Short-Term Intensity Prediction of Tropical Cyclones Based on Multi-Source Data Fusion with Adaptive Weight Learning
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Model and Methods
2.2.1. Overview of AWL-Net Framework
2.2.2. Feature Extraction Module
2.2.3. Adaptive Weight Learning
2.2.4. Feature Fusion Module
2.3. Data Processing
2.4. Evaluation Metrics
3. Model Evaluation and Discussion
3.1. Evaluation on Module Contribution
3.2. Evaluation on Module Performance
4. Analysis and Discussion of Results
4.1. Study on TC Intensity Prediction
4.2. Study on Different Intensity Changes
4.3. Study on Different TC Categories
4.4. Case Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- DeMaria, M. A simplified dynamical system for tropical cyclone intensity prediction. Mon. Weather Rev. 2009, 137, 68–82. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, L.; Liu, Q. Tropical cyclone damages in China 1983–2006. Bull. Am. Meteorol. Soc. 2009, 90, 489–496. [Google Scholar] [CrossRef]
- Sobel, A.H.; Camargo, S.J.; Hall, T.M.; Lee, C.Y.; Tippett, M.K.; Wing, A.A. Human influence on tropical cyclone intensity. Science 2016, 353, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Hu, L.; Kareem, A. A tropical cyclone intensity prediction model using conditional generative adversarial network. J. Wind. Eng. Ind. Aerodyn. 2023, 240, 105515. [Google Scholar] [CrossRef]
- Landsea, C.W.; Cangialosi, J.P. Have we reached the limits of predictability for tropical cyclone track forecasting? Bull. Am. Meteorol. Soc. 2018, 99, 2237–2243. [Google Scholar] [CrossRef]
- Giffard-Roisin, S.; Yang, M.; Charpiat, G.; Kumler Bonfanti, C.; Kégl, B.; Monteleoni, C. Tropical cyclone track forecasting using fused deep learning from aligned reanalysis data. Front. Big Data 2020, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Dong, P.; Zhang, Y.; Pan, J.; Liu, K. A novel data-driven tropical cyclone track prediction model based on CNN and GRU with multi-dimensional feature selection. IEEE Access 2020, 8, 97114–97128. [Google Scholar] [CrossRef]
- Dong, P.; Lian, J.; Yu, H.; Pan, J.; Zhang, Y.; Chen, G. Tropical Cyclone Track Prediction with an Encoding-to-Forecasting Deep Learning Model. Weather Forecast. 2022, 37, 971–987. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, G.; Li, X.; Xu, Q.; Liu, B.; Zhang, J. Tropical cyclone intensity estimation from geostationary satellite imagery using deep convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, X.; Wang, X.; Wang, B.; Wang, C.; Du, Z. A neural network with spatiotemporal encoding module for tropical cyclone intensity estimation from infrared satellite image. Knowl.-Based Syst. 2022, 258, 110005. [Google Scholar] [CrossRef]
- Jiang, W.; Hu, G.; Wu, T.; Liu, L.; Kim, B.; Xiao, Y.; Duan, Z. DMANet_KF: Tropical Cyclone Intensity Estimation Based on Deep Learning and Kalman Filter From Multi-Spectral Infrared Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 4469–4483. [Google Scholar] [CrossRef]
- Tong, B.; Fu, J.; Deng, Y.; Huang, Y.; Chan, P.; He, Y. Estimation of Tropical Cyclone Intensity via Deep Learning Techniques from Satellite Cloud Images. Remote Sens. 2023, 15, 4188. [Google Scholar] [CrossRef]
- Vayadande, K.; Adsare, T.; Dharmik, T.; Agrawal, N.; Patil, A.; Zod, S. Cyclone Intensity Estimation on INSAT 3D IR Imagery Using Deep Learning. In Proceedings of the 2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA), Uttarakhand, India, 14–16 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 592–599. [Google Scholar]
