Introducing the Azimuth Cutoff as an Independent Measure for Characterizing Sea-State Dynamics in SAR Altimetry
Abstract
:1. Introduction
2. Data
2.1. Sentinel-6A Data Processing
2.2. Wave Models
3. Azimuth Cutoff Analysis in the Spatial Domain
Gaussian Fitting Limitations and Sensitivities
4. Azimuth Cutoff Analysis in the Wavenumber Domain
5. Discussion
6. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ERA5 | European Centre for Medium-Range Weather Forecasts Reanalysis v5 |
FD | Fourier Domain |
MFWAM | Météo France Wave Model |
NRCS | Normalized Radar Cross Section |
SAR | Synthetic Aperture Radar |
SD | Spatial Domain |
S6A | Sentinel-6A |
References
- Hayne, G. Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering. IEEE Trans. Antennas Propag. 1980, 28, 687–692. [Google Scholar] [CrossRef]
- Raney, R. The delay/Doppler radar altimeter. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1578–1588. [Google Scholar] [CrossRef]
- Srokosz, M.A. On the joint distribution of surface elevation and slopes for a nonlinear random sea, with an application to radar altimetry. J. Geophys. Res. Ocean. 1986, 91, 995–1006. [Google Scholar] [CrossRef]
- Yaplee, B.S.; Shapiro, A.; Hammond, D.L.; Au, B.; Uliana, E.A. Nanosecond radar observations of the ocean surface from a stable platform. IEEE Trans. Geosci. Electron. 1971, 9, 170–174. [Google Scholar] [CrossRef]
- Pires, N.; Fernandes, M.J.; Gommenginger, C.; Scharroo, R. A Conceptually Simple Modeling Approach for Jason-1 Sea State Bias Correction Based on 3 Parameters Exclusively Derived from Altimetric Information. Remote Sens. 2016, 8, 576. [Google Scholar] [CrossRef]
- Badulin, S.I.; Grigorieva, V.G.; Shabanov, P.A.; Sharmar, V.D.; Karpov, I.O. Sea state bias in altimetry measurements within the theory of similarity for wind-driven seas. Adv. Space Res. 2021, 68, 978–988. [Google Scholar] [CrossRef]
- Gommenginger, C.; Srokosz, M. Sea State Bias—20 Years On. In ESA Special Publication; Danesy, D., Ed.; ESA Special Publication: Noordwijk, The Netherlands, 2006; Volume 614, p. 76. [Google Scholar]
- Cheng, Y.; Xu, Q.; Gao, L.; Li, X.; Zou, B.; Liu, T. Sea State Bias Variability in Satellite Altimetry Data. Remote Sens. 2019, 11, 1176. [Google Scholar] [CrossRef]
- Bronner, E.; Guillot, A.; Picot, N.; Noubel, J. SARAL/AltiKa Products Handbook; No. CNES: SALP-MU-M-OP-15984-CN; CNES: Paris, France, 2013. [Google Scholar]
- Fu, L.L.; Glazman, R. The effect of the degree of wave development on the sea state bias in radar altimetry measurement. J. Geophys. Res. Ocean. 1991, 96, 829–834. [Google Scholar] [CrossRef]
- Gaspar, P.; Ogor, F.; Le Traon, P.Y.; Zanife, O.Z. Estimating the sea state bias of the TOPEX and POSEIDON altimeters from crossover differences. J. Geophys. Res. Ocean. 1994, 99, 24981–24994. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, H.; Li, Z.; Zhu, C.; Liu, X. On Modelling Sea State Bias of Jason-2 Altimeter Data Based on Significant Wave Heights and Wind Speeds. Remote Sens. 2023, 15, 2666. [Google Scholar] [CrossRef]
- Tran, N.; Labroue, S.; Philipps, S.; Bronner, E.; Picot, N. Overview and Update of the Sea State Bias Corrections for the Jason-2, Jason-1 and TOPEX Missions. Mar. Geod. 2010, 33, 348–362. [Google Scholar] [CrossRef]
- Gourrion, J.; Vandemark, D.; Bailey, S.; Chapron, B.; Gommenginger, G.P.; Challenor, P.G.; Srokosz, M.A. A Two-Parameter Wind Speed Algorithm for Ku-Band Altimeters. J. Atmos. Ocean. Technol. 2002, 19, 2030–2048. [Google Scholar] [CrossRef]
- Gommenginger, C.; Srokosz, M.; Bellingham, C.; Snaith, H.; Pires, N.; Fernandes, M.; Tran, N.; Vandemark, D.; Moreau, T.; Labroue, S.; et al. Sea state bias: 25 years on. In Proceedings of the Presentation at and Abstract in: 25 years of progress in radar altimetry, Ponta Delgada, Portugal, 24–29 September 2018. [Google Scholar]
