A Comparison of Multiple DEMs and Satellite Altimetric Data in Lake Volume Monitoring
Abstract
:1. Introduction
Research | Study Area | Remote-Sensing Data | Hypsometric Curve | Time Series Data | Volume Error |
---|---|---|---|---|---|
Yao et al. [11] | 871 lakes in the Inner Tibetan Plateau | ASTER/SRTM (1 arc) + Huanjing (30 m) & Landsat (30 m) | Monotonic cubic spline fitting | Remotely sensed water area | Not quantitively evaluated |
Qiao et al. [12] | 315 lakes in the Tibetan Plateau | SRTM (1 arc) | Linear regression | Remotely sensed water area | Not specifically evaluated |
Fang et al. [13] | 760 lakes in China | SRTM (1 arc) | Four different curves: linear, power law, segmented linear, and quadratic polynomial relationships | Remotely sensed water area | Not specifically evaluated |
Li et al. [14] | 52 lakes in the Tibetan Plateau | Multiple altimetric data + Landsat (30 m) | Second-order polynomial fitting | Remotely sensed water area or water level | Not specifically evaluated |
Schwatke et al. [15] | 28 lakes in Texas | DAHITI altimetric product + Landsat (30 m) | New modified Strahler approach | All heights derived from remotely sensed water area or water level | 2.8–14.9% (average: 8.3%) |
Busker et al. [17] | 137 lakes worldwide | DAHITI altimetric product + GSW (30 m) | Linear regression | Remotely sensed water area or water level | Average: 7.42% (validated at 18 lakes) |
Tortini et al. [18] | 347 lakes worldwide | G-REALM altimetric product + MODIS (500 m) | Linear regression | All heights derived from remotely sensed water area or water level | 0.87 km3 (validated at Lake Sakakawea) |
This study | Texas | 1. SRTM (1 arc), ASTER (1 arc), ALOS (1 arc), GMTED2010 (7.5 arc), and NED (1/3 arc) 2. DAHITI altimetric product + Gauge water area | Linear regression | Gauge water area | 1. Average: 22–41% 2. Average: 4% |
2. Study Area and Materials
2.1. Study Area and Gauge Data
2.2. Digital Elevation Model
2.3. Satellite Altimetric Data
3. Method
3.1. Estimation Principle of Lake Volume Variation
3.2. Lake Volume Estimation by DEM and Satellite Altimetric Data
- First, outlining the boundary of study area. With the aid of Google Earth software, we roughly sketched out the boundary of each study area, including the study lake and its surroundings.
- Second, deriving lake reference water level . For the elevation data within each study area, we used the mode as and further checked by DEM. As in Figure 4a, the lake surface of Lake Buchanan is a hydro-flattened surface and the mode represents the lake surface level.
- Third, obtaining the elevation–area data pairs. Using , we calculated the maximum connected area enclosed by contour line from to at a step length of 1 m. Take contour as an example: we extracted the region below , carried out morphological open operation first to ignore small patches, then carried out morphological close operation to fill small bridges, and then estimated the maximum eight-connected area. As shown in Figure 4b, some contours are shown. As the elevation increases, the enclosed lake area also increases, and the islands in the lake submerged. After estimating the enclosed area of each contour, we derived 40 elevation–area data pairs. In addition, we removed data pairs with an area of less than 3 km2, which may be small pools around the study lake.
- Finally, establishing the lake hypsometric curve. The data pairs obtained in the last step describe the potential relationship between lake area and water level. From gauge lake area records, the area variation range is known. Assuming the area ranges from to , the corresponding elevation–area data pairs within the range are extracted. If there are more than five data pairs, they are used to establish the lake hypsometric curve. Otherwise, the elevation–area data pairs within the range of to are used. As shown in Figure 4c, data pairs within the gauge lake area range are kept, and the elevation and lake area have a good linear correlation relationship.
3.3. Evaluation Metrics
4. Results
4.1. Water Level and Volume Estimated by DEMs
4.2. Water Level and Volume Estimated by Satellite Altimetric Data
4.3. Comparison between DEM and Altimetric Data in Lake Volume Estimation
5. Discussion
5.1. Comparison with Previous Study
5.2. Implication for Large-Scale Lake Volume Monitoring
5.3. Implication for Individual Lake Volume Monitoring
6. Conclusions
- For the DEM + A method, the average relative water volume estimation error varies from 22% to 41%, and the DEM with the highest resolution (NED) has the least relative water volume estimation error, followed by the ALOS, SRTM, ASTER, and GMTED2010.
