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Abstract: Analysis of a series of thermal mappings obtained by UAS flights on quiescent volcanoes
requires some special techniques to be performed. The main challenge is represented by the difficulty
of separating hot and cold pixels in areas where their temperatures are quite similar. This task is
indeed much simpler, for example, for lava flows where the temperature differences between the hot
lava and the cold soil is rather big. This paper shows various software developed in order to perform
this extraction and calculate the trends over time of both the average temperature and the heat flux
from the soil. This prototypal implementation used thermal flights performed over a time span of a
few years on an area in the Campi Flegrei caldera in southern Italy. Standard image manipulation
techniques were used to segmentate and clusterise each thermal mapping in order to reduce the
thermal anomalies to some sets of simpler features characterised by their fundamental parameters.
The temporal trends of some physical parameters (temperature, heat flux, etc.) were extracted from
these sets, and we found interesting results necessary for correlations and for ongoing research with
other parameters.

Keywords: thermal mapping; clusterisation; UAS; heat flux

1. Introduction

Thermal energy release in active geothermal areas is a key parameter to evaluate the
dynamics of the underlying geological background. In particular, in a volcanic context, it
provides a fundamental contribution to the knowledge of volcanic processes and may be
used to evaluate the related hazards and aid risk management ([1] and references therein).

Validated heat flux measurement procedures from the literature, based on measuring
thermal gradient [1–7] or carbon dioxide flux [8,9], only allow for punctual measurements
and require physical access to the sites in order to be performed. These kinds of mea-
surements require extensive time to be fulfilled: they may take days or even weeks to
be completed, even in the case of small areas (few km2 or less) like La Solfatara crater or
Pisciarelli crater in Campi Flegrei caldera in Italy [10–12]. A new method has been devel-
oped and validated [13] in La Solfatara crater based on measuring ground temperature
with a thermal camera on a tripod and repeating the measures on hundreds of points of
the crater in different seasons for a period of 5 years. Similar to the classic methods, this
one suffers from the need to take lots of thermal pictures in order to cover the required
area. Furthermore, this method does not solve the timing issue of the classical punctual
methods, but it opened the way to new ideas to use the ground temperature as a proxy for
the heat flux.
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The use of a UAS to capture thermal images solves the timing issue of the punctual
methods as even a rather large area can be scanned in a matter of minutes. Programs used
to create the mosaics from the single thermal images are reliable as the errors introduced
by the interpolation algorithms are negligible compared to the temperature error of the
thermal camera used [14,15]. This paper presents a prototype software created to analyse a
time series of mosaics of thermal images shot from UAS in order to calculate the flux of
energy in a way similar to what was done in Cirillo et al. 2022a, 2022b [16,17].

The presented software applies to the thermal mosaic the same algorithms (KMEANS
and DBSCAN) used in Cirillo et al. 2022 (references therein [16]) to separate cold and hot
areas into single thermal images. Once the hot areas are separated from the background,
and the background temperature has been estimated, it applies the heat transfer model
developed in Marotta et al. 2019 [13] and stores the result of the clusterisation for further
analysis. The clusters obtained are then grouped using another program which uses the
DBSCAN algorithm again to gather them into homogeneous zones, keeping their time
information, which are then used to create the time evolution of the desired parameters.

All the software developed to perform the present analyses is available as
Supplementary Materials in a Zenodo repository.

2. Materials and Methods

The research was carried out in the Pisciarelli area which has the same physical
characteristics as the soil of the La Solfatara crater [11], where the heat flux model described
in Marotta et al. 2019 was developed (Figure 1).

From 2019 to nowadays, UAS flights have been executed monthly in the Pisciarelli
area during the evening and/or night, in any case, always in absence of solar irradiation.
The flights were performed using a thermal camera FLIR Vue Pro R (technical details are in
Silvestri et al., 2020 [18] and in Caputo et al. 2023 [14]).
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Figure 1. (a) Study area. (b) The blue squares highlight the Solfatara crater and Pisciarelli area. Digital
terrain model (DTM) of Campi Flegrei [19]. (c) Radiometric mapping of the entire Pisciarelli area.
DSM from mosaic of data SIT Città Metropolitana di Napoli.
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During the aforementioned period, about 40 radiometric mosaics were produced,
some of which were obtained by combining two different flight plans with different take-off
and landing points (shown in Figure 2 as “Home Concessionaria” and “Home Elipista”).
Most of the mosaics were obtained with a single flight having as take-off and landing
point the “Home Elipista” point in Figure 1, which also shows an example of a radiometric
mapping of the entire Pisciarelli area.
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Figure 2. Radiometric mapping of the Pisciarelli area by overlapping 343 thermal images using
specific software (Analist and Pix4D Mapper [20,21]). “Home Elipista” and “Home Concessionaria”
with its take-off and landing point are shown in the figure. Source: Esri, Maxar, Earthstar Geographics,
and the GIS User Community. DSM from mosaic of data SIT Città Metropolitana di Napoli.

