Monitoring the Invasion of S. alterniflora on the Yangtze River Delta, China, Using Time Series Landsat Images during 1990–2022
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Dataset
2.2.1. Landsat Data and Preprocessing
2.2.2. Sample Point Data
2.2.3. Auxiliary Data
3. Methods
3.1. Extracting High Moisture Region
3.2. Determining the Optimal Time Phase of Phenological Difference
3.3. Identifying S. alterniflora
4. Results
4.1. S. alterniflora Mapping in the Yangtze River Delta from 1990 to 2022
4.2. Spatiotemporal Expansion Characteristics of S. alterniflora
4.3. Analysis of Phenological Characteristics and Extraction Accuracy of S. alterniflora at Different Latitudes
4.4. Exploring the Natural Factors Affecting the Growth of S. alterniflora
5. Discussion
5.1. Growth Characteristics of S. alterniflora
5.2. The Uncertainty of Monitoring S. alterniflora Using Remote Sensing Images
5.3. Ecological Control Measures of S. alterniflora
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The Global Distribution and Trajectory of Tidal Flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xiao, X.; Zou, Z.; Chen, B.; Ma, J.; Dong, J.; Doughty, R.B.; Zhong, Q.; Qin, Y.; Dai, S. Tracking Annual Changes of Coastal Tidal Flats in China during 1986–2016 through Analyses of Landsat Images with Google Earth Engine. Remote Sens. Environ. 2020, 238, 110987. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Liu, M.; Wang, Z.; Li, L.; Man, W.; Jia, M.; Zhang, Y. Rapid Invasion of Spartina Alterniflora in the Coastal Zone of Mainland China: Spatiotemporal Patterns and Human Prevention. Sensors 2019, 19, 2308. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Jiang, H.; Zhang, S.; Li, C.; Pan, X.; Lu, J. Expansion and Management Implications of Invasive Alien S. alterniflora in Yancheng Salt Marshes, China. OJE 2016, 6, 113–128. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y. Spatial Distribution of an Invasive Plant Spartina Alterniflora and Its Potential as Biofuels in China. Ecol. Eng. 2013, 52, 175–181. [Google Scholar] [CrossRef]
- Chung, C.-H. Forty Years of Ecological Engineering with Spartina Plantations in China. Ecol. Eng. 2006, 27, 49–57. [Google Scholar] [CrossRef]
- Wu, Y.; Xiao, X.; Chen, R.; Ma, J.; Wang, X.; Zhang, Y.; Zhao, B.; Li, B. Tracking the Phenology and Expansion of Spartina Alterniflora Coastal Wetland by Time Series MODIS and Landsat Images. Multimed. Tools Appl. 2020, 79, 5175–5195. [Google Scholar] [CrossRef]
- Song, S.; Wu, Z.; Wang, Y.; Cao, Z.; He, Z.; Su, Y. Mapping the Rapid Decline of the Intertidal Wetlands of China Over the Past Half Century Based on Remote Sensing. Front. Earth Sci. 2020, 8, 16. [Google Scholar] [CrossRef]
- Zhang, D.; Hu, Y.; Liu, M.; Chang, Y.; Yan, X.; Bu, R.; Zhao, D.; Li, Z. Introduction and Spread of an Exotic Plant, Spartina Alterniflora, Along Coastal Marshes of China. Wetlands 2017, 37, 1181–1193. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, W.; Tong, C.; Zeng, C.; Yu, X.; Mou, X. China’s Coastal Wetlands: Conservation History, Implementation Efforts, Existing Issues and Strategies for Future Improvement. Environ. Int. 2015, 79, 25–41. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Ma, J.; Wang, X.-X.; Zhong, Q.-Y.; Zong, J.-M.; Wu, W.-B.; Wang, Q.; Zhao, B. Joint Effect of Spartina Alterniflora Invasion and Reclamation on the Spatial and Temporal Dynamics of Tidal Flats in Yangtze River Estuary. Remote Sens. 2020, 12, 1725. [Google Scholar] [CrossRef]