- For the Altimetry + A method, the average relative water volume estimation error is 4%. Satellite altimetric data could provide more precise lake volume estimates than the commonly applied DEMs, and the estimation error is only 10–18% of that of the five DEMs. Especially for large lakes, the estimation error is only 6–21% of that of the five DEMs.
- For lake volume estimation, the Altimetry + A method is more suggested for large lakes, while the DEM + A method is more suggested for small lakes that are gapped by conventional altimeters. Meanwhile, for lakes with multiple DEMs, the DEM with the highest resolution is more suggested.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Name | Longitude (°) | Latitude (°) | Average Area (km2) | Average Volume (km3) | Satellite Altimetric Data | Time Span |
---|---|---|---|---|---|---|
Toledo Bend Reservoir | 31.56 | −93.79 | 678 | 4.90 | ICESat, Jason-2, Jason-3, Sentinel-3A | 2003–2020 |
Sam Rayburn Reservoir | 31.15 | −94.23 | 422 | 3.16 | Jason-2, Jason-3 | 2008–2020 |
Livingston Reservoir | 30.76 | −95.13 | 338 | 2.16 | Envisat, SARAL/AltiKa, Sentinel-3B | 2002–2020 |
Lake Texoma | 33.90 | −96.62 | 300 | 3.01 | Envisat, SARAL/AltiKa | 2002–2016 |
Richland–Chambers Reservoir | 32.00 | −96.20 | 163 | 1.21 | Jason-1, Jason-2, Jason-3 | 2002–2020 |
Lake Tawakoni | 32.86 | −95.96 | 137 | 0.92 | Jason-2, Jason-3 | 2008–2020 |
Caddo Lake | 32.71 | −94.01 | 116 | 0.19 | Envisat, SARAL/AltiKa | 2002–2016 |
Ray Roberts Lake | 33.41 | −97.02 | 106 | 0.86 | Jason-2, Jason-3 | 2008–2020 |
Lake Buchanan | 30.80 | −98.41 | 76 | 0.81 | Envisat, Jason-2, Jason-3, SARAL/AltiKa | 2002–2020 |
Choke Canyon Reservoir | 28.49 | −98.31 | 74 | 0.49 | Jason-1, Jason-2, Jason-3 | 2002–2020 |
Lake Texana | 28.93 | −96.54 | 36 | 0.18 | Envisat | 2002–2010 |
Lake Granbury | 32.41 | −97.75 | 29 | 0.15 | Envisat, Cryosat-2, SARAL/AltiKa | 2002–2017 |
Benbrook Lake | 32.63 | −97.47 | 13 | 0.09 | Envisat, Cryosat-2, SARAL/AltiKa | 2002–2016 |
Bardwell Lake | 32.28 | −96.66 | 12 | 0.06 | Envisat, SARAL/AltiKa | 2002–2015 |
References
- Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring surface water from space. Rev. Geophys. 2007, 45, RG2002. [Google Scholar] [CrossRef]
- Ji, L.; Gong, P.; Wang, J.; Shi, J.; Zhu, Z. Construction of the 500-m Resolution Daily Global Surface Water Change Database (2001–2016). Water Resour. Res. 2018, 54, 10270–10292. [Google Scholar] [CrossRef]
- Crétaux, J.F.; Jelinski, W.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.C.; Nino, F.; Abarca Del Rio, R.; Cazenave, A.; et al. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Birkett, C.; Lettenmaier, D.P. Global monitoring of large reservoir storage from satellite remote sensing. Water Resour. Res. 2012, 48, W09504. [Google Scholar] [CrossRef]
- Duan, Z.; Bastiaanssen, W.G.M. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sens. Environ. 2013, 134, 403–416. [Google Scholar] [CrossRef]
- Yuan, C.; Gong, P.; Liu, C.; Ke, C. Water-volume variations of Lake Hulun estimated from serial Jason altimeters and Landsat TM/ETM+ images from 2002 to 2017. Int. J. Remote Sens. 2018, 40, 670–692. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Y.; Zhu, L.; Wang, J.; Li, J.; Chen, D. Estimation and trend detection of water storage at Nam Co Lake, central Tibetan Plateau. J. Hydrol. 2011, 405, 161–170. [Google Scholar] [CrossRef]
