Automatic Extraction of Martian Subsurface Layer from Radargrams Based on PDE Denoising and KL Filter
Abstract
:1. Introduction
2. Background
2.1. Principles of Radar Underground Detection
2.2. Current Status of Subsurface Information Extraction Technology
3. Automatic Detection Algorithm
3.1. Mapped Enhancement Denoising
3.1.1. Linear Brightness Adjustment
3.1.2. Denoising of Radargrams
- (A)
- Denoising Algorithm based on Fourth-order diffusion equation
- (B) Denoising Results
3.1.3. Performance Evaluation of Denoising Process
3.2. Reflector Extration
- (a)
- Peak detection
- (b) Feature extraction
- (c)
- Connecting peak points
4. Performance Analysis
4.1. Calculation of Missed Detection Rate and False Detection Rate
4.2. Comparative Analysis of Reflection Detection Results with Other Literature
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cutts, J.A. Nature and origin of layered deposits of the Martian polar regions. J. Geophys. Res. 1973, 78, 4231–4249. [Google Scholar] [CrossRef]
- Picardi, G.; Biccari, D.; Cicchetti, A.; Seu, R.; Plaut, J.J.; Johnson, W.T.K.; Jordan, R.L.; Gurnett, D.A.; Orosei, R.; Zampolini, E.M. Mars Advanced Radar For Subsurface And Ionosphere Sounding (MARSIS). Planet. Space Sci. 2003, 52, 149–156. [Google Scholar] [CrossRef]
- Seu, R.; Phillips, R.J.; Biccari, D.; Orosei, R.; Masdea, A.; Picardi, G.; Safaeinili, A.; Campbell, B.A.; Plaut, J.J.; Marinangeli, L.; et al. SHARAD sounding radar on the Mars Reconnaissance Orbiter. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Fan, M.; Lyu, P.; Su, Y.; Du, K.; Zhang, Q.; Zhang, Z.; Dai, S.; Hong, T. The Mars Orbiter Subsurface Investigation Radar (MOSIR) on China’s Tianwen-1 Mission. Space Sci. Rev. 2021, 217, 8. [Google Scholar] [CrossRef]
- Wen, Y.; Sun, J.; Guo, Z. A new anisotropic fourth-order diffusion equation model based on image features for image denoising. Inverse Probl. Imaging 2022, 16, 895–924. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K.O. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef]
- Smith, D.E.; Zuber, M.T.; Frey, H.V.; Garvin, J.B.; Head, J.W.; Muhleman, D.O.; Pettengill, G.H.; Phillips, R.J.; Solomon, S.C.; Zwally, H.J.; et al. Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 2001, 106, 23689–23722. [Google Scholar] [CrossRef]
- Byrne, S. The Polar Deposits of Mars. Annu. Rev. Earth Planet. Sci. 2009, 37, 535–560. [Google Scholar] [CrossRef]
- Smith, I.B.; Putzig, N.E.; Holt, J.W.; Phillips, R.J. An ice age recorded in the polar deposits of Mars. Science 2016, 352, 1075–1078. [Google Scholar] [CrossRef]
- Smock, B.; Wilson, J.N. Efficient multiple layer boundary detection in ground-penetrating radar data using an extended Viterbi algorithm. In Proceedings of the Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVII, Maryland, MD, USA, 10 May 2012. [Google Scholar]
- Lee, S.; Mitchell, J.E.; Crandall, D.J.; Fox, G.C. Estimating bedrock and surface layer boundaries and confidence intervals in ice sheet radar imagery using MCMC. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 111–115. [Google Scholar]
- Carrer, L.; Bruzzone, L. Automatic Enhancement and Detection of Layering in Radar Sounder Data Based on a Local Scale Hidden Markov Model and the Viterbi Algorithm. IEEE Trans. Geosci. Remote Sens. 2017, 55, 962–977. [Google Scholar] [CrossRef]
- Xiong, S.; Muller, J.-P. Automated reconstruction of subsurface interfaces in Promethei Lingula near the Martian south pole by using SHARAD data. Planet. Space Sci. 2019, 166, 59–69. [Google Scholar] [CrossRef]
- Steger, C. An Unbiased Detector of Curvilinear Structures. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 113–125. [Google Scholar] [CrossRef]
- Weickert, J. Applications of nonlinear diffusion in image processing and computer vision. Acta Math. Univ. Comenianae. New Ser. 2000, 70, 33–50. [Google Scholar]
- A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations. Math. Model. Numer. Anal. 1992, 26, 673–708. [CrossRef]
- Weickert, J.; Romeny, B.M.t.H.; Viergever, M.A. Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 1998, 7, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Beura, S.; Majhi, B.; Dash, R. Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer. Neurocomputing 2015, 154, 1–14. [Google Scholar] [CrossRef]
