao, M.S.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Zheng, C.L.; Jia, L.; Hu, G.C. Global land surface evapotranspiration monitoring by ETMonitor model driven by multi-source satellite earth observations. J. Hydrol. 2022, 613, 128444. [Google Scholar] [CrossRef]
- Hu, G.C.; Jia, L. Monitoring of Evapotranspiration in a Semi-Arid Inland River Basin by Combining Microwave and Optical Remote Sensing Observations. Remote Sens. 2015, 7, 3056–3087. [Google Scholar] [CrossRef]
- Weerasinghe, I.; Bastiaanssen, W.; Mul, M.; Jia, L.; van Griensven, A. Can we trust remote sensing evapotranspiration products over Africa? Hydrol. Earth Syst. Sci. 2020, 24, 1565–1586. [Google Scholar] [CrossRef]
- Sriwongsitanon, N.; Suwawong, T.; Thianpopirug, S.; Williams, J.; Jia, L.; Bastiaanssen, W. Validation of seven global remotely sensed ET products across Thailand using water balance measurements and land use classifications. J. Hydrol. Reg. Stud. 2020, 30, 100709. [Google Scholar] [CrossRef]
- Kang, S.; Eltahir, E.A.B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 2018, 9, 2894. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.T.; Jia, L.; Menenti, M.; Hutjes, R.; Hu, G.C.; Zheng, C.L.; Wang, K. A numerical analysis of aggregation error in evapotranspiration estimates due to heterogeneity of soil moisture and leaf area index. Agric. For. Meteorol. 2019, 269, 335–350. [Google Scholar] [CrossRef]
- Chen, Q.T.; Jia, L.; Menenti, M.; Hu, G.C.; Wang, K.; Yi, Z.W.; Zhou, J.; Peng, F.; Ma, S.X.; You, Q.A.; et al. A data-driven high spatial resolution model of biomass accumulation and crop yield: Application to a fragmented desert-oasis agroecosystem. Ecol. Model. 2023, 475, 110182. [Google Scholar] [CrossRef]
- Bennour, A.; Jia, L.; Menenti, M.; Zheng, C.L.; Zeng, Y.L.; Barnieh, B.A.; Jiang, M. Assessing impacts of climate variability and land use/land cover change on the water balance components in the Sahel using Earth observations and hydrological modelling. J. Hydrol. Reg. Stud. 2023, 47, 101370. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines For Computing Crop Water Requirements. FAO Irrig. Drain. 1998, 56, D05190. [Google Scholar]
- Zhang, C.; Dong, J.W.; Ge, Q.S. Mapping 20 years of irrigated croplands in China using MODIS and statistics and existing irrigation products. Sci. Data 2022, 9, 407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Dong, J.W.; Ge, Q.S. IrriMap_CN: Annual irrigation maps across China in 2000-2019 based on satellite observations, environmental variables, and machine learning. Remote Sens. Environ. 2022, 280, 113184. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, L.; Menenti, M.; Liu, X. Optimal Estimate of Global Biome-Specific Parameter Settings to Reconstruct NDVI Time Series with the Harmonic ANalysis of Time Series (HANTS) Method. Remote Sens. 2021, 13, 4251. [Google Scholar] [CrossRef]
- Zhou, J.; Menenti, M.; Jia, L.; Gao, B.; Zhao, F.; Cui, Y.L.; Xiong, X.Q.; Liu, X.; Li, D.C. A scalable software package for time series reconstruction of remote sensing datasets on the Google Earth Engine platform. Int. J. Digit. Earth 2023, 16, 988–1007. [Google Scholar] [CrossRef]
- Menenti, M.; Jia, L.; Azzali, S.; Roerink, G.; Gonzalez-Loyarte, M.; Leguizamón, S.; Verhoef, W. Analysis of vegetation response to climate variability using extended time series of multispectral satellite images. Remote Sens. Opt. Obs. Veg. Prop. 2010, 131, 164. [Google Scholar]
- Roerink, G.J.; Menenti, M.; Verhoef, W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int. J. Remote Sens. 2000, 21, 1911–1917. [Google Scholar] [CrossRef]
- Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R. Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images. Adv. Space Res. 1993, 13, 233–237. [Google Scholar] [CrossRef]