- The Ad Hoc Group; Vörösmarty, C.; Askew, A.; Grabs, W.; Barry, R.G.; Birkett, C.; Döll, P.; Goodison, B.; Hall, A.; Jenne, R.; et al. Global water data: A newly endangered species. Eos Trans. Am. Geophys. Union 2001, 82, 54–58. [Google Scholar] [CrossRef]
- Yu, C.Q.; Gong, P.; Yin, Y.Y. China’s water crisis needs more than words. Nature 2011, 470, 307. [Google Scholar] [CrossRef]
- Yao, F.; Wang, J.; Yang, K.; Wang, C.; Walter, B.A.; Crétaux, J.F. Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium. Environ. Res. Lett. 2018, 13, 064011. [Google Scholar] [CrossRef]
- Qiao, B.; Zhu, L.; Yang, R. Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau. Remote Sens. Environ. 2019, 222, 232–243. [Google Scholar] [CrossRef]
- Fang, Y.; Li, H.; Wan, W.; Zhu, S.; Wang, Z.; Hong, Y.; Wang, H. Assessment of Water Storage Change in China’s Lakes and Reservoirs over the Last Three Decades. Remote Sens. 2019, 11, 1467. [Google Scholar] [CrossRef]
- Li, X.; Long, D.; Huang, Q.; Han, P.; Zhao, F.; Wada, Y. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth Syst. Sci. Data 2019, 11, 1603–1627. [Google Scholar] [CrossRef]
- Schwatke, C.; Dettmering, D.; Seitz, F. Volume Variations of Small Inland Water Bodies from a Combination of Satellite Altimetry and Optical Imagery. Remote Sens. 2020, 12, 1606. [Google Scholar] [CrossRef]
- Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. DAHITI—An innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 2015, 19, 4345–4364. [Google Scholar] [CrossRef]
- Busker, T.; de Roo, A.; Gelati, E.; Schwatke, C.; Adamovic, M.; Bisselink, B.; Pekel, J.-F.; Cottam, A. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrol. Earth Syst. Sci. 2019, 23, 669–690. [Google Scholar] [CrossRef]
- Tortini, R.; Noujdina, N.; Yeo, S.; Ricko, M.; Birkett, C.M.; Khandelwal, A.; Kumar, V.; Marlier, M.E.; Lettenmaier, D.P. Satellite-based remote sensing data set of global surface water storage change from 1992 to 2018. Earth Syst. Sci. Data 2020, 12, 1141–1151. [Google Scholar] [CrossRef]
- Birkett, C.; Reynolds, C.; Beckley, B.; Doorn, B. From Research to Operations: The USDA Global Reservoir and Lake Monitor. In Coastal Altimetry; Vignudelli, S., Kostianoy, A.G., Cipollini, P., Benveniste, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 19–50. [Google Scholar] [CrossRef]
- Wurbs, R.A.; Ayala, R.A. Reservoir evaporation in Texas, USA. J. Hydrol. 2014, 510, 1–9. [Google Scholar] [CrossRef]
- Rodríguez, E.; Morris, C.S.; Belz, J.E. A global assessment of the SRTM Performance. Photogramm. Eng. Remote Sens. 2006, 72, 249–260. [Google Scholar] [CrossRef]
- Gesch, D.; Oimoen, M.; Danielson, J.; Meyer, D. Validation of the ASTER global digital elevation model version 3 over the conterminous United States. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41-B4, 143. [Google Scholar] [CrossRef]
- Takaku, J.; Tadono, T.; Tsutsui, K. Generation of High Resolution Global DSM from ALOS PRISM. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40-4, 243–248. [Google Scholar] [CrossRef]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); U.S. Geological Survey Open-File Report 2011, 2011-1073; USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2011. [CrossRef]