- Lee, J.-S. Digital Image Enhancement and Noise Filtering by Use of Local Statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, PAMI-2, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Mouginot, J.; Pommerol, A.; Kofman, W.; Beck, P.; Schmitt, B.; Hérique, A.; Grima, C.; Safaeinili, A.; Plaut, J.J. The 3–5 MHz global reflectivity map of Mars by MARSIS/Mars Express: Implications for the current inventory of subsurface H2O. Icarus 2010, 210, 612–625. [Google Scholar] [CrossRef]
- Lin, J. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 1991, 37, 145–151. [Google Scholar] [CrossRef]
- Ilisei, A.-M.; Bruzzone, L. Automatic classification of subsurface features in radar sounder data acquired in icy areas. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 3530–3533. [Google Scholar]
- Barton, D.K.; Ward, H.R. Handbook of Radar Measurement; Artech House: Norwood, MA, USA, 1969; pp. 199–240. [Google Scholar]
- Campbell, B.A.; Putzig, N.E.; Carter, L.M.; Morgan, G.A.; Phillips, R.J.; Plaut, J.J. Roughness and near-surface density of Mars from SHARAD radar echoes. J. Geophys. Res. Planets 2013, 118, 436–450. [Google Scholar] [CrossRef]
- Varshney, D.; Rahnemoonfar, M.; Yari, M.; Paden, J.D.; Ibikunle, O.; Li, J. Deep Learning on Airborne Radar Echograms for Tracing Snow Accumulation Layers of the Greenland Ice Sheet. Remote. Sens. 2021, 13, 2707. [Google Scholar] [CrossRef]
- Ferro, A.; Bruzzone, L. Automatic Extraction and Analysis of Ice Layering in Radar Sounder Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1622–1634. [Google Scholar] [CrossRef]
- Liu, X.; Fa, W. A Fully Automatic Algorithm for Reflector Detection in Radargrams Based on Continuous Wavelet Transform and Minimum Spanning Tree. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4601620. [Google Scholar] [CrossRef]
- Hashmeh, N.A.; Whitten, J.L.; Russell, A.T.; Putzig, N.E.; Campbell, B.A. Comparable Bulk Radar Attenuation Characteristics Across Both Martian Polar Layered Deposits. J. Geophys. Res. Planets 2022, 127, e2022JE007566. [Google Scholar] [CrossRef]
- Whitten, J.L.; Campbell, B.A. Lateral Continuity of Layering in the Mars South Polar Layered Deposits From SHARAD Sounding Data. J. Geophys. Res. Planets 2018, 123, 1541–1554. [Google Scholar] [CrossRef]
- Nunes, D.; Smrekar, S.E.; Safaeinili, A.; Holt, J.W.; Phillips, R.J.; Seu, R.; Campbell, B.A. Examination of gully sites on Mars with the shallow radar. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Alberti, G.; Castaldo, L.; Orosei, R.; Frigeri, A.; Cirillo, G. Permittivity estimation over Mars by using SHARAD data: The Cerberus Palus area. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
Methods | Orbit | Time | SSIM | PSNR |
---|---|---|---|---|
Fourth order diffusion equation | 00505101 | 1.39 s | 0.329174 | 30.465262 dB |
00520501 | 19.6 s | 0.615163 | 33.018803 dB | |
BM3D filter | 00505101 | 8.70 s | 0.164992 | 12.126245 dB |
00520501 | 30.9 s | 0.504334 | 15.387862 dB |
Orbit | |||||
---|---|---|---|---|---|
00505101 | 17,365 | 208 | 155 | 1.20% | 0.895% |
00520501 | 22,072 | 176 | 192 | 0.797% | 0.869% |
00221401 | 1777 | 36 | 45 | 2.03% | 2.50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, X.; Ye, H. Automatic Extraction of Martian Subsurface Layer from Radargrams Based on PDE Denoising and KL Filter. Remote Sens. 2024, 16, 1123. https://doi.org/10.3390/rs16071123
Shu X, Ye H. Automatic Extraction of Martian Subsurface Layer from Radargrams Based on PDE Denoising and KL Filter. Remote Sensing. 2024; 16(7):1123. https://doi.org/10.3390/rs16071123
Chicago/Turabian StyleShu, Xin, and Hongxia Ye. 2024. "Automatic Extraction of Martian Subsurface Layer from Radargrams Based on PDE Denoising and KL Filter" Remote Sensing 16, no. 7: 1123. https://doi.org/10.3390/rs16071123
APA StyleShu, X., & Ye, H. (2024). Automatic Extraction of Martian Subsurface Layer from Radargrams Based on PDE Denoising and KL Filter. Remote Sensing, 16(7), 1123. https://doi.org/10.3390/rs16071123