- Baek, Y.H.; Moon, I.J.; Im, J.; Lee, J. A novel tropical cyclone size estimation model based on a convolutional neural network using geostationary satellite imagery. Remote Sens. 2022, 14, 426. [Google Scholar] [CrossRef]
- Dolling, K.; Ritchie, E.A.; Tyo, J.S. The use of the deviation angle variance technique on geostationary satellite imagery to estimate tropical cyclone size parameters. Weather Forecast. 2016, 31, 1625–1642. [Google Scholar] [CrossRef]
- Xie, Y.; Tian, M.; Qin, Z. Tropical Cyclone Intensity Estimation Using Satellite Microwave Brightness Temperatures and a Multi-View Feature Fusion Network. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 7843–7846. [Google Scholar]
- Hu, Y.; Zou, X. Tropical cyclone center positioning using single channel microwave satellite observations of brightness temperature. Remote Sens. 2021, 13, 2466. [Google Scholar] [CrossRef]
- Wang, Z. What is the key feature of convection leading up to tropical cyclone formation? J. Atmos. Sci. 2018, 75, 1609–1629. [Google Scholar] [CrossRef]
- Wang, Y. How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci. 2009, 66, 1250–1273. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.G.; Marks, F., Jr.; Zhang, X.; Bao, J.W.; Yeh, K.S.; Atlas, R. The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Weather Rev. 2011, 139, 1762–1784. [Google Scholar] [CrossRef]
- Knaff, J.A.; DeMaria, M.; Sampson, C.R.; Gross, J.M. Statistical, 5-day tropical cyclone intensity forecasts derived from climatology and persistence. Weather Forecast. 2003, 18, 80–92. [Google Scholar] [CrossRef]
- Chen, R.; Wang, X.; Zhang, W.; Zhu, X.; Li, A.; Yang, C. A hybrid CNN-LSTM model for typhoon formation forecasting. GeoInformatica 2019, 23, 375–396. [Google Scholar] [CrossRef]
- Xu, G.; Lin, K.; Li, X.; Ye, Y. SAF-Net: A spatio-temporal deep learning method for typhoon intensity prediction. Pattern Recognit. Lett. 2022, 155, 121–127. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Yan, B. Tropical cyclone intensity change prediction based on surrounding environmental conditions with deep learning. Water 2020, 12, 2685. [Google Scholar] [CrossRef]
- Xu, X.Y.; Shao, M.; Chen, P.L.; Wang, Q.G. Tropical Cyclone Intensity Prediction Using Deep Convolutional Neural Network. Atmosphere 2022, 13, 783. [Google Scholar] [CrossRef]
- Kumar, S.; Biswas, K.; Pandey, A.K. Prediction of landfall intensity, location, and time of a tropical cyclone. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021; Volume 35, pp. 14831–14839. [Google Scholar]
- Chen, B.F.; Kuo, Y.T.; Huang, T.S. A deep learning ensemble approach for predicting tropical cyclone rapid intensification. Atmos. Sci. Lett. 2023, 24, e1151. [Google Scholar] [CrossRef]
- Na, Y.; Na, B.; Son, S. Near real-time predictions of tropical cyclone trajectory and intensity in the northwestern Pacific Ocean using echo state network. Clim. Dyn. 2022, 58, 651–667. [Google Scholar] [CrossRef]
- Pan, B.; Xu, X.; Shi, Z. Tropical cyclone intensity prediction based on recurrent neural networks. Electron. Lett. 2019, 55, 413–415. [Google Scholar] [CrossRef]
- Jiang, S.; Fan, H.; Wang, C. Improvement of Typhoon Intensity Forecasting by Using a Novel Spatio-Temporal Deep Learning Model. Remote Sens. 2022, 14, 5205. [Google Scholar] [CrossRef]
