Urban Growth and Its Ecological Effects in China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Source
2.3. Data Preprocessing
2.3.1. NPP/VIIRS Nighttime Light Remote Sensing Data Preprocessing
2.3.2. Landsat Satellite Image Data Preprocessing
3. Methods
3.1. Statistics for Total Nighttime Light and Growth Rate
3.2. Standard Deviation Ellipse Method
3.3. Remote Sensing Ecological Index Model
3.3.1. Normalized Difference Vegetation Index (NDVI)
3.3.2. Wetness Index (WET)
3.3.3. Heat Index (LST)
3.3.4. Dryness Index (NDBSI)
3.3.5. The Construction of the Remote Sensing Ecological Index
4. Results and Analysis
4.1. The Spatial Distribution Pattern of China’s Total Nighttime Light
4.1.1. The Ranking and Contribution of Total Nighttime Light in Various Regions of China
4.1.2. Results of the Standard Deviation Ellipse Analysis
4.2. The Temporal Trend of China’s Total Nighttime Light
4.3. The Change in Urban Development and Ecological Environment Quality
4.3.1. The Response of the Ecological Environment to Urban Development
4.3.2. The Impact of Urban Development on the Ecological Environment
5. Discussion
5.1. The Regional Differences and Southward Shift of Nighttime Lights
5.2. The Non-Synergistic Impact of China’s Urbanization on Regional Ecological Environments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Poff, N.L. Ecological response to and management of increased flooding caused by climate change. Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Eng. Sci. 2002, 360, 1497–1510. [Google Scholar] [CrossRef] [PubMed]
- Wernberg, T.; Russell, B.D.; Moore, P.J.; Ling, S.D.; Smale, D.A.; Campbell, A.; Connell, S.D. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Biol. Ecol. 2011, 400, 7–16. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, S.; Chen, F.; Ye, H.; Wang, C.; Zhu, C. The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote Sens. 2012, 4, 2033–2056. [Google Scholar] [CrossRef]
- Shen, W.; Wu, J.; Grimm, N.B.; Hope, D. Effects of urbanization-induced environmental changes on ecosystem functioning in the Phoenix metropolitan region, USA. Ecosystems 2008, 11, 138–155. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Tian, J.; Ma, Q. Urban expansion dynamics and natural habitat loss in China: A multiscale landscape perspective. Glob. Change Biol. 2014, 20, 2886–2902. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the Dynamics of Urban Expansion in China Using DMSP-OLS Nighttime Light Data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Huang, X.; Schneider, A.; Friedl, M.A. Mapping sub-pixel urban expansion in China using MODIS and DMSP/OLS nighttime lights. Remote Sens. Environ. 2016, 175, 92–108. [Google Scholar] [CrossRef]
- Fang, G.; Gao, Z.; Tian, L.; Fu, M. What drives urban carbon emission efficiency? –Spatial analysis based on nighttime light data. Appl. Energy 2022, 312, 118772. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, H.; Song, W.; Yu, B.; Xiu, C. Normalization of time series DMSP-OLS nighttime light images for urban growth analysis with pseudo invariant features. Landsc. Urban Plan. 2014, 128, 1–13. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Zhou, Y.; Liu, H.; Yang, C.; Shi, K.; Wu, J. Mapping global urban areas from 2000 to 2012 using time-series nighttime light data and MODIS products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1143–1153. [Google Scholar] [CrossRef]
- Yu, B.; Tang, M.; Wu, Q.; Yang, C.; Deng, S.; Shi, K.; Chen, Z. Urban built-up area extraction from log-transformed NPP-VIIRS nighttime light composite data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1279–1283. [Google Scholar] [CrossRef]
- Xie, Z.; Yuan, M.; Zhang, F.; Chen, M.; Shan, J.; Sun, L.; Liu, X. Using Remote Sensing Data and Graph Theory to Identify Polycentric Urban Structure. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, Y.; Zhou, C.; Haynie, S.; Pei, T.; Xu, T. Night-time light derived estimation of spatio-temporal characteristics of urbanization dynamics using DMSP/OLS satellite data. Remote Sens. Environ. 2015, 158, 453–464. [Google Scholar] [CrossRef]
