GIS and Machine Learning Models Target Dynamic Settlement Patterns and Their Driving Mechanisms from the Neolithic to Bronze Age in the Northeastern Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Archaeological Context and Data
2.3. Environmental Data
2.4. Creating the Models
2.4.1. Classification Tree
- K: Number of classes;
- Xk: Class k; k = 1, …, K;
- p(Xk): The classification probability of Xk.
2.4.2. Random Forests
2.4.3. Model Assessment
- pm is the ratio of the probability area to the total study area;
- ps is the ratio of the number of sites in the probability area to the total number of sites.
2.4.4. Self-Organizing Maps
- d(i, j): distance between neighbor j and the winning neuron BMU i.
- σ: the standard deviation of the Gaussian function.
- n represents the nth iteration;
- m is the select input vector;
- Wj(n) is the weight of neighbor neuron j at iteration nth;
- i represents the BMU;
- α is the learning rate;
- d is a distance function.
2.4.5. Principal Component Analysis
3. Results
3.1. Data Assessment and Model Optimization
3.2. Model Checking and Archaeological Potential Predictions
3.3. Geographic Factor Variation between Different Categories
4. Discussion
4.1. Environmental Selection Strategies across Different Cultural Stages
4.2. Socioeconomic and Climatic Changes Explain Settlements Dynamics in the NETP
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandes, R.; Geeven, G.; Soetens, S.; Klontza-Jaklova, V. Deletion/Substitution/Addition (DSA) model selection algorithm applied to the study of archaeological settlement patterning. J. Archaeol. Sci. 2011, 38, 2293–2300. [Google Scholar] [CrossRef]
- Graves, D. The use of predictive modelling to target neolithic settlement and occupation activity in Mainland Scotland. J. Archaeol. Sci. 2011, 38, 633–656. [Google Scholar] [CrossRef]
- Wachtel, I.; Zidon, R.; Garti, S.; Shelach-Lavi, G. Predictive modeling for archaeological site locations: Comparing Logistic Regression and Maximal Entropy in north Israel and north-east China. J. Archaeol. Sci. 2018, 92, 28–36. [Google Scholar] [CrossRef]
- Koohpayma, J.; Makki, M.; Lentschke, J.; AlaviPanah, S.K. Predicting potential locations of ancient settlements using GIS and Weights-Of-Evidence Method (case study: North-east of Iran). J. Archaeol. Sci. Rep. 2021, 40, 103229. [Google Scholar] [CrossRef]
- Yan, L.; Lu, P.; Chen, P.; Danese, M.; Li, X.; Masini, N.; Wang, X.; Guo, L.; Zhao, D. Towards an operative predictive model for the Songshan Area during the Yangshao period. Int. J. Geo-Inf. 2021, 10, 217. [Google Scholar] [CrossRef]
- Tan, B.; Wang, H.; Wang, X.; Yi, S.; Zhou, J.; Ma, C.; Dai, X. The study of early human settlement preference and settlement prediction in Xinjiang, China. Sci. Rep. 2022, 12, 5072. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Wu, B.; Zhang, Y.; Zhao, S. GIS-Based precise predictive model of Mountain Beacon Sites in Wenzhou, China. Sci. Rep. 2022, 12, 10773. [Google Scholar] [CrossRef] [PubMed]
- Danese, M.; Masini, N.; Biscione, M.; Lasaponara, R. Predictive modeling for preventive archaeology: Overview and case study. Open Geosci. 2014, 6, 42–55. [Google Scholar] [CrossRef]
- Caracausi, S.; Berruti, G.L.F.; Daffara, S.; Bertè, D.; Rubat Borel, F. Use of a GIS predictive model for the identification of high altitude prehistoric human frequentations. Results of the Sessera Valley project (piedmont, Italy). Quat. Int. 2018, 490, 10–20. [Google Scholar] [CrossRef]
- Wu, H.; Wang, X.; Wang, X.; Zhang, L.; Dong, S. Predictive modeling for Neolithic settlements in the Lingnan Region, South China. J. Archaeol. Sci. Rep. 2023, 49, 103992. [Google Scholar] [CrossRef]
- Guo, F. Study of Archaeological Sites Predictive Distribution Based on Logistic Regression Optimization Method—A Cast Study of Fenhe River Basin. Master’s Thesis, Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences, Beijing, China, 2018. [Google Scholar]
- Liu, Y. Simulation of Prehistoric Agriculture Dispersal Routes on the Tibetan Plateau Based on Explainable Machine Learning. Master’s Thesis, Lanzhou University, Lanzhou, China, 2023. [Google Scholar]
- Kvamme, K.L. Computer processing techniques for regional modeling of archaeological site locations. Adv. Comput. Archaeol. 1983, 1, 26–52. [Google Scholar]