- Zhou, J.; Xiang, J.; Huang, S. Classification and prediction of typhoon levels by satellite cloud pictures through GC–LSTM deep learning model. Sensors 2020, 20, 5132. [Google Scholar] [CrossRef]
- Balaguru, K.; Foltz, G.R.; Leung, L.R.; Xu, W.; Kim, D.; Lopez, H.; West, R. Increasing hurricane intensification rate near the US Atlantic coast. Geophys. Res. Lett. 2022, 49, e2022GL099793. [Google Scholar] [CrossRef]
- Ma, D.; Wang, L.; Fang, S.; Lin, J. Tropical cyclone intensity prediction by inter-and intra-pattern fusion based on multi-source data. Environ. Res. Lett. 2023, 18, 014020. [Google Scholar] [CrossRef]
- Lee, J.; Yoo, C.; Im, J.; Shin, Y.; Cho, D. Multi-task Learning Based Tropical Cyclone Intensity Monitoring and Forecasting through Fusion of Geostationary Satellite Data and Numerical Forecasting Model Output. Korean J. Remote Sens. 2020, 36, 1037–1051. [Google Scholar]
- Zhang, Z.; Yang, X.; Shi, L.; Wang, B.; Du, Z.; Zhang, F.; Liu, R. A neural network framework for fine-grained tropical cyclone intensity prediction. Knowl.-Based Syst. 2022, 241, 108195. [Google Scholar] [CrossRef]
- Yao, S.; Chen, H.; Chandrasekar, V. A Self-attention based Deep Learning Model for Hurricane Nowcasting. In Proceedings of the 2023 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 10–14 January 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 292–293. [Google Scholar]
- Malakar, P.; Kesarkar, A.; Bhate, J.; Singh, V.; Deshamukhya, A. Comparison of reanalysis data sets to comprehend the evolution of tropical cyclones over North Indian Ocean. Earth Space Sci. 2020, 7, e2019EA000978. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Soden, B.J. Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 2007, 450, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Balaguru, K.; Foltz, G.R.; Leung, L.R.; Hagos, S.M.; Judi, D.R. On the use of ocean dynamic temperature for hurricane intensity forecasting. Weather Forecast. 2018, 33, 411–418. [Google Scholar] [CrossRef]
- Wang, X.L.; Feng, Y.; Chan, R.; Isaac, V. Inter-comparison of extra-tropical cyclone activity in nine reanalysis datasets. Atmos. Res. 2016, 181, 133–153. [Google Scholar] [CrossRef]
- Bell, G.D.; Chelliah, M. Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J. Clim. 2006, 19, 590–612. [Google Scholar] [CrossRef]
- Knapp, K.; Kruk, M.; Levinson, D.; Diamond, H.; Neumann, C. The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Xu, W.; Balaguru, K.; August, A.; Lalo, N.; Hodas, N.; DeMaria, M.; Judi, D. Deep learning experiments for tropical cyclone intensity forecasts. Weather Forecast. 2021, 36, 1453–1470. [Google Scholar]
- Meng, F.; Yang, K.; Yao, Y.; Wang, Z.; Song, T. Tropical Cyclone Intensity Probabilistic Forecasting System Based on Deep Learning. Int. J. Intell. Syst. 2023, 2023, 3569538. [Google Scholar] [CrossRef]
- Boussioux, L.; Zeng, C.; Guénais, T.; Bertsimas, D. Hurricane forecasting: A novel multimodal machine learning framework. Weather Forecast. 2022, 37, 817–831. [Google Scholar] [CrossRef]
- Combinido, J.S.; Mendoza, J.R.; Aborot, J. A convolutional neural network approach for estimating tropical cyclone intensity using satellite-based infrared images. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1474–1480. [Google Scholar]