- Keola, S.; Andersson, M.; Hall, O. Monitoring economic development from space: Using nighttime light and land cover data to measure economic growth. World Dev. 2015, 66, 322–334. [Google Scholar] [CrossRef]
- Stokes, E.C.; Seto, K.C. Characterizing urban infrastructural transitions for the Sustainable Development Goals using multi-temporal land, population, and nighttime light data. Remote Sens. Environ. 2019, 234, 111430. [Google Scholar] [CrossRef]
- Niu, W.; Xia, H.; Wang, R.; Pan, L.; Meng, Q.; Qin, Y.; Li, R.; Zhao, X.; Bian, X.; Zhao, W. Research on Large-Scale Urban Shrinkage and Expansion in the Yellow River Affected Area Using Night Light Data. ISPRS Int. J. Geo-Inf. 2021, 10, 5. [Google Scholar] [CrossRef]
- Bagan, H.; Borjigin, H.; Yamagata, Y. Assessing nighttime lights for mapping the urban areas of 50 cities across the globe. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1097–1114. [Google Scholar] [CrossRef]
- Liu, Y.; Delahunty, T.; Zhao, N.; Cao, G. These lit areas are undeveloped: Delimiting China’s urban extents from thresholded nighttime light imagery. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 39–50. [Google Scholar] [CrossRef]
- Chalkias, C.; Petrakis, M.; Psiloglou, B.; Lianou, M. Modelling of light pollution in suburban areas using remotely sensed imagery and GIS. J. Environ. Manag. 2006, 79, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.J. Estimation of light pollution using satellite remote sensing and geographic information system techniques. GIScience Remote Sens. 2012, 49, 609–621. [Google Scholar] [CrossRef]
- Wu, J.; Tu, Y.; Chen, Z.; Yu, B. Analyzing the spatially heterogeneous relationships between nighttime light intensity and human activities across Chongqing, China. Remote Sens. 2022, 14, 5695. [Google Scholar] [CrossRef]
- Shi, K.; Shen, J.; Wu, Y.; Liu, S.; Li, L. Carbon dioxide (CO2) emissions from the service industry, traffic, and secondary industry as revealed by the remotely sensed nighttime light data. Int. J. Digit. Earth 2021, 14, 1514–1527. [Google Scholar] [CrossRef]
- Li, L.L.; Liang, P.; Jiang, S.; Chen, Z.Q. Multi-Scale Dynamic Analysis of the Russian–Ukrainian Conflict from the Perspective of Night-Time Lights. Appl. Sci. 2022, 12, 12998. [Google Scholar] [CrossRef]
- Agnew, J.; Gillespie, T.W.; Gonzalez, J.; Min, B. Baghdad nights: Evaluating the US military ‘surge’using nighttime light signatures. Environ. Plan. A 2008, 40, 2285–2295. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Huang, C.; Li, D. Detecting 2014 Northern Iraq Insurgency using night-time light imagery. Int. J. Remote Sens. 2015, 36, 3446–3458. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Q.; He, C.; Ma, Q. Dynamics of urbanization levels in China from 1992 to 2012: Perspective from DMSP/OLS nighttime light data. Remote Sens. 2015, 7, 1721–1735. [Google Scholar] [CrossRef]
- Xu, Y.; Hao, S.; Cui, Y.; Li, P.; Sheng, L.; Liao, C. Analysis of the spatiotemporal expansion and pattern evolution of urban areas in Anhui Province, China, based on nighttime light data. Ecol. Indic. 2023, 157, 111283. [Google Scholar] [CrossRef]
- Yan, Y.; Lei, H.; Chen, Y.; Zhou, B. Analyzing the Dynamic Spatiotemporal Changes in Urban Extension across Zhejiang Province Using NPP-VIIRS Nighttime Light Data. Remote Sens. 2022, 14, 3212. [Google Scholar] [CrossRef]
- Liu, K.; Xue, Y.; Chen, Z.; Miao, Y. The spatiotemporal evolution and influencing factors of urban green innovation in China. Sci. Total Environ. 2023, 857, 159426. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.Q. A remote sensing urban ecological index and its application. Acta Ecol. Sin. 2013, 33, 7853–7862. [Google Scholar]