- Kvamme, K.L. A predictive site location model on the High Plains: An example with an independent test. Plains Anthropol. 1992, 37, 19–40. [Google Scholar] [CrossRef]
- Ni, J. Predictive model of archaeological sites in the upper reaches of the Shuhe River in Shandong. Prog. Geogr. Sci. 2009, 28, 489–493. [Google Scholar]
- Han, Y. Research on the Relationship between Human and Environment in Jinghe River Basin during Pre-Qin Period Supported by Geographic Information Technology. Master’s Thesis, Northwest University, Xian, China, 2020. [Google Scholar]
- Cao, J.; Zhang, Z.; Du, J.; Zhang, L.; Song, Y.; Sun, G. Multi-geohazards susceptibility mapping based on machine learning—A case study in Jiuzhaigou, China. Nat. Hazards 2020, 102, 851–871. [Google Scholar] [CrossRef]
- Zheng, X.; He, G.; Wang, S.; Wang, Y.; Wang, G.; Yang, Z.; Yu, J.; Wang, N. Comparison of machine learning methods for potential active landslide hazards identification with multi-source data. Int. J. Geo-Inf. 2021, 10, 253. [Google Scholar] [CrossRef]
- Cao, W.; Pan, D.; Xu, Z.; Zhang, W.; Ren, Y.; Nan, T. Landslide disaster vulnerability mapping study in Henan Province: Comparison of different machine learning models. Bull. Geol. Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Mao, K.; Zhang, C.; Shi, J.; Wang, X.; Guo, Z.; Li, C.; Dong, L.; Wu, M.; Sun, R.; Wu, S.; et al. The paradigm theory and judgment conditions of geophysical parameter retrieval based on artificial intelligence. Smart Agric. 2023, 5, 161–171. [Google Scholar] [CrossRef]
- Mao, K.; Yuan, Z.; Shi, J.; Wu, S.; Hu, D.; Che, J.; Dong, L. Theory and engineering technology implementation of Artificial Intelligence retrieval paradigm for parameters of remote sensing based on Big Data. J. Agric. Big Data 2023, 5, 1–12. [Google Scholar] [CrossRef]
- Zheng, Q.; Tian, X.; Yu, Z.; Jiang, N.; Elhanashi, A.; Saponara, S. Application of wavelet-packet transform driven deep learning method in PM2. 5 concentration prediction: A case study of Qingdao, China. Sustain. Cities Soc. 2023, 92, 104486. [Google Scholar] [CrossRef]
- Zheng, Q.; Tian, X.; Yu, Z.; Jin, B.; Jiang, N.; Ding, Y.; Yang, M.; Elhanashi, A.; Saponara, S.; Kpalma, K. Application of complete ensemble empirical mode decomposition based multi-stream informer (CEEMD-MsI) in PM2.5 concentration long-term prediction. Expert. Syst. Appl. 2024, 245, 123008. [Google Scholar] [CrossRef]
- Chen, F.; Dong, G.; Zhang, D.; Liu, X.; Jia, X.; An, C.; Ma, M.; Xie, Y.; Barton, L.; Ren, X.; et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science 2015, 347, 248–250. [Google Scholar] [CrossRef] [PubMed]
- d’Alpoim Guedes, J.; Manning, S.W.; Bocinsky, R.K. A 5500-Year model of changing crop niches on the Tibetan Plateau. Cur. Anthropol. 2016, 57, 517–522. [Google Scholar] [CrossRef]
- Wang, H.; Yang, M.A.; Wangdue, S.; Lu, H.; Chen, H.; Li, L.; Dong, G.; Tsring, T.; Yuan, H.; He, W.; et al. Human genetic history on the Tibetan Plateau in the past 5100 years. Sci. Adv. 2023, 9, eadd5582. [Google Scholar] [CrossRef]
- Zhao, Y.; Obie, M.; Stewart, B.A. The archaeology of human permanency on the Tibetan Plateau: A critical review and assessment of current models. Quat. Sci. Rev. 2023, 313, 108211. [Google Scholar] [CrossRef]
- Ma, M.; Dong, G.; Jia, X.; Wang, H.; Cui, Y.; Chen, F. Dietary shift after 3600 cal yr BP and its influencing factors in northwestern China: Evidence from stable isotopes. Quat. Sci. Rev. 2016, 145, 57–70. [Google Scholar] [CrossRef]
- Ren, L.; Dong, G.; Liu, F.; d’Alpoim-Guedes, J.; Flad, R.K.; Ma, M.; Li, H.; Yang, Y.; Liu, Y.; Zhang, D.; et al. Foraging and farming: Archaeobotanical and zooarchaeological evidence for neolithic exchange on the Tibetan Plateau. Antiquity 2020, 94, 637–652. [Google Scholar] [CrossRef]
- Lu, H. Local millet farming and permanent occupation on the Tibetan Plateau. Sci. China Earth Sci. 2023, 66, 430–434. [Google Scholar] [CrossRef]
- Danese, M.; Masini, N.; Biscione, M.; Lasaponara, R. GIS and archaeology: A spatial predictive model for Neolithic sites of the Tavoliere (Apulia). In Proceedings of the First International Conference on Remote Sensing and Geoinformation of Environment, Paphos, Cyprus, 8–10 August 2013; Volume 8795, pp. 146–155. [Google Scholar]