- Lee, J.; Im, J.; Cha, D.H.; Park, H.; Sim, S. Tropical cyclone intensity estimation using multi-dimensional convolutional neural networks from geostationary satellite data. Remote Sens. 2019, 12, 108. [Google Scholar] [CrossRef]
- Piñeros, M.F.; Ritchie, E.A.; Tyo, J.S. Objective measures of tropical cyclone structure and intensity change from remotely sensed infrared image data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3574–3580. [Google Scholar] [CrossRef]
- Hu, L.; Ritchie, E.A.; Tyo, J.S. Short-term tropical cyclone intensity forecasting from satellite imagery based on the deviation angle variance technique. Weather Forecast. 2020, 35, 285–298. [Google Scholar] [CrossRef]
- Savijärvi, H.; Matthews, S. Environmental Control of Tropical Cyclone Intensity. J. Atmos. Sci. 2004, 61, 843. [Google Scholar]
- Jiang, H. The relationship between tropical cyclone intensity change and the strength of inner-core convection. Mon. Weather Rev. 2012, 140, 1164–1176. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Zhou, W. Interannual changes of tropical cyclone intensity in the western North Pacific. J. Meteorol. Soc. Jpn. Ser. II 2011, 89, 243–253. [Google Scholar] [CrossRef]
- Chen, B.; Chen, B.F.; Lin, H.T. Rotation-blended CNNs on a new open dataset for tropical cyclone image-to-intensity regression. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 90–99. [Google Scholar]
- Rajini, S.A.; Tamilpavai, G. Nomadic people optimisation based Bi-LSTM for detection and tracking of tropical cyclone. J. Earth Syst. Sci. 2023, 132, 19. [Google Scholar] [CrossRef]
- Xu, J.; Lei, Y.; Zhu, G.; Feng, Y.; Xiao, B.; Qian, Q.; Xu, Y. SL-MoE: A Two-Stage Mixture-of-Experts Sequence Learning Framework for Forecasting Rapid Intensification of Tropical Cyclone. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5. [Google Scholar]
- Hovmöller, E. The trough-and-ridge diagram. Tellus 1949, 1, 62–66. [Google Scholar] [CrossRef]
- Bai, C.Y.; Chen, B.F.; Lin, H.T. Attention-based Deep Tropical Cyclone Rapid Intensification Prediction. In Proceedings of the MACLEAN@ PKDD/ECML, Wurzburg, Germany, 20 September 2019. [Google Scholar]
- Zhou, G.; Xu, J.; Qian, Q.; Xu, Y.; Xu, Y. Discriminating technique of typhoon rapid intensification trend based on artificial intelligence. Atmosphere 2022, 13, 448. [Google Scholar] [CrossRef]
Channel | Source | Time Resolution | Wavelength | Monitoring Parameter |
---|---|---|---|---|
IR | GridSat | 3 h | 11 m | Lat, Lon, Vmax, MSLP, R35 |
WV | GridSat | 3 h | 6.7 m | |
PMW | CMORPH | 3 h | 85 Ghz |
Set | Temporal Interval | Number of TC | Number of Data | Ratio (%) |
---|---|---|---|---|
Training set | 2003–2013 | 265 | 12,562 | 67.7 |
Validation set | 2003–2013 | 33 | 1308 | 7.1 |
Testing set | 2014–2017 | 115 | 4684 | 25.2 |
Total | 2003–2017 | 413 | 18,554 | 100.0 |
Size | Channels | RMSE(kt) |
---|---|---|
201 × 201 | 3 | 12.91 |
151 × 151 | 3 | 11.53 |
101 × 101 | 3 | 11.03 |
51 × 51 | 3 | 11.74 |
Size | Channels | RMSE(kt) |
---|---|---|
115 × 115 | 3 | 11.16 |
105 × 105 | 3 | 10.85 |
95 × 95 | 3 | 10.62 |
85 × 85 | 3 | 10.73 |
75 × 75 | 3 | 11.01 |
65 × 65 | 3 | 11.32 |
55 × 55 | 3 | 11.72 |
Input | Module | MAE(kt) | △ (%) | RMSE(kt) | △ (%) |
---|---|---|---|---|---|
IR | 3D ConvGRU | 10.69 | - | 14.14 | - |
WV | 3D ConvGRU | 10.71 | −0.18 | 14.17 | −0.21 |
PMW | 3D ConvGRU | 11.64 | −8.89 | 15.06 | −6.54 |
IR + PMW | 3D ConvGRU | 10.56 | 1.22 | 13.80 | 2.40 |