- Tang, C. Ecological Control of S. alterniflora and Improvement of Birds Habitats in Chongming Dongtan Wetland, Shanghai. Wetl. Sci. Manag. 2016, 12, 4–8. [Google Scholar]
- Feng, J.; Huang, Q.; Qi, F.; Guo, J.; Lin, G. Utilization of Exotic Spartina Alterniflora by Fish Community in the Mangrove Ecosystem of Zhangjiang Estuary: Evidence from Stable Isotope Analyses. Biol. Invasions 2015, 17, 2113–2121. [Google Scholar] [CrossRef]
- Chu, Z.; Yang, X.; Feng, X.; Fan, D.; Li, Y.; Shen, X.; Miao, A. Temporal and Spatial Changes in Coastline Movement of the Yangtze Delta during 1974–2010. J. Asian Earth Sci. 2013, 66, 166–174. [Google Scholar] [CrossRef]
- Ouyang, Z.-T.; Gao, Y.; Xie, X.; Guo, H.-Q.; Zhang, T.-T.; Zhao, B. Spectral Discrimination of the Invasive Plant Spartina Alterniflora at Multiple Phenological Stages in a Saltmarsh Wetland. PLoS ONE 2013, 8, e67315. [Google Scholar] [CrossRef]
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, J.B.; Marbà, N. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef]
- Chung, C.; Zhuo, Z.; Xu, G. Creation of Spartina Plantations for Reclaiming Dongtai, China, Tidal Flats and Offshore Sands. Ecol. Eng. 2004, 23, 135–150. [Google Scholar] [CrossRef]
- Chen, L.; Ren, C.; Zhang, B.; Li, L.; Wang, Z.; Song, K. Spatiotemporal Dynamics of Coastal Wetlands and Reclamation in the Yangtze Estuary During Past 50 Years (1960s–2015). Chin. Geogr. Sci. 2018, 28, 386–399. [Google Scholar] [CrossRef]
- Wang, W.; Liu, H.; Li, Y.; Su, J. Development and Management of Land Reclamation in China. Ocean Coast. Manag. 2014, 102, 415–425. [Google Scholar] [CrossRef]
- Betbeder, J.; Rapinel, S.; Corgne, S.; Pottier, E.; Hubert-Moy, L. TerraSAR-X Dual-Pol Time-Series for Mapping of Wetland Vegetation. ISPRS J. Photogramm. Remote Sens. 2015, 10, 90–98. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and Hyperspectral Remote Sensing for Identification and Mapping of Wetland Vegetation: A Review. Wetl. Ecol Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Moffett, K.B.; Nardin, W.; Silvestri, S.; Wang, C.; Temmerman, S. Multiple Stable States and Catastrophic Shifts in Coastal Wetlands: Progress, Challenges, and Opportunities in Validating Theory Using Remote Sensing and Other Methods. Remote Sens. 2015, 7, 10184–10226. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, D.; Yang, B.; Sun, C.; Sun, M. Coastal Wetland Vegetation Classification with a Landsat Thematic Mapper Image. Int. J. Remote Sens. 2011, 32, 545–561. [Google Scholar] [CrossRef]
- Yang, G.; Huang, K.; Sun, W.; Meng, X.; Mao, D.; Ge, Y. Enhanced Mangrove Vegetation Index Based on Hyperspectral Images for Mapping Mangrove. ISPRS J. Photogramm. Remote Sens. 2022, 189, 236–254. [Google Scholar] [CrossRef]
- Cheng, S.; Yang, X.; Yang, G.; Chen, B.; Chen, D.; Wang, J.; Ren, K.; Sun, W. Using ZY1-02D Satellite Hyperspectral Remote Sensing to Monitor Landscape Diversity and Its Spatial Scaling Change in the Yellow River Estuary. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103716. [Google Scholar] [CrossRef]