- Vaughn, S.; Crawford, T. A predictive model of archaeological potential: An example from northwestern Belize. Appl. Geogr. 2009, 29, 542–555. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Jia, X. Hydrogeomorphic settings of late Paleolithic and early-mid Neolithic sites in relation to subsistence variation in Gansu and Qinghai Provinces, northwest China. Quat. Int. 2016, 426, 18–25. [Google Scholar] [CrossRef]
- Ma, M.; Dong, G.; Jia, X.; Zhang, Z. Analysis of settlement patterns during Neolithic and Bronze period and its influencing factors in Hualong county, Qinghai Province, China. Quat. Sci. 2012, 32, 209–218. [Google Scholar] [CrossRef]
- Hou, G.; Xu, C.; Xiao, J. Comparative analysis of Prehistoric sites distribution around 4 ka B.P. in Gansu-Qinghai region based on GIS. Sci. Geogr. Sin. 2012, 32, 116–120. [Google Scholar] [CrossRef]
- Dong, G.; Du, L.; Liu, R.; Li, Y.; Chen, F. Human-environment interaction systems between regional and continental scales in mid-latitude Eurasia during 6000–3000 years ago. Innov. Geosci. 2023, 1, 100038. [Google Scholar] [CrossRef]
- d’Alpoim Guedes, J. Did foragers adopt farming? A perspective from the margins of the Tibetan Plateau. Quat. Int. 2018, 489, 91–100. [Google Scholar] [CrossRef]
- Ma, Z.; Song, J.; Wu, X.; Hou, G.; Huan, X. Spatiotemporal distribution and geographical impact factors of barley and wheat during the late Neolithic and Bronze Age (4000–2300 cal. a BP) in the Gansu–Qinghai region, northwest China. Sustainability 2022, 14, 5417. [Google Scholar] [CrossRef]
- Chen, X.; Lü, H.; Liu, X.; Frachetti, M.D. Geospatial modelling of farmer–herder interactions maps cultural geography of Bronze and Iron Age Tibet, 3600–2200 BP. Sci. Rep. 2024, 14, 2010. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hou, G.; Lancuo, Z.; Gao, J.; Pang, L. GIS-based analysis of traffic routes and regional division of the Qinghai-Tibetan Plateau in prehistoric period. Prog. Geogr. 2018, 37, 438–449. [Google Scholar] [CrossRef]
- Hou, G.; Lancuo, Z.; Zhu, Y.; Pang, L. Communication route and its evolution on the Qinghai-Tibet Plateau during the prehistoric time. Acte Geogr. Sin. 2021, 76, 1294–1313. [Google Scholar] [CrossRef]
- Lancuo, Z.; Hou, G.; Xu, C.; Jiang, Y.; Wang, W.; Gao, J.; Wende, Z. Simulation of exchange routes on the Qinghai-Tibetan Plateau shows succession from the neolithic to the Bronze Age and strong control of the physical environment and production mode. Front. Earth Sci. 2023, 10, 1079055. [Google Scholar] [CrossRef]
- Velasquez, M.; Hester, P.T. An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 2013, 10, 56–66. [Google Scholar]
- Rhys, H.I. Machine Learning with R, the Tidyverse, and mlr; Manning Publications: New York, NY, USA, 2020. [Google Scholar]
- Li, Y.; Zhu, G. Changes of climate zones in the transition area of three natural zones during the past 50 years an their responses to climate change. Adv. Earth Sci. 2015, 30, 791–801. [Google Scholar] [CrossRef]
- Zheng, D.; Zhao, D. Characteristics of natural environment of the Tibetan Plateau. Sci. Technol. Rev. 2017, 35, 13–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Zheng, D. A discussion on the boundary and area of the Tibetan Plateau in China. Geogr. Res. 2002, 21, 1–8. [Google Scholar]
- Chen, F.; Zhang, J.; Liu, J.; Cao, X.; Hou, J.; Zhu, L.; Xu, X.; Liu, X.; Wang, M.; Wu, D. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review. Quat. Sci. Rev. 2020, 243, 106444. [Google Scholar] [CrossRef]
- Liu, X.; Jones, P.J.; Motuzaite Matuzeviciute, G.; Hunt, H.V.; Lister, D.L.; An, T.; Przelomska, N.; Kneale, C.J.; Zhao, Z.; Jones, M.K. From ecological opportunism to multi-cropping: Mapping food globalisation in Prehistory. Quat. Sci. Rev. 2019, 206, 21–28. [Google Scholar] [CrossRef]
- Dong, G.; Du, L.; Yang, L.; Lu, M.; Qiu, M.; Li, H.; Ma, M.; Chen, F. Dispersal of crop-livestock and geographical-temporal variation of subsistence along the steppe and Silk Roads across Eurasia in Prehistory. Sci. China Earth Sci. 2022, 65, 1187–1210. [Google Scholar] [CrossRef]
- Wang, H. The pedigree and pattern of Neolithic-Bronze Age archaeological culture in Gansu-Qinghai area. Collect. Stud. Archaeol. 2012, 21, 210–243. [Google Scholar]