WV + PMW | 3D ConvGRU | 10.57 | 1.12 | 13.89 | 1.77 |
IR + WV + PMW (Multi-chan.) | 3D ConvGRU | 10.11 | 5.43 | 13.43 | 5.02 |
DAV | 3D ConvGRU | 10.48 | 1.96 | 13.65 | 3.47 |
Multi-chan. + DAV | FE(CNN) | 9.53 | 10.85 | 12.63 | 10.68 |
Multi-chan. + DAV | FE(GRU) | 8.64 | 19.18 | 11.39 | 19.45 |
Multi-chan. + DAV | FF(GRU) | 8.43 | 21.14 | 11.23 | 20.58 |
Multi-chan. + DAV | FF(CNN) | 8.35 | 21.89 | 11.03 | 21.99 |
Multi-chan. + DAV | FF(CNN)+AWL | 8.13 | 23.95 | 10.71 | 24.26 |
Multi-chan. + DAV + 1D Data | AWL-Net | 8.07 | 24.51 | 10.62 | 24.89 |
Layer Type | Kernel Size | Kernel Mem. | Output Mem. | FLOPs |
---|---|---|---|---|
ConvGRU1_1 | (1,3,3,64,64) | 37,632 | 230,400 | 135,475,200 |
ConvGRU1_2 | (2,7,7,64,128) | 221,184 | 230,400 | 796,262,400 |
ConvGRU1_3 | (1,3,3,128,128) | 1,605,632 | 13,824 | 173,408,256 |
ConvGRU1_4 | (2,7,7,4,64) | 884,736 | 13,824 | 95,551,488 |
ConvGRU2_1 | (1,3,3,64,64) | 50,176 | 288,000 | 225,792,000 |
ConvGRU2_2 | (2,7,7,64,128) | 221,184 | 288,000 | 995,328,000 |
ConvGRU2_3 | (1,3,3,128,128) | 1,605,632 | 9216 | 115,605,504 |
ConvGRU2_4 | (3,3,3,128,256) | 884,736 | 9216 | 63,700,992 |
3D CNN | - | 884,736 | 2048 | 159,252,480 |
3 × FC1 | - | 1,212,416 | 128 | 1,212,416 |
2 × FC2 | - | 2304 | 64 | 2304 |
2 × FC3 | - | 2304 | 64 | 2304 |
2 × FC4 | - | 32,896 | 1 | 32,896 |
- | - | - | - | - |
- | - | Kernel Mem. (Total) | Output Mem. (Total) | FLOPS (Total) |
Summary | - | 7,645,568 | 1,085,185 | 2,761,626,240 |
In Units | 29.16 MB | 4.14 MB | 2.76 GFLOPs |
Method | Model | MAE | MAPE (%) | RMSE | FLOPs (FLOPs) | MAC (Byte) | CD (FLOPs/Byte) | |
---|---|---|---|---|---|---|---|---|
Deep Learning | Hybrid CNN-LSTM [22] | 9.96 | - | 12.58 | - | 7.36 G | 275 M | 26.76 |
TC 3D CNN [24] | 11.86 | - | 15.98 | - | 2 G | 118 M | 16.95 | |
TC_Pred [35] | 8.19 | - | 10.79 | - | - | - | - | |
DAV-IR [49] | 11.81 | 19.32 | 14.82 | 0.76 | - | - | - | |
AWL-Net | 8.07 | 12.80 | 10.62 | 0.80 | 5.52 G | 133.2 M | 41.44 | |
Official Agencies | CMA | 8.63 | - | - | - | - | - | - |
JTWC | 8.25 | - | - | - | - | - | - | |
NHC | 8.30 | - | - | - | - | - | - |
Category’s Names | TC Intensity (km/h) | TC Intensity (kt) |
---|---|---|
TD | 0–61 | 0–33 |
TS | 63–117 | 34–63 |
TY | 119–239 | 64–129 |
Super TY | ≥241 | ≥130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, W.; Song, P.; Chen, Y.; Xu, H.; Jin, C.; Sian, K.T.C.L.K. Short-Term Intensity Prediction of Tropical Cyclones Based on Multi-Source Data Fusion with Adaptive Weight Learning. Remote Sens. 2024, 16, 984. https://doi.org/10.3390/rs16060984
Tian W, Song P, Chen Y, Xu H, Jin C, Sian KTCLK. Short-Term Intensity Prediction of Tropical Cyclones Based on Multi-Source Data Fusion with Adaptive Weight Learning. Remote Sensing. 2024; 16(6):984. https://doi.org/10.3390/rs16060984
Chicago/Turabian StyleTian, Wei, Ping Song, Yuanyuan Chen, Haifeng Xu, Cheng Jin, and Kenny Thiam Choy Lim Kam Sian. 2024. "Short-Term Intensity Prediction of Tropical Cyclones Based on Multi-Source Data Fusion with Adaptive Weight Learning" Remote Sensing 16, no. 6: 984. https://doi.org/10.3390/rs16060984
APA StyleTian, W., Song, P., Chen, Y., Xu, H., Jin, C., & Sian, K. T. C. L. K. (2024). Short-Term Intensity Prediction of Tropical Cyclones Based on Multi-Source Data Fusion with Adaptive Weight Learning. Remote Sensing, 16(6), 984. https://doi.org/10.3390/rs16060984