- Egido, A.; Ray, C. On the Effect of Surface Motion in SAR Altimeter Observations of the Open Ocean. In Proceedings of the OSTST 2019, Chicago, IL, USA, 21–25 October 2019. [Google Scholar]
- Buchhaupt, C.; Fenoglio, L.; Becker, M.; Kusche, J. Impact of vertical water particle motions on focused SAR altimetry. Adv. Space Res. 2021, 68, 853–874. [Google Scholar] [CrossRef]
- Reale, F.; Carratelli, E.; Laiz, I.; Di Leo, A.; Dentale, F. Wave Orbital Velocity Effects on Radar Doppler Altimeter for Sea Monitoring. J. Mar. Sci. Eng. 2020, 8, 447. [Google Scholar] [CrossRef]
- Altiparmaki, O.; Kleinherenbrink, M.; Naeije, M.; Slobbe, C.; Visser, P. SAR altimetry data as a new source for swell monitoring. Geophys. Res. Lett. 2022, 49, e2021GL096224. [Google Scholar] [CrossRef]
- Reale, F.; Dentale, F.; Carratelli, E.P.; Fenoglio-Marc, L. Influence of Sea State on Sea Surface Height Oscillation from Doppler Altimeter Measurements in the North Sea. Remote Sens. 2018, 10, 1100. [Google Scholar] [CrossRef]
- Buchhaupt, C.; Egido, A.; Smith, W.H.; Fenoglio, L. Conditional sea surface statistics and their impact on geophysical sea surface parameters retrieved from SAR altimetry signals. Adv. Space Res. 2023, 71, 2332–2347. [Google Scholar] [CrossRef]
- Schulz-Stellenfleth, J.; Lehner, S. Spaceborne synthetic aperture radar observations of ocean waves traveling into sea ice. J. Geophys. Res. 2002, 107, 20-1–20-19. [Google Scholar] [CrossRef]
- Liu, Y.; Su, M.Y.; Yan, X.H.; Liu, W.T. The Mean-Square Slope of Ocean Surface Waves and Its Effects on Radar Backscatter. J. Atmos. Ocean. Technol. 2000, 17, 1092–1105. [Google Scholar] [CrossRef]
- Nouguier, F.; Mouche, A.; Rascle, N.; Chapron, B.; Vandemark, D. Analysis of Dual-Frequency Ocean Backscatter Measurements at Ku- and Ka-Bands Using Near-Nadir Incidence GPM Radar Data. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1310–1314. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Measurement of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Am. 1954, 44, 838. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Statistics of the sea surface derived from sun glitter. J. Mar. Res. 1954, 13, 198–227. [Google Scholar]
- Stopa, J.E.; Ardhuin, F.; Chapron, B.; Collard, F. Estimating wave orbital velocity through the azimuth cutoff from space-borne satellites. J. Geophys. Res. Oceans 2015, 120, 7616–7634. [Google Scholar] [CrossRef]
- Hasselmann, K.; Raney, R.K.; Plant, W.J.; Alpers, W.; Shuchman, R.A.; Lyzenga, D.R.; Rufenach, C.L.; Tucker, M.J. Theory of synthetic aperture radar ocean imaging: A MARSEN view. J. Geophys. Res. 1985, 90, 4659–4686. [Google Scholar] [CrossRef]
- Alpers, W.; Rufenach, C. The effect of orbital motions on synthetic aperture radar imagery of ocean waves Altimeter for Sea Monitoring. IEEE Trans. Antennas Propag. 1979, 27, 685–690. [Google Scholar] [CrossRef]
- Lyzenga, D.; Shuchman, R.; Lyden, J. SAR Imaging of Waves in Water and Ice Evidence for Velocity Bunching. J. Gheophysical Res. 1985, 90, 1031–1036. [Google Scholar] [CrossRef]
- Raney, R.K. Wave orbital velocity, fade, and SAR response to azimuth waves. IEEE J. Ocean. Eng. 1981, 6, 140–146. [Google Scholar] [CrossRef]
- Kerbaol, V.; Chapron, B.; Vachon, P.W. Analysis of ERS-1/2 synthetic aperture radar wave mode imagettes. J. Geophys. Res. 1998, 103, 7833–7846. [Google Scholar] [CrossRef]
- Chapron, B.; Johnsen, H.; Garello, R. Wave and wind retrieval from sar images of the ocean. Ann. Télécommun. 2001, 56, 682–699. [Google Scholar] [CrossRef]
