The Impacts of Deformed Fabry–Perot Interferometer Transmission Spectrum on Wind Lidar Measurements
Abstract
:1. Introduction
2. Theory and Modeling
2.1. FPI Spectrum Lines under Normally Incident Light Beam
2.2. FPI Spectrum Lines under Oblique Incident Light Beam with a Divergence Angle
2.3. FPI Spectrum Line under Multiple Incident Beams
3. Impacts on Wind Measurement
3.1. Impacts on the Response Curves
3.2. For Pure Rayleigh Backscattering Signals
3.3. For Rayleigh–Mie Backscattering Signals
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, R.; Dou, X.; Xue, X.; Sun, D.; Han, Y. Stratosphere and lower mesosphere wind observation and gravity wave activities of the wind field in China using a mobile Rayleigh Doppler lidar. J. Geophys. Res. 2017, 122, 8847–8857. [Google Scholar] [CrossRef]
- Yang, J.F.; Xiao, C.Y.; Hu, X.; Xu, Q. Responses of zonal wind at ~40°N to stratospheric sudden warming events in the stratosphere, mesosphere and lower thermosphere. Sci. China 2017, 60, 935–945. [Google Scholar] [CrossRef]
- Mitra, G.; Guharay, A.; Batista, P.P.; Buriti, R.A. Impact of the September 2019 Minor Sudden Stratospheric Warming on the Low-Latitude Middle Atmospheric Planetary Wave Dynamics. J. Geophys. Res. Atmos. 2022, 127, e2021JD035538. [Google Scholar] [CrossRef]
- Mariaccia, A.; Keckhut, P.; Hauchecorne, A.; Khaykin, S.; Ratynski, M. Co-Located Wind and Temperature Observations at Mid-Latitudes During Mesospheric Inversion Layer Events. Geophys. Res. Lett. 2023, 50, e2022GL102683. [Google Scholar] [CrossRef]
- Ramesh, K.; Smith, A.K.; Garcia, R.R.; Marsh, D.R.; Sridharan, S.; Kishore Kumar, K. Long-Term Variability and Tendencies in Middle Atmosphere Temperature and Zonal Wind from WACCM6 Simulations During 1850–2014. J. Geophys. Res. Atmos. 2020, 125, e2020JD033579. [Google Scholar] [CrossRef]
- Bencatel, R.; Sousa, J.T.D.; Girard, A. Atmospheric flow field models applicable for aircraft endurance extension. Prog. Aerosp. Sci. 2013, 61, 1–25. [Google Scholar] [CrossRef]
- Dong, J.; Cha, H.K.; Kim, D.H.; Baik, S.H.; Wang, G.; Tang, L.; Shu, Z.; Xu, W.; Hu, D.; Sun, D. Doppler LIDAR Measurement of Wind in the Stratosphere. J. Opt. Soc. Korea 2010, 14, 199–203. [Google Scholar] [CrossRef]
- Baumgarten, G. Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km. Atmos. Meas. Tech. 2010, 3, 1509–1518. [Google Scholar] [CrossRef]
- Dou, X.; Han, Y.; Sun, D.; Xia, H.; Shu, Z.; Zhao, R.; Shangguan, M.; Guo, J. Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere. Opt. Express 2014, 22 (Suppl. S5), A1203. [Google Scholar] [CrossRef]
- Shen, F.; Cha, H.; Dong, J.; Kim, D.; Sun, D.; Kwon, S.O. Design and performance simulation of a molecular Doppler wind lidar. Chin. Opt. Lett. 2009, 7, 593–597. [Google Scholar] [CrossRef]
- Chanin, M.L.; Garnier, A.; Hauchecorne, A.; Porteneuve, J. A doppler lidar for measuring winds in the middle atmosphere. Geophys. Res. Lett. 1989, 16, 1273–1276. [Google Scholar] [CrossRef]
- Tepley, C.A.; Sargoytchev, S.I.; Hines, C.O. Initial doppler rayleigh lidar results from arecibo. Geophys. Res. Lett. 1991, 18, 167–170. [Google Scholar] [CrossRef]
- Gentry, B.M.; Chen, H. Tropospheric wind measurements obtained with the Goddard Lidar Observatory for Winds (GLOW): Validation and performance. Proc. SPIE 2002, 4484, 74–81. [Google Scholar]
- Flesia, C.; Korb, C.L. Theory of the double-edge molecular technique for Doppler lidar wind measurement. Appl. Opt. 1999, 38, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Korb, C.L.; Gentry, B.M.; Li, S.X.; Flesia, C. Theory of the double-edge technique for Doppler lidar wind measurement. Appl. Opt. 1998, 37, 3097–3104. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Zhang, C.; Mu, H.; Sun, D. Edge technique for direct detection of strain and temperature based on optical time domain reflectometry. Appl. Opt. 2009, 48, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Liu, H.; Sun, D.; Han, Y.; Zhou, A.; Zhang, N.; Chu, J.; Zheng, J.; Jiang, S.; Wang, Y. An Ultra-narrow Bandwidth Filter for Daytime Wind Measurement of Direct Detection Rayleigh Lidar. Curr. Opt. Photonics 2020, 4, 69–80. [Google Scholar]