- Chen, H.; Wang, G.; Mei, D.; Suo, N. Excavation briefing of Zongri Site in Tongde County, Qinghai Province. Archaeology 1998, 44, 1–14. [Google Scholar]
- Womack, A.; Flad, R.; Zhou, J.; Brunson, K.; Toro, F.H.; Su, X.; Hein, A.; d’Alpoim Guedes, J.; Jin, G.; Wu, X.; et al. The Majiayao to Qijia transition: Exploring the intersection of technological and social continuity and change. Asian Archaeol. 2021, 4, 95–120. [Google Scholar] [CrossRef]
- Wei, W.; Tang, S. Qijia Culture Hundred Years Research Article; Lanzhou University Press: Lanzhou, China, 2020. [Google Scholar]
- Li, Y.; Lu, P.; Mao, L.; Chen, P.; Yan, L.; Guo, L. Mapping spatiotemporal variations of Neolithic and Bronze Age settlements in the Gansu-Qinghai region, China: Scale grade, chronological development, and social organization. J. Archaeol. Sci. 2021, 129, 105357. [Google Scholar] [CrossRef]
- Chen, G. The community practicing metallurgy amidst the Xichengyi and Qijia: Preliminary study on early metallurgical population and related problems in Hexi Corridor. Archaeol. Cult. Relics 2017, 5, 37–44. [Google Scholar]
- Ren, R.; Chen, W. Some basic questions about Qijia culture. Sichuan Cult. Relics 2017, 195, 72–82. [Google Scholar]
- Wang, L. Scientific Study on Early Copper and Bronze Objects in the Gansu-Qinghai Region: With a Focus on the Mogou Site in Lintan. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2018. [Google Scholar]
- Zhen, Q. A study on large-double-ear pottery jars from Qijia culture and related sites. Sichuan Cult. Relics 2020, 213, 34–51. [Google Scholar]
- Jia, X. Cultural Evolution Process and Plant Remains during Neolithic-Bronze Age in Northeast Qinghai Province. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2012. [Google Scholar]
- Dong, G.; Ren, L.; Jia, X.; Liu, X.; Dong, S.; Li, H.; Wang, Z.; Xiao, Y.; Chen, F. Chronology and subsistence strategy of Nuomuhong culture in the Tibetan Plateau. Quat. Int. 2016, 426, 42–49. [Google Scholar] [CrossRef]
- An, C.; Feng, Z.; Tang, L. Evidence of a humid Mid-Holocene in the western part of Chinese Loess Plateau. Sci. Bull. 2003, 48, 2472–2479. [Google Scholar] [CrossRef]
- An, C.; Feng, Z.; Tang, L.; Chen, F. Environmental changes and cultural transition at 4 cal. ka BP in central Gansu. Acte Geogr. Sin. 2003, 58, 743–748. [Google Scholar]
- Bureau of National Cultural Relics. Atlas of Chinese Cultural Relics—Fascicule of Qinghai Province; Sinomap Press: Beijing, China, 1996. [Google Scholar]
- Bureau of National Cultural Relics. Atlas of Chinese Cultural Relics—Fascicule of Gansu Province; Sinomap Press: Beijing, China, 2011. [Google Scholar]
- Hosner, D.; Wagner, M.; Tarasov, P.E.; Chen, X.; Leipe, C. Spatiotemporal distribution patterns of archaeological sites in China during the Neolithic and Bronze Age: An overview. Holocene 2016, 26, 1576–1593. [Google Scholar] [CrossRef]
- Gu, X. A Study on the Relationship between Majiayao Cultural Residence and Tomb Space. Master’s Thesis, Lanzhou University, Lanzhou, China, 2020. [Google Scholar]
- Li, Y. Discussion on the burial customs of prehistoric settlements in China. Cult. Relics Cent. China 2017, 06, 39–44+51. [Google Scholar]
- Liu, X. Burial practices of the Cayo culture. J. Qinghai Norm. Univ. Soc. Sci. 1995, 65, 115–119. [Google Scholar] [CrossRef]
- Cooke, R.U.; Johnson, J.H. Trends in Geography: An Introductory Survey; Pergamon Press: Oxford, UK, 1969. [Google Scholar]
- Meyer, M.C.; Aldenderfer, M.S.; Wang, Z.; Hoffmann, D.L.; Dahl, J.A.; Degering, D.; Haas, W.R.; Schlütz, F. Permanent human occupation of the central Tibetan Plateau in the early Holocene. Science 2017, 355, 64–67. [Google Scholar] [CrossRef]
- Yao, M.; Shao, D.; Lv, C.; An, R.; Gu, W.; Zhou, C. Evaluation of arable land suitability based on the suitability function—A case study of the Qinghai-Tibet Plateau. Sci. Total Environ. 2021, 787, 147414. [Google Scholar] [CrossRef]
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Xu, X. [Dataset] Spatial Distribution Dataset of Annual Vegetation Index (NDVI) in China; Resource and Environmental Science Data Registration and Publication System: Beijing, China, 2018; Available online: https://www.resdc.cn/DOI/doi.aspx?DOIid=49 (accessed on 10 January 2024).