Flight plans were adjusted during the acquisition period to find the best parameters
related to the equipment used in order to adapt them to the complex topography of the
selected area. After this test period, a flight quote between 70 and 55 m agl (above ground
levels) was decided to be used, following the morphology of the terrain with the camera in
a nadiral position and using a single grid for each flight (Figure 3). Total number of images
taken and ground sampling distance change with the flight height. Flying at about 120 m,
the pixel resolution is of about 25 cm2 and requires a few tens of images, while a flight at
about 55 m has a pixel resolution of about 10 cm2 and requires hundreds of images. We
used the same image superposition for all the performed flights: 80% front overlap and
60% side overlap between adjacent image footprints in width and height. The internal
firmware of the FLIR thermal camera allowed correction for distance, relative humidity, air
temperature, and soil emissivity, which are constant for the whole flight as they can only
be set before take-off. Soil emissivity is set to 0.98 according to Flynn et al. 1993 [22] and
Pinkerton et al. 2002 [23]. We can assume such emissivity value for thermally anomalous
zones as they are made of quite uniform material. In any case, the angle of view at which
the single images are taken may introduce undecidable errors as it is not possible to always
know the real angle of the camera in relation to the terrain [24–26].
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Figure 3. Example of flight plans in Pisciarelli: simple grid. Source: Esri, Maxar, Earthstar Geograph-
ics, and GIS User Community. DSM from mosaic of data SIT Città Metropolitana di Napoli.

Figure 4 shows a zoom of the area with the biggest thermal anomalies together with
a visible mapping. All the thermal maps have been exported from the ArcGis Environ-
ment [27], selecting only the radiometric component in ASCII GRID format file to improve
data readability.
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2.1. Clustering of Thermal Mappings

To determine the amount of energy emitted from the ground (thermal flux), the hot
zones need to be separated from the cold ones. Unfortunately, a valid threshold for all
the flights cannot be applied in a straightforward way because the temperature difference
between warm areas and cold ones is not big enough and the temperature distribution of the
pixels depends on the season and on the external temperature, despite nightly acquisitions.

A more complex algorithm needed to be implemented to achieve such separation
considering that it is important to extract both warm and cold areas, with the latter necessary
to establish the background temperature (BG) which is an essential parameter of the
Solfatara model [13]. The BG must relate to an area, even just a few m2, where the ground
has similar physical properties of those with temperature anomalies: it is important to avoid
estimating the background temperature on areas showing vegetation or artificial features.
The BG point should be a zone where the thermal flux from the ground is irrelevant so that
its temperature is only due to external conditions. In such cases, it allows us to calculate
the Tsky (radiation temperature of the sky) which is a fundamental parameter in the model
developed in Marotta et al., 2019 [13].

Starting from these assumptions, an algorithm to perform the automatic extraction of
warm and cold areas from a thermal map was developed. The difficult part was to avoid
the inclusion of random parameters while determining the BG temperature, mostly related,
as mentioned before, to areas with vegetation and artificial features. The algorithm was
based on two different machine learning algorithms known from the literature: KMeans
and DBSCAN ([16,17] and references therein).

Using Kmeans, the images (example in Figure 5a) were preventively divided into a
certain amount of segments (3 at first, as shown by the three colours in Figure 5b, related
to their average temperature), then the average temperature of the coolest segment was
compared with the air temperature measured during the flight.

Figure 5. One of the thermal maps of the Pisciarelli area (a). The same mapping divided in three
segments shown by their average temperature (b). The axes correspond to the UTM coordinates; the
colour scale is the same for both images.

Temperature differences in areas with vegetation are usually due to different emissivity
rather than actual temperature difference [28]. For this reason, the average temperature of
the coldest segment was not always the one required as background, as it could include
undesired soil features. Hence, it was decided to increase the number of segments every
time the average temperature of the cold segment was outside a certain range close to the
air temperature. The acceptable range was found from the measurements carried out in
Solfatara in Marotta et al., 2019 [13], hereby reprocessed in the histogram in Figure 6, where
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it is noticeable how the difference between air temperature and BG is almost always
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5 ◦C.
Such temperature was used as the threshold parameter to understand if the cold segment
in the image was the right one: in the presence of a bigger difference, the algorithm repeats
the segmentation, increasing the number of required segments and uses the next order one
(i.e., the second with four segments, the third with five, etc.). This procedure repeats until
the selected segment fits into the 5 ◦C limit.
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The presence of features not related to anomalous soil within the cold segment could
introduce pixels that are the wrong choice to estimate the BG: the statistically less represen-
tative pixels were removed in order to estimate the BG. For this reason, it was decided to
use the DBSCAN ([16,17] and references therein) algorithm to try to extract the statistically
most relevant features.