- Zenghui, S.; Jichang, H.; Yanan, L.; Liangyan, Y.; Lei, S.; Jiakun, Y. Effects of large-scale land consolidation projects on ecological environment quality: A case study of a land creation project in Yan’an, China. Environ. Int. 2024, 183, 108392. [Google Scholar] [CrossRef] [PubMed]
- Xifeng, J.; Junling, H.; Qi, Z.; Saitiniyazi, A. Evolution pattern and driving mechanism of eco-environmental quality in arid oasis belt—A case study of oasis core area in Kashgar Delta. Ecol. Indic. 2023, 154, 110866. [Google Scholar] [CrossRef]
- Yang, X.; Meng, F.; Fu, P.; Wang, Y.; Liu, Y. Time-frequency optimization of RSEI: A case study of Yangtze River Basin. Ecol. Indic. 2022, 141, 109080. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, G.; Li, P.; Li, F.; Guo, X. Analysis on the driving factors of urban expansion policy based on DMSP/OLS remote Sensing image. Acta Geod. Et Cartogr. Sin. 2018, 47, 1466. [Google Scholar]
- Zhao, M.; Cheng, W.; Zhou, C.; Li, M.; Huang, K.; Wang, N. Assessing spatiotemporal characteristics of urbanization dynamics in Southeast Asia using time series of DMSP/OLS nighttime light data. Remote Sens. 2018, 10, 47. [Google Scholar] [CrossRef]
- Li, Y.; Ye, H.; Gao, X.; Sun, D.; Li, Z.; Zhang, N.; Zheng, J. Spatiotemporal patterns of urbanization in the three most developed urban agglomerations in China based on continuous nighttime light data (2000–2018). Remote Sens. 2021, 13, 2245. [Google Scholar] [CrossRef]
- Xu, T.; Ma, T.; Zhou, C.; Zhou, Y. Characterizing spatio-temporal dynamics of urbanization in China using time series of DMSP/OLS night light data. Remote Sens. 2014, 6, 7708–7731. [Google Scholar] [CrossRef]
- Wen, X.; Ming, Y.; Gao, Y.; Hu, X. Dynamic monitoring and analysis of ecological quality of pingtan comprehensive experimental zone, a new type of sea island city, based on RSEI. Sustainability 2019, 12, 21. [Google Scholar] [CrossRef]
- Gou, R.; Zhao, J. Eco-environmental quality monitoring in Beijing, China, using an RSEI-based approach combined with random forest algorithms. IEEE Access 2020, 8, 196657–196666. [Google Scholar] [CrossRef]
- Zhang, Y.; She, J.; Long, X.; Zhang, M. Spatio-temporal evolution and driving factors of eco-environmental quality based on RSEI in Chang-Zhu-Tan metropolitan circle, central China. Ecol. Indic. 2022, 144, 109436. [Google Scholar] [CrossRef]
- Song, H.M.; Xue, L. Dynamic monitoring and analysis of ecological environment in Weinan City, Northwest China based on RSEI model. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2016, 27, 3913–3919. [Google Scholar]
- Geng, J.; Yu, K.; Xie, Z.; Zhao, G.; Ai, J.; Yang, L.; Yang, H.; Liu, J. Analysis of Spatiotemporal Variation and Drivers of Ecological Quality in Fuzhou Based on RSEI. Remote Sens. 2022, 14, 4900. [Google Scholar] [CrossRef]
- Yue, H.; Liu, Y.; Li, Y.; Lu, Y. Eco-environmental quality assessment in China’s 35 major cities based on remote sensing ecological index. IEEE Access 2019, 7, 51295–51311. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Kiavarz, M.; Homaee, M.; Arsanjani, J.J.; Alavipanah, S.K. A novel method to quantify urban surface ecological poorness zone: A case study of several European cities. Sci. Total Environ. 2021, 757, 143755. [Google Scholar] [CrossRef] [PubMed]
- Airiken, M.; Zhang, F.; Chan, N.W.; Kung, H.T. Assessment of spatial and temporal ecological environment quality under land use change of urban agglomeration in the North Slope of Tianshan, China. Environ. Sci. Pollut. Res. 2022, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Karbalaei Saleh, S.; Amoushahi, S.; Gholipour, M. Spatiotemporal ecological quality assessment of metropolitan cities: A case study of central Iran. Environ. Monit. Assess. 2021, 193, 305. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
Data | Spatial Resolution | Time Series | Source |
---|---|---|---|
Night light | 500m | 2013–2021 | VIIRS/DNB |
Landsat8 image | 30m | 2013–2022 | NASA |
Land use data | 30m | 2013–2022 | Jie Yang and Xin Huang |