- Yao, M. [Dataset] Grading Map of Agricultural Suitability on the Tibet Plateau (2018); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2019. [Google Scholar] [CrossRef]
- ADC World Map. [Dataset] Third Pole 1:1 Million System Data Set (2014); National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar]
- Zhang, G. [Dataset] Dataset of All Lakes on the Tibetan Plateau (2000); National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar] [CrossRef]
- Ding, M. [Dataset] Temperature and Precipitation Grid Data of the Qinghai Tibet Plateau and Its Surrounding Areas in 1998–2017 Grid Data of Annual Temperature and Annual Precipitation on the Tibetan Plateau and Its Surrounding Areas during 1998–2017; National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2019. [Google Scholar] [CrossRef]
- Qin, F.; Zhao, Y.; Cao, X. Biome reconstruction on the Tibetan Plateau since the Last Glacial Maximum using a machine learning method. Sci. China: Earth Sci. 2022, 65, 518–535. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R; Version 2023.09.1 +494; RStudio Team: Boston, MA, USA, 2020. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Bischl, B.; Lang, M.; Kotthoff, L.; Schiffner, J.; Richter, J.; Studerus, E.; Casalicchio, G.; Jones, Z.M. mlr: Machine learning in R. J. Mach. Learn. Res. 2016, 17, 1–5. Available online: https://jmlr.org/papers/v17/15-066.html (accessed on 14 April 2024).
- Probst, P.; Au, Q.; Casalicchio, G.; Stachl, C.; Bischl, B. Multilabel Classification with R Package mlr. arXiv 2017, arXiv:1703.08991. [Google Scholar] [CrossRef]
- Wehrens, R.; Kruisselbrink, J. Flexible self-organizing maps in kohonen 3.0. J. Stat. Softw. 2018, 87, 1–18. [Google Scholar] [CrossRef]
- Wehrens, R.; Buydens, L.M.C. Self-and super-organizing maps in R: The kohonen Package. J. Stat. Softw. 2007, 21, 1–19. [Google Scholar] [CrossRef]
- Bivand, R.S.; Pebesma, E.; Gómez-Rubio, V. Applied Spatial Data Analysis with R, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Hijmans, R.J. Raster: Geographic data analysis and modeling (raster 4.3.2). R. Package Version 2018, 2, 18. [Google Scholar]
- Loh, W.Y. Classification and regression trees. Wiley Interdiscipl. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Lantz, B. Machine Learning with R; Packt Publishing: Birmingham, UK, 2019. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges; Springer: Cham, Switzerland, 2019; pp. 3–33. [Google Scholar]
- Ben-David, A. About the relationship between ROC curves and Cohen’s kappa. Eng. Appl. Artif. Intell. 2008, 21, 874–882. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Hand, D.J.; Till, R.J. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach. Learn. 2001, 45, 171–186. [Google Scholar] [CrossRef]
- Kvamme, K.L. There and back again: Revisiting archaeological locational modeling. In GIS and Archaeological Site Location Modeling, 1st ed.; Mehrer, M.W., Wescot, K.L., Eds.; CRC Press: New York, NY, USA, 2006; pp. 3–38. [Google Scholar]
- Kohonen, T.; Oja, E.; Lehtio, P. Storage and processing of information in distributed associative memory systems. In Parallel Models of Associative Memory; Hinton, G.E., Anderson, J.A., Eds.; Psychology Press: New York, NY, USA, 1981; pp. 129–167. [Google Scholar]
- Vesanto, J.; Himberg, J.; Alhoniemi, E.; Parhankangas, J. Self-organizing map in Matlab: The SOM toolbox. In Proceedings of the Matlab DSP Conference, Tampere, Finland, 16–17 November 1999; Volume 99, pp. 16–17. [Google Scholar]
- Kohonen, T. Essentials of the self-organizing map. Neural Netw. 2013, 37, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Tian, Y.; Yang, R. The study of size-grade of Prehistoric settlements in the Circum-Songshan area based on SOFM network. J. Geogr. Sci. 2013, 23, 538–548. [Google Scholar] [CrossRef]
- Schein, E.H. Organizational Culture and Leadership, 2nd ed.; Jossey Bass Publishers: San Francisco, CA, USA, 1992. [Google Scholar]
- Smith, M.E.; Lobo, J.; Peeples, M.A.; York, A.M.; Stanley, B.W.; Crawford, K.A.; Gauthier, N.; Huster, A.C. The persistence of ancient settlements and urban sustainability. Proc. Natl. Acad. Sci. USA 2021, 118, e2018155118. [Google Scholar] [CrossRef]