DBSCAN identifies parts in a given dataset, grouping together the units in the dataset
that are within a given “distance” between them. In this case, a simple Euclidean distance
in the three-dimensional space made by the pixel position and their temperature was
considered. This way, the cold segment was separated into a certain number of clusters
from which only the largest ones were selected, covering more than 50% of the segment.
The average temperature of the cluster set and its variance were chosen as Tbg of the
compound image.

As the flight height of the mappings was not always the same, it is important to take
into account how the different distances affect the geometrical blending of the temperatures
on the pixels of the hot zones. As the distance between the thermal camera and the subject
increases, the ground sampling distance increases, and it also increases the dimensions of
the pixels on the ground. This affects the recorded temperature of each pixel as it is the
result of the average of all the temperatures that may be contained in the footprint of the
pixel: a bigger pixel area results in a net decrease in the recorded temperature with the
distance as it contains more and more cold areas. Caputo et al. (2023) [14] gives a rough
estimate of this decrease in the amount of about 0.45%/m of distance.

Once the estimated temperature of the background was obtained, and having mea-
sured for each flight the relative humidity and the air temperature, it was possible to apply
the model of Marotta et al. 2019 [13] to calculate the heat flux and the relative error on
each pixel of the compound image. Here, only the pixels with T > Tbg have been selected,
as they should be the only ones having a positive flux. However, the majority of these
pixels do not have a heat flux meaningfully different from zero. In order to select a set of
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pixels with a statistically relevant flux, the algorithm selected only those with a heat flux
different from zero at more than 3σ (Figure 7). This allowed us to identify and separate the
areas with temperature anomalies from the cold background in the image. The estimated
temperature decrease [14] with its distance was used to reconstruct the soil temperature
from the apparent acquired one by simply rescaling it with altitude. Thus, a rough equalisa-
tion of the temperatures read during flights performed at different altitudes was obtained.
Afterwards, the flux was recalculated using the equalised temperatures.
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Figure 7. (a) Mapping of heat flux calculated [13] on all the pixels of the image after the distance
correction; (b) pixels with a heat flux different from zero at more than 3σ shown using the average
temperature of the cluster. The axes correspond to the UTM coordinates.

The pixels separated from the background were used as the “hot” segment of the
thermal composition, and then, the DBSCAN algorithm was again applied to the new hot
segment to identify the areas with common features, using the same parameters as the
previous clusterisation of the cold one. The result was a set of clusters identified by their
average position and size (Figure 8). For each identified cluster, the average temperature,
the mean and total heat flux (shown in Figure 9), and other parameters were calculated
and stored.

2.2. Temporal Trend of the Heat Flux

The algorithm described allowed us to obtain a set of clusters for each of the analysed
flights, each of which is defined by its centre (in UTM coordinates), size, time, date, average
temperature, average and total flux, cluster area, and all the relative errors. To understand
whether these parameters will show variations over time, it is necessary to figure out if they
identify “zones” with coherent characteristics. For this reason, they have been reassembled
into one map keeping their temporal information.

Figure 10a shows the distribution of all clusters in the investigated area using one of
the background thermal maps as a basis. It is clearly visible how they tend to thicken over
the points with thermal anomalies. It was straightforward to apply the DBSCAN algorithm
again in order to identify any coherent zone. The parameters of this second iteration were
chosen using the average size and temperature distribution of all the clusters and, again,
by using a Euclidean distance in the three-dimensional space of position and temperatures.
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Figure 8. Example of the outcome of the DBSCAN algorithm on the hot segment: here, each cluster
is represented with a simplified representation using the weighted average of the position and
temperature of its pixels as the centre of each circle and their average distribution as the radius of
each circle which is reported in meters as indicated by the axes in UTM coordinates.
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Figure 10. (a) Temporal representation of the whole cluster set where blue is the oldest and red
the most recent. (b) Representation of the zones identified applying the DBSCAN algorithm to the
clusters in (a). The mosaic used to represent this image is just one of the created ones: the investigated
area is larger on some mosaics, so some points sit outside the silhouette. The radius of the dots is in
metres as of Figure 8.