- Gesch, D.B.; Oimoen, M.J.; Evans, G.A. Accuracy Assessment of the U.S. Geological Survey National Elevation Dataset, and Comparison with Other Large-Area Elevation Datasets—SRTM and ASTER; U.S. Geological Survey Open-File Report 2014, 2014-1008; U.S. Geological Survey: Reston, VA, USA, 2014. [CrossRef]
- Weekley, D.; Li, X. Tracking lake surface elevations with proportional hypsometric relationships, Landsat imagery, and multiple DEMs. Water Resour. Res. 2021, 57, e2020WR027666. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water from Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Okeowo, M.A.; Lee, H.; Hossain, F.; Getirana, A. Automated Generation of Lakes and Reservoirs Water Elevation Changes from Satellite Radar Altimetry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3465–3481. [Google Scholar] [CrossRef]
- Jiang, L.; Nielsen, K.; Andersen, O.B.; Bauer-Gottwein, P. CryoSat-2 radar altimetry for monitoring freshwater resources of China. Remote Sens. Environ. 2017, 200, 125–139. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Uuemaa, E.; Ahi, S.; Montibeller, B.; Muru, M.; Kmoch, A. Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens. 2020, 12, 3482. [Google Scholar] [CrossRef]
- Tonooka, H.; Tachikawa, T. ASTER Cloud Coverage Assessment and Mission Operations Analysis Using Terra/MODIS Cloud Mask Products. Remote Sens. 2019, 11, 2798. [Google Scholar] [CrossRef]
- Biancamaria, S.; Lettenmaier, D.P.; Pavelsky, T.M. The SWOT Mission and Its Capabilities for Land Hydrology. Surv. Geophys. 2015, 37, 307–337. [Google Scholar] [CrossRef]
Name | SRTM | ASTER | ALOS | GMTED2010 | NED |
---|---|---|---|---|---|
Version | v3.0 | v3.0 | v2.2 | / | / |
Release year | 2013 | 2019 | 2019 | 2010 | 2013 |
Agency | NASA and USGS | NASA and METI | JAXA | USGS and NGA | USGS |
Time span (year) | 2000 | 2000–2013 | 2006–2011 | 2000–2010 | / |
Coverage span | 56°N–60°S | 83°N–83°S | 82°N–82°S | 84°N–56°S | USA |
Sensor | Shuttle Radar | ASTER | PRISM | / | / |
Satellite | SRTM | TERRA | ALOS | / | / |
Spatial resolution | 1 arc | 1 arc | 1 arc | 7.5 arc | 1/3 arc |
Vertical precision | ~9 m | ~17 m | ~5 m | 26–30 m | ~3 m |
Data principle | INSAR | Optical stereo relative imaging | Optical stereo relative imaging | Multi-source data fusion | Multi-source data fusion |
Lake Type | Lake Name | SRTM | ASTER | ALOS | GMTED2010 | NED | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DWLC | HSD (m) | VSD (km3) | DWLC | HSD (m) | VSD (km3) | DWLC | HSD (m) | VSD (km3) | DWLC | HSD (m) | VSD (km3) | DWLC | HSD (m) | VSD (km3) | ||
Large lake | Toledo Bend Reservoir | 59% | 2.73 | 1.86 | 59% | 3.05 | 2.14 | 85% | 2.74 | 1.91 | 76% | 3.57 | 2.23 | 74% | 0.61 | 0.81 |
Sam Rayburn Reservoir | 44% | 2.85 | 1.21 | 33% | 1.30 | 0.79 | 59% | 1.70 | 0.74 | 59% | 5.93 | 2.36 | 0% | 0.27 | 0.24 | |
Livingston Reservoir | 73% | 0.75 | 0.25 | 73% | 0.74 | 0.25 | 50% | 0.57 | 0.26 | 83% | 1.32 | 0.44 | 33% | 0.29 | 0.16 | |
Lake Texoma | 78% | 1.76 | 0.70 | 63% | 1.73 | 0.72 | 94% | 1.23 | 0.50 | 83% | 2.21 | 0.81 | 38% | 0.99 | 0.66 | |
Richland–Chambers Reservoir | 50% | 0.24 | 0.12 | 29% | 0.51 | 0.18 | 58% | 0.16 | 0.08 | 64% | 0.75 | 0.15 | 93% | 0.16 | 0.03 | |
Average | 61% | 1.67 | 0.83 | 51% | 1.47 | 0.82 | 69% | 1.28 | 0.70 | 73% | 2.76 | 1.20 | 48% | 0.46 | 0.38 | |