- Cao, H.; Dong, G. Social development and living environment changes in the northeast Tibetan Plateau and contiguous regions during the late Prehistoric period. Reg. Sustain. 2020, 1, 59–67. [Google Scholar] [CrossRef]
- d’Alpoim Guedes, J.A.; Lu, H.; Hein, A.M.; Schmidt, A.H. Early Evidence for the use of wheat and barley as staple crops on the margins of the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 5625–5630. [Google Scholar] [CrossRef]
- Ma, W. Evaluation of Impact of Climate Change on Highland Barley Cultivation in Qinghai-Tibet Plateau. Ph.D. Thesis, Qinghai Normal University, Xining, China, 2022. [Google Scholar]
- d’Alpoim Guedes, J.A. Rethinking the spread of agriculture to the Tibetan Plateau. Holocene 2015, 25, 1498–1510. [Google Scholar] [CrossRef]
- Liu, J.; Xin, Z.; Huang, Y.; Yu, J. Climate suitability assessment on the Qinghai-Tibet Plateau. Sci. Total Environ. 2022, 816, 151653. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Qin, C.; Bräuning, A.; Osborn, T.J.; Trouet, V.; Ljungqvist, F.C.; Esper, J.; Schneider, L.; Grießinger, J.; Büntgen, U.; et al. Long-term decrease in Asian monsoon rainfall and abrupt climate change events over the past 6700 years. Proc. Natl. Acad. Sci. USA 2021, 118, e2102007118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, C.; Yu, S.-Y.; Yang, X.; Cheng, J.; Zhang, X.; Xue, B.; Shen, J.; Chen, F. Seasonal imprint of Holocene temperature reconstruction on the Tibetan Plateau. Earth-Sci. Rev. 2022, 226, 103927. [Google Scholar] [CrossRef]
- Huang, J.; Ma, H.; Sedano, F.; Lewis, P.; Liang, S.; Wu, Q.; Su, W.; Zhang, X.; Zhu, D. Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST–PROSAIL model. Eur. J. Agron. 2019, 102, 1–13. [Google Scholar] [CrossRef]
- Mao, Y.; Sun, R.; Wang, J.; Cheng, Q.; Kiong, L.C.; Ochieng, W.Y. New time-differenced carrier phase approach to GNSS/INS integration. GPS Solut. 2022, 26, 122. [Google Scholar] [CrossRef]
- Zhu, N.; Wang, H.; Ma, Y. (Eds.) The Paper Collection of International Seminar on Qijia Culture and Huaxia Civilization. In Proceedings of the International Seminar on Qijia Culture and Huaxia Civilization, Guanghe, China, 1–2 August 2015; Culture Relics Press: Beijing, China, 2016. [Google Scholar]
- Brantingham, P.J.; Gao, X. Peopling of the northern Tibetan plateau. World Archaeol. 2006, 38, 387–414. [Google Scholar] [CrossRef]
- Ren, L.; Yang, Y.; Wang, Q.; Zhang, S.; Chen, T.; Cui, Y.; Wang, Z.; Liang, G.; Dong, G. The transformation of cropping patterns 642 from late Neolithic to early Iron Age (5900–2100 BP) in the Gansu–Qinghai region of northwest China. Holocene 2020, 312, 183–193. [Google Scholar] [CrossRef]
- Dong, G.; Lu, Y.; Zhang, S.; Huang, X.; Ma, M. Spatiotemporal variation in human settlements and their interaction with living environments in Neolithic and Bronze Age China. Prog. Phys. Geogr. Earth Environ. 2022, 46, 949–967. [Google Scholar] [CrossRef]
- Ren, K.; Ren, L. Faunal remains data from Paleolithic-early Iron Age archaeological sites in the Qinghai-Tibet Plateau in China. Sci. Data 2024, 11, 9. [Google Scholar] [CrossRef]
- Bond, G.; Showers, W.; Cheseby, M.; Lotti, R.; Almasi, P.; DeMenocal, P.; Priore, P.; Cullen, H.; Hajdas, I.; Bonani, G. A pervasive millennial-scale cycle in north Atlantic Holocene and glacial climates. Science 1997, 278, 1257–1266. [Google Scholar] [CrossRef]
- Bond, G.; Kromer, B.; Beer, J.; Muscheler, R.; Evans, M.N.; Showers, W.; Sharon, H.; Lotti-bond, R.; Hajdas, I.; Bonani, G. Persistent solar influence on north atlantic climate during the holocene. Science 2001, 294, 2130–2136. [Google Scholar] [CrossRef] [PubMed]
- Staubwasser, M.; Weiss, H. Holocene climate and cultural evolution in Late Prehistoric–Early historic west Asia. Quat. Res. 2006, 66, 372–387. [Google Scholar] [CrossRef]
- Marcott, S.A.; Shakun, J.D.; Clark, P.U.; Mix, A.C. A Reconstruction of Regional and Global Temperature for the Past 11,300 Years. Science 2013, 339, 1198–1201. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, Y.; Chen, S.; Gao, Y.; Yang, J.; Ran, J.; Gu, Z.; Yang, X. Human sedentism and use of animal resources on the Prehistoric Tibetan Plateau. J. Geogr. Sci. 2023, 33, 1851–1876. [Google Scholar] [CrossRef]