- Beal, R.C.; Tilley, D.G.; Monaldo, F.M. Large-and small-scale spatial evolution of digitally processed ocean wave spectra from SEASAT synthetic aperture radar. J. Geophys. Res. Ocean. 1983, 88, 1761–1778. [Google Scholar] [CrossRef]
- Alpers, W.; Bruening, C.; Richter, K. Comparison of Simulated and Measured Synthetic Aperture Radar Image Spectra with Buoy-Derived Ocean Wave Spectra During the Shuttle Imaging Radar B Mission. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 559–566. [Google Scholar] [CrossRef]
- Grieco, G.; Lin, W.; Migliaccio, M.; Nirchio, F.; Portabella, M. Dependency of the Sentinel-1 azimuth wavelength cut-off on significant wave height and wind speed. Int. J. Remote Sens. 2016, 37, 5086–5104. [Google Scholar] [CrossRef]
- Hasselmann, S.; Bruning, C.; Hasselmann, K.; Heimbach, P. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra. J. Geophys. Res. 1996, 101, 16615–16629. [Google Scholar] [CrossRef]
- Rieu, P.; Moreau, T.; Cadier, E.; Raynal, M.; Clerc, S.; Donlon, C.; Borde, F.; Boy, F.; Maraldi, C. Exploiting the Sentinel-3 tandem phase dataset and azimuth oversampling to better characterize the sensitivity of SAR altimeter sea surface height to long ocean waves. Adv. Space Res. 2021, 67, 253–265. [Google Scholar] [CrossRef]
- Egido, A.; Smith, W. Fully-focused SAR altimetry: Theory and applications. IEEE Trans. Geosci. Remote Sens 2017, 55, 392–406. [Google Scholar] [CrossRef]
- Guccione, P.; Scagliola, M.; Giudici, D. 2D Frequency Domain Fully Focused SAR Processing for High PRF Radar Altimeters. Remote Sens. 2018, 10, 1943. [Google Scholar] [CrossRef]
- Hasselmann, K.; Hasselmann, S. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. J. Geophys. Res. 1991, 96, 10713–10729. [Google Scholar] [CrossRef]
- Alpers, W.; Hasselman, K. The Two frequency Microwave Technique for Measuring Ocean—Wave Spectra from an Airplane or Satellite. Bound.-Layer Meteorol. 1978, 13, 215–230. [Google Scholar] [CrossRef]
- Lyzenga, D.R. Numerical Simulation of Synthetic Aperture Radar Image Spectra for Ocean Waves. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 863–872. [Google Scholar] [CrossRef]
- Kleinherenbrink, M.; Ehlers, F.; Hernández, S.; Nouguier, F.; Altiparmaki, O.; Schlembach, F.; Chapron, B. Cross-spectral analysis of SAR altimetry waveform tails. IEEE Trans. Geosci. Remote Sens. 2024; under review. [Google Scholar]
- Rieu, P.; Amraoui, S.; Restano, M. Standalone Multi-mission Altimetry Processor (SMAP) June 2021. Available online: https://github.com/cls-obsnadir-dev/SMAP-FFSAR (accessed on 25 June 2023).
- Amraoui, S.; Guccione, P.; Moreau, T.; Alves, M.; Altiparmaki, O.; Peureux, C.; Recchia, L.; Maraldi, C.; Boy, F.; Donlon, C. Optimal Configuration of Omega-Kappa FF-SAR Processing for Specular and Non-Specular Targets in Altimetric Data: The Sentinel-6 Michael Freilich Study Case. Remote Sens. 2024, 16, 1112. [Google Scholar] [CrossRef]
- Ardhuin, F.; Rogers, E.; Babanin, A.; Filipot, J.; Magne, R.; Roland, A.; van der Westhuysen, A.; Queffeulou, P.; Lefevre, J.M.; Aouf, L.; et al. Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. J. Phys. Oceanogr. 2010, 40, 1917–1941. [Google Scholar] [CrossRef]
- Janssen, P.; Aouf, L.; Behrens, A.; Korres, G.; Cavalieri, L.; Christiensen, K.; Breivik, O. Final Report of work-package I in my wave project. 2014. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Product User Manual For Global Ocean Wave Analysis and Forecasting Product, EU Copernicus Marine Service; Technical report; European Commission: Brussels, Belgium, 2023; Available online: https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-027.pdf (accessed on 1 December 2023).
