Clusterisation and Temporal Trends of Heat Flux by UAS Thermal Camera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clustering of Thermal Mappings
2.2. Temporal Trend of the Heat Flux
3. Results
4. Discussion and Conclusions
- The superficial behaviour of the aquifer of Pisciarelli is different from the one of the La Solfatara and could disperse heat in a more efficient manner. To try to understand if this is the actual reason behind the strong dependency, it iss necessary to fly over La Solfatara and repeat these types of measurements to see if this effect disappears.
- The temperature measurements taken from the drone averages in the same pixel both the hot areas and the cold areas nearby: this way, the hot areas may be influenced by the outside temperature through this averaging effect. In La Solfatara, this effect was not visible probably because the temperature measurements were carried out at 1 m from the ground, so the entire zone of thermal anomaly was framed in the image. To exclude this possibility, it is necessary to fly over La Solfatara where the areas with comparable agl flight elevation are wider than those at Pisciarelli.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedman, J.D.; Williams, D.L.; Frank, D. Structural and Heat Flow Implications of Infrared Anomalies at Mt. Hood, Oregon, 1972–1977. J. Geophys. Res. 1982, 87, 2793–2803. [Google Scholar] [CrossRef]
- Frank, D.G. Hydrothermal Processes at Mount Rainier, Washington; University of Washington: Seattle, WA, USA, 1985. [Google Scholar]
- Aubert, M. Practical Evaluation of Steady Heat Discharge from Dormant Active Volcanoes: Case Study of Vulcarolo Fissure (Mount Etna, Italy). J. Volcanol. Geotherm. Res. 1999, 92, 413–429. [Google Scholar] [CrossRef]
- Chiodini, G.; Granieri, D.; Avino, R.; Caliro, S.; Costa, A.; Werner, C. Carbon Dioxide Diffuse Degassing and Estimation of Heat Release from Volcanic and Hydrothermal Systems. J. Geophys. Res. Solid Earth 2005, 110, 1–17. [Google Scholar] [CrossRef]
- Hochstein, M.P.; Bromley, C.J. Measurement of Heat Flux from Steaming Ground. Geothermics 2005, 34, 131–158. [Google Scholar] [CrossRef]
- Aubert, M.; Diliberto, S.; Finizola, A.; Chébli, Y. Double Origin of Hydrothermal Convective Flux Variations in the Fossa of Vulcano (Italy). Bull. Volcanol. 2008, 70, 743–751. [Google Scholar] [CrossRef]
- Wang, Y.; Pang, Z.; Hao, Y.; Fan, Y.; Tian, J.; Li, J. A Revised Method for Heat Flux Measurement with Applications to the Fracture-Controlled Kangding Geothermal System in the Eastern Himalayan Syntaxis. Geothermics 2019, 77, 188–203. [Google Scholar] [CrossRef]
- Brombach, T.; Hunziker, J.C.; Chiodini, G.; Cardellini, C.; Marini, L. Soil Diffuse Degassing and Thermal Energy Fluxes from the Southern Lakki Plain, Nisyros (Greece). Geophys. Res. Lett. 2001, 28, 69–72. [Google Scholar] [CrossRef]
- Chiodini, G.; Frondini, F.; Cardellini, C.; Granieri, D.; Marini, L.; Ventura, G. CO2 Degassing and Energy Release at Solfatara Volcano, Campi Flegrei, Italy. J. Geophys. Res. Solid Earth 2001, 106, 16213–16221. [Google Scholar] [CrossRef]
- Isaia, R.; Vitale, S.; Giuseppe, M.G.D.; Iannuzzi, E.; Tramparulo, F.D.A.; Troiano, A. Stratigraphy, Structure, and Volcano-Tectonic Evolution of Solfatara Maar-Diatreme (Campi Flegrei, Italy). GSA Bull. 2015, 127, 1485–1504. [Google Scholar] [CrossRef]
- Isaia, R.; Di Giuseppe, M.G.; Natale, J.; Tramparulo, F.D.; Troiano, A.; Vitale, S. Volcano-Tectonic Setting of the Pisciarelli Fumarole Field, Campi Flegrei Caldera, Southern Italy: Insights Into Fluid Circulation Patterns and Hazard Scenarios. Tectonics 2021, 40, e2020TC006227. [Google Scholar] [CrossRef]
- Sbrana, A.; Marianelli, P.; Pasquini, G. The Phlegrean Fields Volcanological Evolution. J. Maps 2021, 17, 557–570. [Google Scholar] [CrossRef]
- Marotta, E.; Peluso, R.; Avino, R.; Belviso, P.; Caliro, S.; Carandente, A.; Chiodini, G.; Macedonio, G.; Avvisati, G.; Marfè, B. Thermal Energy Release Measurement with Thermal Camera: The Case of La Solfatara Volcano (Italy). Remote Sens. 2019, 11, 167. [Google Scholar] [CrossRef]
- Caputo, T.; Bellucci Sessa, E.; Marotta, E.; Caputo, A.; Belviso, P.; Avvisati, G.; Peluso, R.; Carandente, A. Estimation of the Uncertainties Introduced in Thermal Map Mosaic: A Case of Study with PIX4D Mapper Software. Remote Sens. 2023, 15, 4385. [Google Scholar] [CrossRef]
- Calvari, S.; Spampinato, L.; Lodato, L.; Harris, A.J.L.; Patrick, M.R.; Dehn, J.; Burton, M.R.; Andronico, D. Chronology and Complex Volcanic Processes during the 2002–2003 Flank Eruption at Stromboli Volcano (Italy) Reconstructed from Direct Observations and Surveys with a Handheld Thermal Camera. J. Geophys. Res. 2005, 110, 2004JB003129. [Google Scholar] [CrossRef]
- Cirillo, F.; Avvisati, G.; Belviso, P.; Marotta, E.; Peluso, R.; Pescione, R.A. Clustering of Handheld Thermal Camera Images in Volcanic Areas and Temperature Statistics. Remote Sens. 2022, 14, 3789. [Google Scholar] [CrossRef]
- Cirillo, F.; Avvisati, G.; Belviso, P.; Marotta, E.; Peluso, R.; Pescione, R. STARTED (StaTistical Analysis clusteRed ThErmal Data). Software. Available online: https://zenodo.org/records/5886707#.YuXahBxBzIU (accessed on 21 January 2022).