It was possible to identify a great number of zones (Figure 10b), with the most im-
portant ones being identified as Z003 and Z001 corresponding, respectively, to PsD1 and
PsD2 of Figure 4. For each identified area (Figure 10b), the trend of the heat flux and of the
average temperature through time was plotted. It was also necessary to decorrelate the
average temperature from the atmospheric one. In order to do so, a Principal Component
Analysis (PCA) using a singular value decomposition and keeping all the components was
used [29–32]. The python sklearn package implementation was used [33].

3. Results

The average temperature trend is strongly correlated to the atmospheric temperature
for all identified zones and is visible in Figure 11 for Z003 and Z001 which show a very
similar pattern in their trend. This kind of correlation (with factors ranging in an interval
between 0.85 and 0.99 depending on the zones) was indeed expected mostly because the
heat exchange between soil and air is influenced by the external temperature but also
because of the effect of pixel blending over distance.
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lower factor of 0.49. Zone Z003’s heat flux trend shows a modification in its shape from 

Figure 11. Temporal trends of the average temperatures of zones Z003 (a) and Z001 (b). On the top
row, they are shown together with air and background temperature (both in red). On the bottom row,
the residuals of the PCA decorrelation are shown. When not visible, error bars are smaller than the
size of the dots.

A Principal Component Analysis [33] was used to decorrelate average soil temper-
ature from air temperatures; the results are shown in the bottom row of Figure 11. The
decorrelated temperatures show a very similar trend in each zone where it was possible
to calculate it on most of the flights (“main” zones in Figure 12), and it was possible to
identify a change in the shape of the trends that seems to span from the summer of 2021 to
the summer of 2023.
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Figure 12. Trends of the residuals of the PCA decorrelation for the 7 main zones (Z000, Z001, Z002,
Z003, Z004, Z011, Z012). When not visible, error bars are smaller than the size of the dots.

Heat flux trends are shown in Figure 13 for zones Z003 and Z001. Z001 shows a
correlation factor between the heat flux and the temperature of 0.84 similar to all the other
zones (not reported, but, at average,
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lower factor of 0.49. Zone Z003’s heat flux trend shows a modification in its shape from the
summer of 2021 to the summer of 2023 like the decorrelated temperatures (see Figure 12).
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Figure 13. Temporal trends of the heat flux for zones Z003 (a) and Z001 (b). In red, the air and
background temperature are shown. When not visible, error bars are smaller than the size of the dots.

4. Discussion and Conclusions

The observed heat flux trends show a strong correlation with the external temperature
for all the identified zones except Z003 which is in contrast to what was observed on the
data of La Solfatara in Marotta et al. 2019 [13]. Figure 14 shows how the correlation factor
between the flux and Tbg was as low as 0.25. The dependency found between the heat flux
and the atmospheric conditions could have different explanations, for example:

1. The superficial behaviour of the aquifer of Pisciarelli is different from the one of the
La Solfatara and could disperse heat in a more efficient manner. To try to understand
if this is the actual reason behind the strong dependency, it iss necessary to fly over La
Solfatara and repeat these types of measurements to see if this effect disappears.

2. The temperature measurements taken from the drone averages in the same pixel both
the hot areas and the cold areas nearby: this way, the hot areas may be influenced by
the outside temperature through this averaging effect. In La Solfatara, this effect was
not visible probably because the temperature measurements were carried out at 1 m
from the ground, so the entire zone of thermal anomaly was framed in the image. To
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exclude this possibility, it is necessary to fly over La Solfatara where the areas with
comparable agl flight elevation are wider than those at Pisciarelli.
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Figure 14. Heat flux in relation to background temperature for the Solfatara data (reprocessed from
Marotta et al., 2019 [13]). Correlation factor is 0.25.

The fact that Z003 does not show the strong correlation seems to confirm the sec-
ond hypothesis as it had the highest average area of all the other zones during the analysed
time period. At the same time, the trends of the decorrelated average temperatures are
similar enough to indicate that a similar heat flux dependency on all the zones should
be expected. For these reasons, different means to extrapolate heat flux from the surface
temperature are being looked into. Remotely sensing the temperature from heights of tens
of metres may lead to the possibility that a simpler model, using only the radiative part of
the heat flux, may suffice to properly estimate the heat flux, in a similar manner to what is
performed in satellite thermal acquisitions [18]. Such a possibility is now being explored
to understand which of the previous hypotheses were right and, having finally received
the possibility to fly on La Solfatara crater, a set of flight campaigns over La Solfatara to
exclude the first possibility are being initiated.
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