- Han, Y.L.; Sun, D.; Han, F.; Liu, H.; Zhao, R.; Zheng, J.; Zhang, N.; Chen, C.; Li, Z. Demonstration of daytime wind measurement by using mobile Rayleigh Doppler Lidar incorporating cascaded Fabry-Perot etalons. Opt. Express 2019, 27, 34230. [Google Scholar] [CrossRef]
- Zhang, F.; Dou, X.; Sun, D.; Shu, Z.; Xia, H.; Gao, Y.; Hu, D.; Shangguan, M. Analysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry–Perot interferometer and improvements. Opt. Eng. 2014, 53, 124102. [Google Scholar] [CrossRef]
- Zhao, M.; Xie, C.; Wang, B.; Xing, K.; Chen, J.; Fang, Z.; Li, L.; Cheng, L. A Rotary Platform Mounted Doppler Lidar for Wind Measurements in Upper Troposphere and Stratosphere. Remote Sens. 2022, 14, 5556. [Google Scholar] [CrossRef]
- Zhang, F. Research on Doppler Wind Lidar System with Wind Detection of High Temporal and Spatial Resolution; University of Science and Technology of China: Hefei, China, 2015. (In Chinese) [Google Scholar]
- Xia, H.; Dou, X.; Shangguan, M.; Zhao, R.; Sun, D.; Wang, C.; Qiu, J.; Shu, Z.; Xue, X.; Han, Y.; et al. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar. Opt. Express 2014, 22, 21775–21789. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Xie, C.; Qiu, C.; Wang, B. Fabry–Perot etalon-based ultraviolet trifrequency high-spectral-resolution lidar for wind, temperature, and aerosol measurements from 0.2 to 35 km altitude. Appl. Opt. 2018, 57, 9328–9340. [Google Scholar] [CrossRef] [PubMed]
- McKay, J.A. Modeling of direct detection Doppler wind lidar. I. The edge technique. Appl. Opt. 1998, 37, 6480–6486. [Google Scholar] [CrossRef] [PubMed]
- Souprayen, C.; Garnier, A.; Hertzog, A.; Hauchecorne, A.; Porteneuve, J. Rayleigh–Mie Doppler wind lidar for atmospheric measurements. Ⅰ. Instrumental setup, validation, and first climatological results. Appl. Opt. 1999, 38, 2410–2421. [Google Scholar] [CrossRef] [PubMed]
- Cheremisin, A.A.; Marichev, V.N.; Bochkovskii, D.A.; Novikov, P.V.; Romanchenko, I.I. Stratospheric Aerosol of Siberian Forest Fires According to Lidar Observations in Tomsk in August 2019. Atmos. Ocean. Opt. 2022, 35, 57–64. [Google Scholar] [CrossRef]
- Bernath, P.; Boone, C.; Pastorek, A.; Cameron, D.; Lecours, M. Satellite characterization of global stratospheric sulfate aerosols released by Tonga volcano. J. Quant. Spectrosc. Ra. 2023, 299, 108520. [Google Scholar] [CrossRef]
- Mbatha, N.; Shikwambana, L. First Observations of Cirrus Clouds Using the UZ Mie Lidar over uMhlathuze City, South Africa. Appl. Sci. 2022, 12, 4631. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Chen, J.; Xie, C.; Li, L. The Impacts of Deformed Fabry–Perot Interferometer Transmission Spectrum on Wind Lidar Measurements. Remote Sens. 2024, 16, 1076. https://doi.org/10.3390/rs16061076
Zhao M, Chen J, Xie C, Li L. The Impacts of Deformed Fabry–Perot Interferometer Transmission Spectrum on Wind Lidar Measurements. Remote Sensing. 2024; 16(6):1076. https://doi.org/10.3390/rs16061076
Chicago/Turabian StyleZhao, Ming, Jianfeng Chen, Chenbo Xie, and Lu Li. 2024. "The Impacts of Deformed Fabry–Perot Interferometer Transmission Spectrum on Wind Lidar Measurements" Remote Sensing 16, no. 6: 1076. https://doi.org/10.3390/rs16061076
APA StyleZhao, M., Chen, J., Xie, C., & Li, L. (2024). The Impacts of Deformed Fabry–Perot Interferometer Transmission Spectrum on Wind Lidar Measurements. Remote Sensing, 16(6), 1076. https://doi.org/10.3390/rs16061076