Small lake | Lake Tawakoni | 41% | 1.05 | 0.22 | 30% | 0.85 | 0.27 | 86% | 0.25 | 0.03 | 50% | 1.73 | 0.30 | 0% | 0.21 | 0.11 |
Caddo Lake | 86% | 1.43 | 0.24 | 95% | 1.55 | 0.26 | 93% | 1.55 | 0.25 | 62% | 1.17 | 0.15 | 92% | 1.33 | 0.22 | |
Ray Roberts Lake | 37% | 0.20 | 0.02 | 0% | 0.10 | 0.07 | 0% | 0.62 | 0.04 | 78% | 0.45 | 0.04 | 9% | 1.45 | 0.21 | |
Lake Buchanan | 17% | 1.67 | 0.33 | 17% | 2.86 | 0.46 | 58% | 0.57 | 0.08 | 45% | 11.66 | 0.86 | 60% | 0.29 | 0.02 | |
Choke Canyon Reservoir | 74% | 0.74 | 0.05 | 16% | 1.22 | 0.27 | 70% | 0.17 | 0.02 | 83% | 1.18 | 0.08 | 10% | 0.59 | 0.21 | |
Lake Texana | 55% | 0.30 | 0.01 | 46% | 0.65 | 0.02 | 29% | 0.48 | 0.01 | 36% | 0.46 | 0.01 | 0% | 0.43 | 0.01 | |
Lake Granbury | 40% | 0.55 | 0.03 | 26% | 1.46 | 0.07 | 0% | 0.44 | 0.03 | 39% | 0.39 | 0.01 | 13% | 0.53 | 0.03 | |
Benbrook Lake | 82% | 0.74 | 0.02 | 68% | 1.37 | 0.03 | 85% | 0.69 | 0.02 | 62% | 0.91 | 0.02 | 67% | 1.22 | 0.04 | |
Bardwell Lake | 50% | 0.16 | 0.00 | 20% | 0.30 | 0.00 | 74% | 0.17 | 0.00 | 82% | 0.23 | 0.00 | 57% | 0.29 | 0.00 | |
Average | 54% | 0.76 | 0.10 | 35% | 1.15 | 0.16 | 55% | 0.55 | 0.05 | 60% | 2.02 | 0.16 | 34% | 0.70 | 0.09 | |
All lakes | Average | 56% | 1.08 | 0.36 | 41% | 1.26 | 0.39 | 60% | 0.81 | 0.28 | 64% | 2.28 | 0.53 | 39% | 0.62 | 0.20 |
Lake Type | Lake Name | DWLC | HSD (m) | VSD (km3) | rHSD | rVSD |
---|---|---|---|---|---|---|
Large lake | Toledo Bend Reservoir | 93% | 0.05 | 0.01 | 1% | 0% |
Sam Rayburn Reservoir | 100% | 0.26 | 0.12 | 5% | 6% | |
Livingston Reservoir | 37% | 0.02 | 0.01 | 1% | 1% | |
Lake Texoma | 62% | 0.66 | 0.17 | 10% | 8% | |
Richland–Chambers Reservoir | 91% | 0.15 | 0.03 | 4% | 5% | |
Average | 77% | 0.23 | 0.07 | 4% | 4% | |
Small lake | Lake Tawakoni | 74% | 0.19 | 0.05 | 4% | 4% |
Caddo Lake | 55% | 0.32 | 0.05 | 7% | 9% | |
Ray Roberts Lake | 56% | 0.02 | 0.02 | 1% | 3% | |
Lake Buchanan | 44% | 0.21 | 0.03 | 2% | 4% | |
Choke Canyon Reservoir | 100% | 0.18 | 0.03 | 2% | 5% | |
Lake Texana | 52% | 0.17 | 0.01 | 4% | 5% | |
Lake Granbury | 94% | 0.15 | 0.00 | 4% | 4% | |
Benbrook Lake | 81% | 0.36 | 0.00 | 4% | 2% | |
Bardwell Lake | 50% | 0.13 | 0.00 | 2% | 1% | |
Average | 67% | 0.19 | 0.02 | 3% | 4% | |
All lakes | Average | 71% | 0.21 | 0.04 | 4% | 4% |
Lake Type | SRTM | ASTER | ALOS | GMTED2010 | NED | Satellite Altimetric Data |
---|---|---|---|---|---|---|
Large lake | 42% | 42% | 35% | 63% | 19% | 4% |
Small lake | 21% | 36% | 15% | 29% | 23% | 4% |
All lakes | 29% | 38% | 22% | 41% | 22% | 4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.; Zhang, F.; Liu, C. A Comparison of Multiple DEMs and Satellite Altimetric Data in Lake Volume Monitoring. Remote Sens. 2024, 16, 974. https://doi.org/10.3390/rs16060974
Yuan C, Zhang F, Liu C. A Comparison of Multiple DEMs and Satellite Altimetric Data in Lake Volume Monitoring. Remote Sensing. 2024; 16(6):974. https://doi.org/10.3390/rs16060974
Chicago/Turabian StyleYuan, Cui, Fangpei Zhang, and Caixia Liu. 2024. "A Comparison of Multiple DEMs and Satellite Altimetric Data in Lake Volume Monitoring" Remote Sensing 16, no. 6: 974. https://doi.org/10.3390/rs16060974
APA StyleYuan, C., Zhang, F., & Liu, C. (2024). A Comparison of Multiple DEMs and Satellite Altimetric Data in Lake Volume Monitoring. Remote Sensing, 16(6), 974. https://doi.org/10.3390/rs16060974