- Loyarte, M.M.G.; Menenti, M. Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina. Int. J. Remote Sens. 2008, 29, 1125–1152. [Google Scholar] [CrossRef]
- Azzali, S.; Menenti, M. Mapping isogrowth zones on continental scale using temporal Fourier analysis of AVHRR-NDVI data. Int. J. Appl. Earth Obs. Geoinf. 1999, 1, 9–20. [Google Scholar] [CrossRef]
- Christian, J.I.; Basara, J.B.; Otkin, J.A.; Hunt, E.D.; Wakefield, R.A.; Flanagan, P.X.; Xiao, X.M. A Methodology for Flash Drought Identification: Application of Flash Drought Frequency across the United States. J. Hydrometeorol. 2019, 20, 833–846. [Google Scholar] [CrossRef]
- Percival, D.B.; Walden, A.T. Spectral Analysis for Physical Applications; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- White, L.B.; Boashash, B. Cross Spectral-Analysis of Nonstationary Processes. IEEE Trans. Inform. Theory 1990, 36, 830–835. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, L.; Menenti, M.; van Hoek, M.; Lu, J.; Zheng, C.L.; Wu, H.; Yuan, X.T. Characterizing vegetation response to rainfall at multiple temporal scales in the Sahel-Sudano-Guinean region using transfer function analysis. Remote Sens. Environ. 2021, 252, 112108. [Google Scholar] [CrossRef]
- Li, S.; Zhang, L.; Huang, B.X.; He, L.; Zhao, J.F.; Guo, A.H. A comprehensive index for assessing regional dry-hot wind events in Huang-Huai-Hai Region, China. Phys. Chem. Earth 2020, 116, 102860. [Google Scholar] [CrossRef]
- Gou, Q.; Zhu, Y.; Lü, H.; Horton, R.; Yu, X.; Zhang, H.; Wang, X.; Su, J.; Liu, E.; Ding, Z.; et al. Application of an improved spatio-temporal identification method of flash droughts. J. Hydrol. 2022, 604, 127224. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.X.; Ma, Z.G.; Yang, Q.; Lv, M.X.; Clark, R. Assessment of an Evapotranspiration Deficit Drought Index in Relation to Impacts on Ecosystems. Adv. Atmos. Sci. 2019, 36, 1273–1287. [Google Scholar] [CrossRef]
- Sungmin, O.; Park, S.K. Global ecosystem responses to flash droughts are modulated by background climate and vegetation conditions. Commun. Earth Environ. 2024, 5, 88. [Google Scholar] [CrossRef]
- Yao, T.T.; Liu, S.X.; Hu, S.; Mo, X.G. Response of vegetation ecosystems to flash drought with solar-induced chlorophyll fluorescence over the Hai River Basin, China during 2001–2019. J. Environ. Manag. 2022, 313, 114947. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.; Buras, A.; Tuo, Y. Comparing Agriculture-Related Characteristics of Flash and Normal Drought Reveals Heterogeneous Crop Response. Water Resour. Res. 2023, 59, e2023WR034994. [Google Scholar] [CrossRef]
- Kang, M.; Hao, Y.; Choi, M. The effects of flash drought on the terrestrial ecosystem in Korea. J. Hydrol. 2023, 624, 129874. [Google Scholar] [CrossRef]
- Shi, X.L.; Ding, H.; Wu, M.Y.; Zhang, N.; Shi, M.Q.; Chen, F.; Li, Y. Effects of different types of drought on vegetation in Huang-Huai-Hai River Basin, China. Ecol. Indic. 2022, 144, 109428. [Google Scholar] [CrossRef]
- Wu, B.F.; Ma, Z.H.; Yan, N.N. Agricultural drought mitigating indices derived from the changes in drought characteristics. Remote Sens. Environ. 2020, 244, 111813. [Google Scholar] [CrossRef]
- Otkin, J.A.; Zhong, Y.F.; Hunt, E.D.; Basara, J.; Svoboda, M.; Anderson, M.C.; Hain, C. Assessing the Evolution of Soil Moisture and Vegetation Conditions during a Flash Drought-Flash Recovery Sequence over the South-Central United States. J. Hydrometeorol. 2019, 20, 549–562. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, Z.C.; Singh, V.P.; Zhang, Y.; Feng, S.F.; Xu, Y.; Hao, F.H. Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors. Sci. Total Environ. 2022, 838, 156021. [Google Scholar] [CrossRef] [PubMed]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Otkin, J.A.; Zhong, Y.F.; Hunt, E.D.; Christian, J.I.; Basara, J.B.; Nguyen, H.; Wheeler, M.C.; Ford, T.W.; Hoell, A.; Svoboda, M.; et al. Development of a Flash Drought Intensity Index. Atmosphere 2021, 12, 741. [Google Scholar] [CrossRef]