- Silvestri, M.; Marotta, E.; Buongiorno, M.F.; Avvisati, G.; Belviso, P.; Bellucci Sessa, E.; Caputo, T.; Longo, V.; De Leo, V.; Teggi, S. Monitoring of Surface Temperature on Parco Delle Biancane (Italian Geothermal Area) Using Optical Satellite Data, UAV and Field Campaigns. Remote Sens. 2020, 12, 2018. [Google Scholar] [CrossRef]
- Vilardo, G.; Ventura, G.; Bellucci Sessa, E.; Terranova, C. Morphometry of the Campi Flegrei Caldera (Southern Italy). J. Maps 2013, 9, 635–640. [Google Scholar] [CrossRef]
- PIX4Dmapper: Professional Photogrammetry Software for Drone Mapping. Available online: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software (accessed on 27 October 2022).
- Analist Group. Available online: https://www.analistgroup.com/ (accessed on 18 January 2024).
- Flynn, L.P.; Mouginis-Mark, P.J.; Gradie, J.C.; Lucey, P.G. Radiative Temperature Measurements at Kupaianaha Lava Lake, Kilauea Volcano, Hawaii. J. Geophys. Res. 1993, 98, 6461–6476. [Google Scholar] [CrossRef]
- Pinkerton, H.; James, M.; Jones, A. Surface Temperature Measurements of Active Lava Flows on Kilauea Volcano, Hawai′ i. J. Volcanol. Geotherm. Res. 2002, 113, 159–176. [Google Scholar] [CrossRef]
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano Surveillance Using Infrared Cameras. Earth Sci. Rev. 2011, 106, 63–91. [Google Scholar] [CrossRef]
- Ball, M.; Pinkerton, H. Factors Affecting the Accuracy of Thermal Imaging Cameras in Volcanology. J. Geophys. Res. 2006, 111, 2005JB003829. [Google Scholar] [CrossRef]
- Dehn, J.; Dean, K.; Engle, K.; Izbekov, P. Thermal Precursors in Satellite Images of the 1999 Eruption of Shishaldin Volcano. Bull. Volcanol. 2002, 64, 525–534. [Google Scholar] [CrossRef]
- ESRI. ArcGIS Desktop: Release 10; Environmental Systems Research Institute, Inc.: Redlands, CA, USA, 2011. [Google Scholar]
- Clausing, L.T. Emissivity: Understanding the Difference between Apparent and Actual Infrared Temperatures. Fluke Application Note, Fluke Education Partnership Program. Available online: www.fluke.com (accessed on 18 January 2024).
- Minka, T. Automatic Choice of Dimensionality for PCA. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2000; Volume 13. [Google Scholar]
- Tipping, M.E.; Bishop, C.M. Probabilistic Principal Component Analysis. J. R. Stat. Soc. Ser. B Stat. Methodol. 1999, 61, 611–622. [Google Scholar] [CrossRef]
- Halko, N.; Martinsson, P.G.; Tropp, J.A. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions. SIAM Rev. 2011, 53, 217–288. [Google Scholar] [CrossRef]
- Martinsson, P.-G.; Rokhlin, V.; Tygert, M. A Randomized Algorithm for the Decomposition of Matrices. Appl. Comput. Harmon. Anal. 2011, 30, 47–68. [Google Scholar] [CrossRef]
- Taskesen, E. Pca: Pca Is a Python Package That Performs the Principal Component Analysis and to Make Insightful Plots. Available online: https://erdogant.github.io/pca/pages/html/index.html (accessed on 27 October 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marotta, E.; Peluso, R.; Avino, R.; Avvisati, G.; Bellucci Sessa, E.; Belviso, P.; Caputo, T.; Carandente, A.; Cirillo, F.; Pescione, R.A. Clusterisation and Temporal Trends of Heat Flux by UAS Thermal Camera. Remote Sens. 2024, 16, 1102. https://doi.org/10.3390/rs16061102
Marotta E, Peluso R, Avino R, Avvisati G, Bellucci Sessa E, Belviso P, Caputo T, Carandente A, Cirillo F, Pescione RA. Clusterisation and Temporal Trends of Heat Flux by UAS Thermal Camera. Remote Sensing. 2024; 16(6):1102. https://doi.org/10.3390/rs16061102
Chicago/Turabian StyleMarotta, Enrica, Rosario Peluso, Rosario Avino, Gala Avvisati, Eliana Bellucci Sessa, Pasquale Belviso, Teresa Caputo, Antonio Carandente, Francesca Cirillo, and Romano Antonio Pescione. 2024. "Clusterisation and Temporal Trends of Heat Flux by UAS Thermal Camera" Remote Sensing 16, no. 6: 1102. https://doi.org/10.3390/rs16061102
APA StyleMarotta, E., Peluso, R., Avino, R., Avvisati, G., Bellucci Sessa, E., Belviso, P., Caputo, T., Carandente, A., Cirillo, F., & Pescione, R. A. (2024). Clusterisation and Temporal Trends of Heat Flux by UAS Thermal Camera. Remote Sensing, 16(6), 1102. https://doi.org/10.3390/rs16061102