GDP | 2013–2021 | National Bureau of Statistics of China |
Year | Area/km2 | Growth Rate/% | Coordinates of the Center | Spatial Variation | Distance of Movement/km | Direction of Movement |
---|---|---|---|---|---|---|
2013 | 3,403,363 | 1.22% | 114°41′E 32°19′N | dilate | 62 | Southwest |
2021 | 3,445,027 | 113°54′E 32°15′N |
Region | Year | Area/km2 | Growth Rate/% | Spatial Variation | Distance of Movement/km | Direction of Movement |
---|---|---|---|---|---|---|
East | 2013 | 341,373 | 0.73% | Dilate | 37 | Northwest |
2021 | 343,877 | |||||
South | 2013 | 149,893 | 13.05% | Dilate | 14 | Southwest |
2021 | 169,450 | |||||
Northwest | 2013 | 502,403 | 5.15% | Dilate | 128 | Northwest |
2021 | 528,268 | |||||
Northeast | 2013 | 128,540 | 2.68% | Dilate | 24 | Southeast |
2021 | 131,986 | |||||
Central | 2013 | 32,701 | −1.72% | Shrink | 12 | Northeast |
2021 | 32,139 | |||||
North | 2013 | 250,609 | −6.37% | Shrink | 12 | Southeast |
2021 | 234,654 | |||||
Southwest | 2013 | 541,239 | 12.24% | Dilate | 29 | Northwest |
2021 | 607,488 |
City | RSEI Rating | Proportion/% | RSEI | Proportion/% | RSEI |
---|---|---|---|---|---|
Wuhan | Fail | 0.07% | 0.643 | 0.16% | 0.584 |
Poor | 8.39% | 2.51% | |||
Average | 22.44% | 12.26% | |||
Good | 60.03% | 35.43% | |||
Excellent | 9.07% | 49.64% | |||
Shenyang | Fail | 0.00% | 0.697 | 0.00% | 0.722 |
Poor | 0.31% | 0.04% | |||
Average | 11.29% | 8.91% | |||
Good | 84.68% | 72.45% | |||
Excellent | 3.72% | 18.60% | |||
Beijing | Fail | 0.06% | 0.583 | 0.22% | 0.697 |
Poor | 10.14% | 8.81% | |||
Average | 40.27% | 14.15% | |||
Good | 47.58% | 44.83% | |||
Excellent | 1.95% | 31.99% | |||
Xi’an | Fail | 2.91% | 0.583 | 1.87% | 0.621 |
Poor | 21.43% | 16.72% | |||
Average | 26.68% | 28.32% | |||
Good | 27.31% | 23.43% | |||
Excellent | 21.66% | 29.66% | |||
Hefei | Fail | 0.07% | 0.666 | 0.10% | 0.627 |
Poor | 4.89% | 7.20% | |||
Average | 20.53% | 31.15% | |||
Good | 62.72% | 53.20% | |||
Excellent | 11.80% | 8.35% | |||
Kunming | Fail | 2.18% | 0.527 | 1.41% | 0.548 |
Poor | 22.57% | 19.43% | |||
Average | 38.81% | 36.18% | |||
Good | 32.90% | 41.35% | |||
Excellent | 3.54% | 1.64% | |||
Shenzhen | Fail | 0.44% | 0.592 | 0.50% | 0.594 |
Poor | 28.50% | 28.07% | |||
Average | 20.76% | 20.09% | |||
Good | 21.90% | 22.65% | |||
Excellent | 28.40% | 28.69% |
Year | The Primary Sector Accounts of GDP/% | The Secondary Sector Accounts of GDP/% | The Tertiary Sector Accounts of GDP/% |
---|---|---|---|
2013 | 0.80% | 22.30% | 76.90% |
2021 | 0.27% | 18.04% | 81.67% |
Year | CLCD | 2022 | ||||||
---|---|---|---|---|---|---|---|---|
Cropland | Forest | Grassland | Water | Barren | Impervious | Total | ||
2013 | Cropland | 8120.916 | 58.982 | 0.478 | 61.130 | 0.008 | 387.447 | 8628.961 |
Forest | 62.331 | 489.043 | 0.079 | 0.221 | 0.000 | 2.303 | 553.977 | |
Grassland | 0.802 | 0.068 | 0.289 | 0.005 | 0.025 | 0.483 | 1.671 | |
Water | 119.006 | 0.317 | 0.000 | 1002.632 | 0.013 | 10.166 | 1132.133 | |
Barren | 0.009 | 0.000 | 0.005 | 0.000 | 0.012 | 0.032 | 0.058 | |
Impervious | 126.394 | 0.597 | 0.009 | 3.297 | 0.003 | 1023.605 | 1153.904 | |
Total | 8429.459 | 549.005 | 0.860 | 1067.283 | 0.060 | 1432.037 | 11,478.703 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Deng, S.; Zhang, S.; Shen, Y. Urban Growth and Its Ecological Effects in China. Remote Sens. 2024, 16, 1378. https://doi.org/10.3390/rs16081378
Chen H, Deng S, Zhang S, Shen Y. Urban Growth and Its Ecological Effects in China. Remote Sensing. 2024; 16(8):1378. https://doi.org/10.3390/rs16081378
Chicago/Turabian StyleChen, Hanqian, Shuyu Deng, Shunxue Zhang, and Yao Shen. 2024. "Urban Growth and Its Ecological Effects in China" Remote Sensing 16, no. 8: 1378. https://doi.org/10.3390/rs16081378
APA StyleChen, H., Deng, S., Zhang, S., & Shen, Y. (2024). Urban Growth and Its Ecological Effects in China. Remote Sensing, 16(8), 1378. https://doi.org/10.3390/rs16081378