- Bartold, M.; Kluczek, M. A Machine Learning Approach for Mapping Chlorophyll Fluorescence at Inland Wetlands. Remote Sens. 2023, 15, 2392. [Google Scholar] [CrossRef]
- Jing, X.; Zou, Q.; Yan, J.M.; Dong, Y.Y.; Li, B.Y. Remote Sensing Monitoring of Winter Wheat Stripe Rust Based on mRMR-XGBoost Algorithm. Remote Sens. 2022, 14, 756. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, L.; Wang, M.L.; Wu, J.J.; Zhou, W.; Zhang, Q.P.; Deng, M.E. A Random Forest Model for Drought: Monitoring and Validation for Grassland Drought Based on Multi-Source Remote Sensing Data. Remote Sens. 2022, 14, 4981. [Google Scholar] [CrossRef]
- Park, H.; Kim, K.; Lee, D.K. Prediction of Severe Drought Area Based on Random Forest: Using Satellite Image and Topography Data. Water 2019, 11, 705. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Zhang, J.H.; Bai, Y.; Zhang, S.; Yang, S.S.; Henchiri, M.; Seka, A.M.; Nanzad, L. Drought Monitoring and Performance Evaluation Based on Machine Learning Fusion of Multi-Source Remote Sensing Drought Factors. Remote Sens. 2022, 14, 6398. [Google Scholar] [CrossRef]
- Chen, Z.X.; Wang, G.J.; Wei, X.K.; Liu, Y.; Duan, Z.; Hu, Y.F.; Jiang, H.Y. Basin-Scale Daily Drought Prediction Using Convolutional Neural Networks in Fenhe River Basin, China. Atmosphere 2024, 15, 155. [Google Scholar] [CrossRef]
Class | IGBP Classes | Reclassification |
---|---|---|
1 | Evergreen needleleaf forests | Forest |
2 | Evergreen broadleaf forests | Forest |
3 | Deciduous needleleaf forests | Forest |
4 | Deciduous broadleaf forests | Forest |
5 | Mixed forests | Forest |
6 | Closed shrublands | Others |
7 | Opened shrublands | Others |
8 | Woody savannas | Forest |
9 | Savannas | Forest |
10 | Grasslands | Grassland |
11 | Permanent wetlands | water |
12 | Croplands | Cropland |
13 | Urban and built-up | Urban |
14 | Cropland/natural vegetation mosaic | Cropland |
15 | Snow and ice | Others |
16 | Barren and sparsely vegetated | Others |
17 | Water bodies | water |
North China | Beijing | Tianjin | Hebei | Shanxi | Shandong | Henan | |
---|---|---|---|---|---|---|---|
Time lag (days) | 5.9 (1–15.3) | 5.8 (1–13.5) | 5.2 (1–12.2) | 5.7 (1–13.8) | 6.1 (1–15.3) | 6.2 (1–14.1) | 5.9 (1–13.1) |
Response time (days) | 26.5 (1–61) | 28.0 (1–61) | 25.5 (2–50) | 26.2 (1–56) | 28.5 (1–61) | 27.0 (2–55) | 26.0 (1–55) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Jia, L.; Lu, J.; Jiang, M.; Zheng, C.; Menenti, M. Investigating the Response of Vegetation to Flash Droughts by Using Cross-Spectral Analysis and an Evapotranspiration-Based Drought Index. Remote Sens. 2024, 16, 1564. https://doi.org/10.3390/rs16091564
Li P, Jia L, Lu J, Jiang M, Zheng C, Menenti M. Investigating the Response of Vegetation to Flash Droughts by Using Cross-Spectral Analysis and an Evapotranspiration-Based Drought Index. Remote Sensing. 2024; 16(9):1564. https://doi.org/10.3390/rs16091564
Chicago/Turabian StyleLi, Peng, Li Jia, Jing Lu, Min Jiang, Chaolei Zheng, and Massimo Menenti. 2024. "Investigating the Response of Vegetation to Flash Droughts by Using Cross-Spectral Analysis and an Evapotranspiration-Based Drought Index" Remote Sensing 16, no. 9: 1564. https://doi.org/10.3390/rs16091564
APA StyleLi, P., Jia, L., Lu, J., Jiang, M., Zheng, C., & Menenti, M. (2024). Investigating the Response of Vegetation to Flash Droughts by Using Cross-Spectral Analysis and an Evapotranspiration-Based Drought Index. Remote Sensing, 16(9), 1564. https://doi.org/10.3390/rs16091564