- Ren, L. A Study on Animal Exploitation Strategies from the Late Neolithic to Bronze Age in Northeastern Tibetan Plateau and Its Surrounding Areas, China. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2017. [Google Scholar]
- Chen, N.; Ren, L.; Du, L.; Hou, J.; Mullinet, V.E.; Wu, D.; Zhao, X.; Li, C.; Huang, J.; Qi, X.; et al. Ancient genomes reveal tropical bovid species in the Tibetan Plateau contributed to the prevalence of hunting game until the late Neolithic. Proc. Natl. Acad. Sci. USA 2020, 117, 28150–28159. [Google Scholar] [CrossRef]
- Ji, S.; Xingqi, L.; Sumin, W.; Matsumoto, R. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quat. Int. 2005, 136, 131–140. [Google Scholar] [CrossRef]
- Lv, F.; Chen, J.; Zhou, A.; Cao, X.; Zhang, X.; Wang, Z.; Wu, D.; Chen, X.; Yan, J.; Wang, H.; et al. Vegetation history and precipitation changes in the NE Qinghai-Tibet Plateau: A 7,900-years pollen record from Caodalian Lake. Paleoceanogr. Paleoclimatol. 2021, 36, e2020PA004126. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, S.; Zhang, H.; Dong, G. Detecting anthropogenic impact on forest succession from the perspective of wood exploitation on the northeast Tibetan Plateau during the late prehistoric period. Sci. China Earth Sci. 2022, 65, 2068–2082. [Google Scholar] [CrossRef]
- Wang, L. A brief analysis on the types of Qijia Painted Pottery Culture in Ganqingning area. Ceram. Stud. 2021, 36, 108–109. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, N.; Zhao, X.; Liang, X.; Liu, J.; Yang, P.; Wang, Y.; Wang, Y. Field model-based cultural diffusion patterns and GIS spatial analysis study on the spatial diffusion patterns of Qijia Culture in China. Remote Sens. 2022, 14, 1422. [Google Scholar] [CrossRef]
- Dodson, J.R.; Li, X.; Zhou, X.; Zhao, K.; Sun, N.; Atahan, P. Origin and spread of wheat in China. Quat. Sci. Rev. 2013, 72, 108–111. [Google Scholar] [CrossRef]
- Yang, Y. The Analysis of Charred Plant Seeds at Jinchankou Site and Lijiaping Site during Qijia Culture Period in the Hehuang Region, China. Master’s Thesis, Lanzhou University, Lanzhou, China, 2014. [Google Scholar]
- Flad, R.K.; Yuan, J.; Li, S. Zooarcheological evidence for animal domestication in northwest China. Dev. Quat. Sci. 2007, 9, 167–203. [Google Scholar] [CrossRef]
- Jia, X.; Lee, H.F.; Cui, M.; Cheng, G.; Zhao, Y.; Ding, H.; Yue, R.P.H.; Lu, H. Differentiations of geographic distribution and subsistence strategies between Tibetan and other major ethnic groups are determined by the physical environment in Hehuang Valley. Sci. China Earth Sci. 2019, 62, 412–422. [Google Scholar] [CrossRef]
- Meyer, M.C.; Hofmann, C.C.; Gemmell, A.M.D.; Haslinger, E.; Hausler, H.; Wangda, D. Holocene glacier fluctuations and migration of Neolithic yak pastoralists into the high valleys of northwest Bhutan. Quat. Sci. Rev. 2009, 28, 1217–1237. [Google Scholar] [CrossRef]
- Chen, S.; Gao, Y.; Chen, N.; Qiu, Q.; Wang, Y.; Yang, X.; Chen, F. Review and prospect of archaeological and genetic research on yak domestication on the Tibetan Plateau. Chin. Sci. Bull. 2024, 69, 1417–1428. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, Z.; Hou, J.; Chen, J.; Gao, X.; Tang, L.; Shargan, W.; Zhang, X.; Mikkel Holger, S.S.; Liu, X.; et al. Evidence for early domestic yak, taurine cattle, and their hybrids on the Tibetan Plateau. Sci. Adv. 2023, 9, eadi6857. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, G. Human adaptation strategies to different elevations during the middle and late Bronze Age in northeastern Tibetan Plateau. Quat. Sci. 2017, 37, 696–708. [Google Scholar] [CrossRef]
- Xu, E. Land use of the Tibet Plateau in 2015 (Version 1.0); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2019. [Google Scholar] [CrossRef]
Data | Variables | Type | Resolution | Time Period | Preprocess in R/ArcGIS 10.8 | Data Sources |
---|---|---|---|---|---|---|
Terrain | Elevation | Continuous | 90 m | 2000 | Original digital elevation model (DEM) data | https://www.gscloud.cn (accessed on 10 January 2024) |