- Gilmore, M.S.; Wilson, E.H.; Barrett, N.; Civco, D.L.; Prisloe, S.; Hurd, J.D.; Chadwick, C. Integrating Multi-Temporal Spectral and Structural Information to Map Wetland Vegetation in a Lower Connecticut River Tidal Marsh. Remote Sens. Environ. 2008, 112, 4048–4060. [Google Scholar] [CrossRef]
- Klemas, V.V. Coastal and Environmental Remote Sensing from Unmanned Aerial Vehicles: An Overview. J. Coast. Res. 2015, 31, 1260–1267. [Google Scholar] [CrossRef]
- Wan, H.; Wang, Q.; Jiang, D.; Fu, J.; Yang, Y.; Liu, X. Monitoring the Invasion of Spartina Alterniflora Using Very High Resolution Unmanned Aerial Vehicle Imagery in Beihai, Guangxi (China). Sci. World J. 2014, 2014, 638296. [Google Scholar] [CrossRef]
- Liu, M.; Li, H.; Li, L.; Man, W.; Jia, M.; Wang, Z.; Lu, C. Monitoring the Invasion of Spartina Alterniflora Using Multi-Source High-Resolution Imagery in the Zhangjiang Estuary, China. Remote Sens. 2017, 9, 539. [Google Scholar] [CrossRef]
- Kou, W.; Xiao, X.; Dong, J.; Gan, S.; Zhai, D.; Zhang, G.; Qin, Y.; Li, L. Mapping Deciduous Rubber Plantation Areas and Stand Ages with PALSAR and Landsat Images. Remote Sens. 2015, 7, 1048–1073. [Google Scholar] [CrossRef]
- Heumann, B.W. An Object-Based Classification of Mangroves Using a Hybrid Decision Tree—Support Vector Machine Approach. Remote Sens. 2011, 3, 2440–2460. [Google Scholar] [CrossRef]
- Li, N.; Li, L.; Zhang, Y.; Wu, M. Monitoring of the Invasion of Spartina Alterniflora from 1985 to 2015 in Zhejiang Province, China. BMC Ecol. 2020, 20, 7. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Chen, J.; Jing, C.; Ye, G.; Wu, J.; Huang, Z.; Zhou, C. Monitoring the Invasion of Spartina Alterniflora from 1993 to 2014 with Landsat TM and SPOT 6 Satellite Data in Yueqing Bay, China. PLoS ONE 2015, 10, e0135538. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Wang, L.; Yin, D.; Li, X.; Diao, C.; Gong, H.; Shi, C.; Massimo, M.; Ge, Y.; Ni, S.; et al. Development of Spectral-Phenological Features for Deep Learning to Understand Spartina Alterniflora Invasion. Remote Sens. Environ. 2020, 242, 111745. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, X.; Wang, X.; Xu, X.; Chen, B.; Wang, J.; Ma, J.; Zhao, B.; Li, B. Quantifying Expansion and Removal of Spartina Alterniflora on Chongming Island, China, Using Time Series Landsat Images during 1995–2018. Remote Sens. Environ. 2020, 247, 111916. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Li, J.; Liu, Y.; Liu, Y.; Liu, R. Plant Species Classification in Salt Marshes Using Phenological Parameters Derived from Sentinel-2 Pixel-Differential Time-Series. Remote Sens. Environ. 2021, 256, 112320. [Google Scholar] [CrossRef]
- Zuo, P.; Zhao, S.; Liu, C.; Wang, C.; Liang, Y. Distribution of Spartina Spp. along China’s Coast. Ecol. Eng. 2012, 40, 160–166. [Google Scholar] [CrossRef]
- Hu, Y.; Tian, B.; Yuan, L.; Li, X.; Huang, Y.; Shi, R.; Jiang, X.; Wang, L.; Sun, C. Mapping Coastal Salt Marshes in China Using Time Series of Sentinel-1 SAR. ISPRS J. Photogramm. Remote Sens. 2021, 173, 122–134. [Google Scholar] [CrossRef]
- Gao, Z.G.; Zhang, L.Q. Multi-Seasonal Spectral Characteristics Analysis of Coastal Salt Marsh Vegetation in Shanghai, China. Estuar. Coast. Shelf Sci. 2006, 69, 217–224. [Google Scholar] [CrossRef]
- Baker, C.; Lawrence, R.; Montagne, C.; Patten, D. Mapping Wetlands and Riparian Areas Using Landsat ETM+ Imagery and Decision-Tree-Based Models. Wetlands 2006, 26, 465–474. [Google Scholar] [CrossRef]