- Xiong, J.; Wang, Y.P.; Gao, S.; Du, J.; Yang, Y.; Tang, J.; Gao, J. On estimation of coastal wave parameters and wave-induced shear stresses. Limnol. Oceanogr. Methods 2018, 16, 594–606. [Google Scholar] [CrossRef]
- Elfouhaily, T.; Chapron, B.; Katsaros, K.; Vandemark, D. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res. Ocean. 1997, 102, 15781–15796. [Google Scholar] [CrossRef]
- Vachon, P.W.; Olsen, R.B.; Krogstad, H.E.; Liu, A.K. Airborne synthetic aperture radar observations and simulations for waves in ice. Geophys. Res. 1993, 98, 16411–16425. [Google Scholar] [CrossRef]
- Engen, G.; Johnsen, H. A New Method for Calibration of SAR Images. In Proceedings of the SAR Workshop: CEOS Committee on Earth Observation Satellites, Working Group on Calibration and Validation, Toulouse, France, 26–29 October 1999; ESA-SP. Harris, R.A., Ouwehand, L., Eds.; European Space Agency: Paris, France, 2000; Volume 450, p. 109, ISBN 9290926414. [Google Scholar]
- CORDIS. MyWave: A Pan-European Concerted and Integrated Approach to Operational Wave Modelling and Forecasting—A Complement to GMES MyOcean Services; Technical report; European Commission: Brussels, Belgium, 2014; Available online: https://cordis.europa.eu/project/id/284455/reporting (accessed on 1 December 2023).
- Marechal, G.; Ardhuin, F. Surface Currents and Significant Wave Height Gradients: Matching Numerical Models and High-Resolution Altimeter Wave Heights in the Agulhas Current Region. J. Geophys. Res. Ocean. 2021, 126, e2020JC016564. [Google Scholar] [CrossRef]
- Donlon, C.J.; Cullen, R.; Giulicchi, L.; Vuilleumier, P.; Francis, C.R.; Kuschnerus, M.; Simpson, W.; Bouridah, A.; Caleno, M.; Bertoni, R.; et al. The Copernicus Sentinel-6 mission: Enhanced continuity of satellite sea level measurements from space. Remote Sens. Environ. 2021, 258, 112395. [Google Scholar] [CrossRef]
- Kleinherenbrink, M.; Smith, W.H.F.; Naeije, M.C.; Slobbe, D.C.; Hoogeboom, P. The second-order effect of Earth’s rotation on CryoSat-2 fully-focused SAR processing. J. Geod. 2020, 94, 7. [Google Scholar] [CrossRef]
MFWAM−ERA5 | Mean | Std. Dev. | Corr. Coef. |
---|---|---|---|
Significant wave height [m] | 0.12 | 0.38 | 0.96 |
Mean zero-up crossing period [s] | 0.35 | 0.59 | 0.88 |
Category | Points | Mean [m] | Std. Dev. [m] | Corr. Coef. |
---|---|---|---|---|
All data | 318,590 (318,541) | −16.47 (−10.59) | 101.84 (96.70) | 0.67 (0.71) |
Wind speed [m/s] | ||||
U10 < 5 | 68,811 (68,794) | 62.18 (63.08) | 91.07 (93.67) | 0.51 (0.51) |
5 < U10 < 15 | 237,359 (237,327) | −32.65 (−27.71) | 90.23 (86.14) | 0.65 (0.70) |
U10 > 15 | 12,420 (12,420) | −143.04 (−90.81) | 95.64 (88.83) | 0.65 (0.72) |
Significant Wave Height [m] | ||||
Hs < 2 | 78,345 (79,377) | 12.19 (32.99) | 95.17 (107.22) | 0.07 (0.01) |
2 < Hs < 5 | 224,755 (217,442) | −22.73 (−23.13) | 100.29 (87.98) | 0.48 (0.56) |