Slope | Continuous | 90 m | 2000 | Slope processing | DEM data reprocessing | |
Aspect | Categorical | 90 m | 2000 | Aspect processing | DEM data reprocessing | |
Fluctuation | Continuous | 90 m | 2000 | Focal statistics within 20 ha. | DEM data reprocessing | |
Curvature | Continuous | 90 m | 2000 | Slope processing for slope | DEM data reprocessing | |
Vegetation | Vegetation types | Categorical | 1:1,000,000 | 1990s | None | https://www.resdc.cn (accessed on 10 January 2024) |
NDVI (normalized difference vegetation index) | Continuous | 1000 m | 1998–2018 | Multi-year averaging | https://www.resdc.cn (accessed on 10 January 2024) [74] | |
Land suitability | Pastoral land suitability | Continuous | 1000 m | 2018 | Interpolate using Focal statistics | https://data.tpdc.ac.cn (accessed on 10 January 2024) [75] |
Cultivated land suitability | Continuous | 1000 m | 2018 | Interpolate using Focal statistics | https://data.tpdc.ac.cn (accessed on 10 January 2024) [75] | |
Hydrology | Distance to Permanent River | Ordered Categorical | 1:1,000,000 | 2014 | Buffer analysis | https://data.tpdc.ac.cn (accessed on 10 January 2024) [76] |
Distance to Intermittent River | Ordered Categorical | 1:1,000,000 | 2014 | Buffer analysis | https://data.tpdc.ac.cn (accessed on 10 January 2024) [76] | |
Distance to Lake | Ordered Categorical | 14.5 m | 2000 | Buffer analysis | https://data.tpdc.ac.cn (accessed on 10 January 2024) [77] | |
Soil | Soil types | Ordered Categorical | 1000 m | 2010 | None | https://www.resdc.cn (accessed on 10 January 2024) |
Soil erosion | Categorical | 1000 m | 1995 | None | https://www.resdc.cn (accessed on 10 January 2024) | |
Climate | Mean annual temperature (MAT) | Continuous | 1000 m | 1998–2017 | Multi-year averaging | https://data.tpdc.ac.cn (accessed on 10 January 2024) [78] |
Mean annual precipitation (MAP) | Continuous | 1000 m | 1998–2017 | Multi-year averaging | https://data.tpdc.ac.cn (accessed on 10 January 2024) [78] |
Software/Packages Version | Usages | References | |
---|---|---|---|
Software | ArcGIS 10.8 | Data preprocessing; cartographic visualization | https://www.esri.com (accessed on 10 January 2024) |
R Studio 2023.09.1 +494 | Write and edit script | [80] | |
R 4.3.2 | Modeling, programming | [81] | |
R packages | caret 6.0-94 | Construct classification tree, model validation | [82] |
tidyverse 2.0.0 | Visualization, data reading, cleaning, and reshaping | [83] | |
mlr 2.19.1 | Construct RF, hyperparameter optimization, Cross-Validation | [84,85] | |
kohonen 3.0.12 | Construct SOM | [86,87] | |
sp 2.1-3 | Data preprocessing | [88] | |
raster 3.6-26 | Geographic data analysis | [89] |
Accuracy | Kappa | AUC | |
---|---|---|---|
OOB | 74.35% | 0.6337 | - |
Hold out | 73.04% | 0.6171 | 0.8607 |
Mean value of CV | 74.21% | 0.6320 | 0.8952 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Dong, J.; Che, M.; Wang, X.; Fan, J.; Dong, G. GIS and Machine Learning Models Target Dynamic Settlement Patterns and Their Driving Mechanisms from the Neolithic to Bronze Age in the Northeastern Tibetan Plateau. Remote Sens. 2024, 16, 1454. https://doi.org/10.3390/rs16081454
Li G, Dong J, Che M, Wang X, Fan J, Dong G. GIS and Machine Learning Models Target Dynamic Settlement Patterns and Their Driving Mechanisms from the Neolithic to Bronze Age in the Northeastern Tibetan Plateau. Remote Sensing. 2024; 16(8):1454. https://doi.org/10.3390/rs16081454
Chicago/Turabian StyleLi, Gang, Jiajia Dong, Minglu Che, Xin Wang, Jing Fan, and Guanghui Dong. 2024. "GIS and Machine Learning Models Target Dynamic Settlement Patterns and Their Driving Mechanisms from the Neolithic to Bronze Age in the Northeastern Tibetan Plateau" Remote Sensing 16, no. 8: 1454. https://doi.org/10.3390/rs16081454
APA StyleLi, G., Dong, J., Che, M., Wang, X., Fan, J., & Dong, G. (2024). GIS and Machine Learning Models Target Dynamic Settlement Patterns and Their Driving Mechanisms from the Neolithic to Bronze Age in the Northeastern Tibetan Plateau. Remote Sensing, 16(8), 1454. https://doi.org/10.3390/rs16081454