- Davranche, A.; Lefebvre, G.; Poulin, B. Wetland Monitoring Using Classification Trees and SPOT-5 Seasonal Time Series. Remote Sens. Environ. 2010, 114, 552–562. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, C.; Tong, C.; Zhang, Z.; Huang, J. Analysis of the Expanding Process of the Spartina Alterniflora Salt Marsh in Shanyutan Wetland, Minjiang River Estuary by Remote Sensing. Procedia Environ. Sci. 2011, 10, 2472–2477. [Google Scholar] [CrossRef]
- Ma, Z.; Gan, X.; Cai, Y.; Chen, J.; Li, B. Effects of Exotic Spartina Alterniflora on the Habitat Patch Associations of Breeding Saltmarsh Birds at Chongming Dongtan in the Yangtze River Estuary, China. Biol. Invasions 2011, 13, 1673–1686. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: 1. LandTrendr—Temporal Segmentation Algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Huang, H.G.; Samuel, N.G.; Jeffrey, G.M.; Nancy, T.; Zhu, Z.l.; James, E.V. An Automated Approach for Reconstructing Recent Forest Disturbance History Using Dense Landsat Time Series Stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Jing, J.; Deng, Q.; He, C. Spatiotemporal Evolution of NDVl and Its Climatic Driving Factors in the Southwest Karst Area from 1999 to 2019. Res. Soil Water Conserv. 2023, 30, 232–239. [Google Scholar]
- Zhang, R.S.; Shen, Y.M.; Lu, L.Y.; Yan, S.G.; Wang, Y.H.; Li, J.L.; Zhang, Z.L. Formation of Spartina Alterniflora Salt Marshes on the Coast of Jiangsu Province, China. Ecol. Eng. 2004, 23, 95–105. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-Annual Reflectance Composites from Sentinel-2 and Landsat for National-Scale Crop and Land Cover Mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Vaz, A.S.; Alcaraz-Segura, D.; Campos, J.C.; Vicente, J.R.; Honrado, J.P. Managing Plant Invasions through the Lens of Remote Sensing: A Review of Progress and the Way Forward. Sci. Total Environ. 2018, 642, 1328–1339. [Google Scholar] [CrossRef]
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some Challenges in Global Land Cover Mapping: An Assessment of Agreement and Accuracy in Existing 1 Km Datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer Resolution Observation and Monitoring of Global Land Cover: First Mapping Results with Landsat TM and ETM+ Data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Qin, Y.; Dong, J.; Geissler, G.; Zhang, G.; Cejda, N.; Alikhani, B.; Doughty, R.B. Mapping the Dynamics of Eastern Redcedar Encroachment into Grasslands during 1984–2010 through PALSAR and Time Series Landsat Images. Remote Sens. Environ. 2017, 190, 233–246. [Google Scholar] [CrossRef]
2014 | 2016 | 2017 | 2019 | |
---|---|---|---|---|
S. alterniflora | 229 | 268 | 183 | 227 |
Non-S. alterniflora | 192 | 217 | 189 | 169 |
BioClim | Bioclimate Index |
---|---|
X1 | Annual Mean Precipitation |
X2 | Annual Mean Maximum Temperature |
X3 | Annual Mean Minimum Temperature |
X4 | Annual Mean Temperature Difference |
X5 | Precipitation of Wettest Month |
X6 | Precipitation of Driest Month |
X7 | Precipitation of Coldest Month |
X8 | Precipitation of Hottest month |
X9 | Temperature of Coldest Month |
X10 | Temperature of Hottest Month |
Year | Class | PA | UA | OA | Kappa | Area (ha) |
---|---|---|---|---|---|---|