Hs > 5 | 15,490 (21,722) | −70.62 (−44.83) | 117.93 (90.75) | 0.29 (0.48) |
Significant Wave Height [m] and Wind Speed [m/s] | ||||
2 < Hs and U10 < 5 | 36,167 (33,907) | 52.80 (70.36) | 94.28 (104.95) | 0.14 (0.03) |
2 < Hs < 5 and 5 < U10 < 15 | 188,088 (178,709) | −35.72 (−36.46) | 91.30 (80.13) | 0.51 (0.58) |
Hs > 5 and U10 > 15 | 8226 (8043) | −126.12 (−87.94) | 98.00 (77.78) | 0.51 (0.70) |
Azimuth Cutoff Differences [m] | RMSE | |||
---|---|---|---|---|
20 | 50 | 100 | ||
S6A-ERA5 | 102.15 | 93.32 | 106.69 | |
S6A-MFWAM | 99.05 | 88.63 | 96.23 |
Category | Points | Mean [m] | Std. Dev. [m] | Corr. Coef. |
---|---|---|---|---|
All data | 311,640 (311,594) | −41.68 (−38.53) | 83.50 (79.98) | 0.79 (0.81) |
Wind speed [m/s] | ||||
U10 < 5 | 66,918 (66,902) | −17.93 (−18.94) | 58.16 (57.01) | 0.68 (0.73) |
5 < U10 < 15 | 232,486 (232,456) | −43.010 (−41.03) | 84.24 (82.20) | 0.71 (0.73) |
U10 > 15 | 12,236 (12,236) | −146.30 (−98.16) | 100.79 (104.69) | 0.20 (0.26) |
Significant Wave Height [m] | ||||
Hs < 2 | 75,068 (73,463) | −21.9 (−9.87) | 75.83 (71.60) | 0.51 (0.52) |
2 < Hs < 5 | 221,198 (216,403) | −40.26 (−38.98) | 79.66 (76.09) | 0.74 (0.76) |
Hs > 5 | 15,374 (21,728) | −158.71 (−131.49) | 79.38 (70.04) | 0.58 (0.62) |
Significant Wave Height [m] and Wind Speed [m/s] | ||||
Hs < 2 and U10 < 5 | 34,721 (32,190) | −14.5 (−1.55) | 61.11 (58.01) | 0.47 (0.47) |
2 < Hs < 5 and 5 < U10 < 15 | 185,075 (177,970) | −42.65 (−40.34) | 82.21 (79.52) | 0.68 (0.69) |
Hs > 5 and U10 > 15 | 8139 (8050) | −180.21 (−139.01) | 83.70 (81.39) | 0.33 (0.30) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altiparmaki, O.; Amraoui, S.; Kleinherenbrink, M.; Moreau, T.; Maraldi, C.; Visser, P.N.A.M.; Naeije, M. Introducing the Azimuth Cutoff as an Independent Measure for Characterizing Sea-State Dynamics in SAR Altimetry. Remote Sens. 2024, 16, 1292. https://doi.org/10.3390/rs16071292
Altiparmaki O, Amraoui S, Kleinherenbrink M, Moreau T, Maraldi C, Visser PNAM, Naeije M. Introducing the Azimuth Cutoff as an Independent Measure for Characterizing Sea-State Dynamics in SAR Altimetry. Remote Sensing. 2024; 16(7):1292. https://doi.org/10.3390/rs16071292
Chicago/Turabian StyleAltiparmaki, Ourania, Samira Amraoui, Marcel Kleinherenbrink, Thomas Moreau, Claire Maraldi, Pieter N. A. M. Visser, and Marc Naeije. 2024. "Introducing the Azimuth Cutoff as an Independent Measure for Characterizing Sea-State Dynamics in SAR Altimetry" Remote Sensing 16, no. 7: 1292. https://doi.org/10.3390/rs16071292
APA StyleAltiparmaki, O., Amraoui, S., Kleinherenbrink, M., Moreau, T., Maraldi, C., Visser, P. N. A. M., & Naeije, M. (2024). Introducing the Azimuth Cutoff as an Independent Measure for Characterizing Sea-State Dynamics in SAR Altimetry. Remote Sensing, 16(7), 1292. https://doi.org/10.3390/rs16071292