2014 | S. alterniflora | 0.96 | 0.91 | 0.93 | 0.87 | 59,239.46 |
Non-S. alterniflora | 0.90 | 0.95 | ||||
2016 | S. alterniflora | 0.97 | 0.91 | 0.93 | 0.87 | 58,149.93 |
Non-S. alterniflora | 0.90 | 0.96 | ||||
2017 | S. alterniflora | 0.91 | 0.89 | 0.90 | 0.81 | 55,263.36 |
Non-S. alterniflora | 0.90 | 0.91 | ||||
2019 | S. alterniflora | 0.96 | 0.89 | 0.92 | 0.84 | 47,985.74 |
Non-S. alterniflora | 0.87 | 0.95 |
Year | 1990–1995 | 1995–2000 | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2022 |
---|---|---|---|---|---|---|
Jiangsu | 14.24 | 6.21 | 2.44 | 1.59 | 0.16 | −1.19 |
Shanghai | 6.37 | 7.55 | 2.64 | 1.56 | 5.12 | −0.14 |
Zhejiang | 27.58 | 15.63 | 3.04 | 2.47 | 1.13 | −2.81 |
Total | 12.66 | 7.76 | 2.61 | 1.79 | 1.40 | −1.25 |
Year | Class | PA | UA | OA | Kappa |
---|---|---|---|---|---|
2014 | S. alterniflora | 0.96 | 0.96 | 0.95 | 0.89 |
Non-S. alterniflora | 0.92 | 0.93 | |||
2016 | S. alterniflora | 0.96 | 0.94 | 0.94 | 0.88 |
Non-S. alterniflora | 0.91 | 0.93 | |||
2017 | S. alterniflora | 0.93 | 0.94 | 0.91 | 0.78 |
Non-S. alterniflora | 0.85 | 0.83 | |||
2019 | S. alterniflora | 0.95 | 0.96 | 0.94 | 0.85 |
Non-S. alterniflora | 0.90 | 0.87 |
Year | Class | PA | UA | OA | Kappa |
---|---|---|---|---|---|
2014 | S. alterniflora | 0.84 | 0.90 | 0.89 | 0.78 |
Non-S. alterniflora | 0.92 | 0.88 | |||
2016 | S. alterniflora | 0.86 | 0.90 | 0.90 | 0.80 |
Non-S. alterniflora | 0.93 | 0.90 | |||
2017 | S. alterniflora | 0.85 | 0.94 | 0.92 | 0.84 |
Non-S. alterniflora | 0.97 | 0.92 | |||
2019 | S. alterniflora | 0.94 | 0.94 | 0.92 | 0.83 |
Non-S. alterniflora | 0.88 | 0.88 |
Year | Class | PA | UA | OA | Kappa |
---|---|---|---|---|---|
2014 | S. alterniflora | 0.89 | 0.91 | 0.90 | 0.81 |
Non-S. alterniflora | 0.92 | 0.89 | |||
2016 | S. alterniflora | 0.94 | 0.91 | 0.92 | 0.83 |
Non-S. alterniflora | 0.89 | 0.93 | |||
2017 | S. alterniflora | 0.95 | 0.85 | 0.90 | 0.81 |
Non-S. alterniflora | 0.87 | 0.95 | |||
2019 | S. alterniflora | 0.96 | 0.89 | 0.92 | 0.85 |
Non-S. alterniflora | 0.89 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zuo, Y.; Zheng, K.; Shao, C.; Shao, S.; Sun, W.; Yang, S.; Ge, W.; Wang, Y.; Yang, G. Monitoring the Invasion of S. alterniflora on the Yangtze River Delta, China, Using Time Series Landsat Images during 1990–2022. Remote Sens. 2024, 16, 1377. https://doi.org/10.3390/rs16081377
Zhou X, Zuo Y, Zheng K, Shao C, Shao S, Sun W, Yang S, Ge W, Wang Y, Yang G. Monitoring the Invasion of S. alterniflora on the Yangtze River Delta, China, Using Time Series Landsat Images during 1990–2022. Remote Sensing. 2024; 16(8):1377. https://doi.org/10.3390/rs16081377
Chicago/Turabian StyleZhou, Xinshao, Yangyan Zuo, Ke Zheng, Chunchen Shao, Shuyao Shao, Weiwei Sun, Susu Yang, Weiting Ge, Yonghong Wang, and Gang Yang. 2024. "Monitoring the Invasion of S. alterniflora on the Yangtze River Delta, China, Using Time Series Landsat Images during 1990–2022" Remote Sensing 16, no. 8: 1377. https://doi.org/10.3390/rs16081377
APA StyleZhou, X., Zuo, Y., Zheng, K., Shao, C., Shao, S., Sun, W., Yang, S., Ge, W., Wang, Y., & Yang, G. (2024). Monitoring the Invasion of S. alterniflora on the Yangtze River Delta, China, Using Time Series Landsat Images during 1990–2022. Remote Sensing, 16(8), 1377. https://doi.org/10.3390/rs16081377