High-Resolution Remote Sensing of the Gradient Richardson Number in a Megacity Boundary Layer
Abstract
:1. Introduction
2. Sites, Instruments, and Methods
2.1. Introduction to the IAP Integrated Observatory
2.2. Instruments
2.2.1. IAP 325 m Tower
2.2.2. Microwave Radiometer
2.2.3. Doppler Wind Lidar
2.2.4. CL51 Ceilometer
2.3. Methodology
2.3.1. ABL Thermal Parameters
2.3.2. Temperature Inversion
2.3.3. Gradient Richardson Numbers
3. Results
3.1. Comparative Validations of Multi-Source Data
3.1.1. Wind-Field Assessment
3.1.2. Temperature and Relative Humidity Assessment
3.1.3. Comparison of Tower-Ri and Lidar-Ri
3.2. Analysis of Gradient-Richardson-Number-Related Parameters
3.3. Gradient-Richardson-Number Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Businger, J.A. Note on the critical Richardson number(s). Q. J. R. Meteorol. Soc. 1969, 95, 653–654. [Google Scholar] [CrossRef]
- Brutsaert, W. Radiation, evaporation and the maintenance of turbulence under stable conditions in the lower atmosphere. Bound. Layer Meteorol. 1972, 2, 309–325. [Google Scholar] [CrossRef]
- Ottersten, H.; Hardy, K.R.; Little, C.G. Radar and sodar probing of waves and turbulence in statically stable clear-air layers. Bound. Layer Meteorol. 1973, 4, 47–89. [Google Scholar] [CrossRef]
- Pollard, R.T.; Rhines, P.B.; Thompson, R.O. The deepening of the wind-mixed layer. Geophys. Fluid Dyn. 1973, 4, 381–404. [Google Scholar] [CrossRef]
- Canadillas, B.A.; Bégué, A.; Neumann, T. Comparison of turbulence spectra derived from LiDAR and sonic measurements at the offshore platform FINO1. In Proceedings of the 10th German Wind Energy Conference 2010, Bremen, Germany, 17–18 November 2010. [Google Scholar]
- Ren, X.; Zhao, L.; Ma, Y.; Wu, J.; Zhou, F.; Jia, D.; Zhao, D.; Xin, J. Remote Sensing of Planetary Boundary Layer Thermodynamic and Material Structures over a Large Steel Plant, China. Remote Sens. 2023, 15, 5104. [Google Scholar] [CrossRef]
- Liu, S.; Liang, X.Z. Observed diurnal cycle climatology of planetary boundary layer height. J. Clim. 2010, 23, 5790–5809. [Google Scholar] [CrossRef]
- Kaimal, J.C.; Wyngaard, J.C.; Haugen, D.A.; Coté, O.R.; Izumi, Y.; Caughey, S.J.; Readings, C.J. Turbulence structure in the convective boundary layer. J. Atmos. Sci. 1976, 33, 2152–2169. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, M.; Wang, Y.; Tang, G.; Song, T.; Zhou, P.; Liu, Z.; Hu, B.; Ji, D.; Wang, L.; et al. Rapid formation of intense haze episodes via aerosol–boundary layer feedback in Beijing. Atmos. Chem. Phys. 2020, 20, 45–53. [Google Scholar] [CrossRef]
- Tian, P.; Cao, X.; Zhang, L.; Sun, N.; Sun, L.; Logan, T.; Shi, J.; Wang, Y.; Ji, Y.; Lin, Y.; et al. Aerosol vertical distribution and optical properties over China from long-term satellite and ground-based remote sensing. Atmos. Chem. Phys. 2017, 17, 2509–2523. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Liu, J.; Gao, Z.; Yang, Y.; Zhang, X.; Li, Y.; Huang, M. Impacts of the near-surface urban boundary layer structure on PM2.5 concentrations in Beijing during winter. Sci. Total Environ. 2019, 669, 493–504. [Google Scholar] [CrossRef]
- Seibert, P.; Beyrich, F.; Gryning, S.E.; Joffre, S.; Rasmussen, A.; Tercier, P. Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ. 2000, 34, 1001–1027. [Google Scholar] [CrossRef]
- Manninen, A.J.; Marke, T.; Tuononen, M.; O’Connor, E.J. Atmospheric boundary layer classification with Doppler lidar. J. Geophys. Res. Atmos. 2018, 123, 8172–8189. [Google Scholar] [CrossRef]
- Banakh, V.A.; Smalikho, I.N.; Falits, A.V. Estimation of the height of the turbulent mixing layer from data of Doppler lidar measurements using conical scanning by a probe beam. Atmos. Meas. Tech. 2021, 14, 1511–1524. [Google Scholar] [CrossRef]
- Ma, Y.; Xin, J.; Tian, Y.; Yue, C.; Zhou, X.; Ren, Y.; Hao, F.; Wang, P.; Xie, F.; Ren, X.; et al. The interactions of aerosol and planetary boundary layer over a large city in the Mongolian Plateau. Sci. Total Environ. 2023, 907, 167985. [Google Scholar] [CrossRef]
- Berg, L.K.; Newsom, R.K.; Turner, D.D. Year-long vertical velocity statistics derived from Doppler lidar data for the continental convective boundary layer. J. Appl. Meteorol. Climatol. 2017, 56, 2441–2454. [Google Scholar] [CrossRef]
- Xin, J.; Ma, Y.; Zhao, D.; Gong, C.; Ren, X.; Tang, G.; Xia, X.; Wang, Z.; Cao, J.; Vilà-Guerau de Arellano, J.; et al. The feedback effects of aerosols from different sources on the urban boundary layer in Beijing China. Environ. Pollut. 2023, 325, 121440. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xin, J.; Yin, Y.; Chang, W.; Xue, M.; Jia, D.; Ma, Y. Understanding the major impact of planetary boundary layer schemes on simulation of vertical wind structure. Atmosphere 2021, 12, 777. [Google Scholar] [CrossRef]
- Ahn, M.H.; Won, H.Y.; Han, D.; Kim, Y.H.; Ha, J.C. Characterization of downwelling radiance measured from a ground-based using numerical weather prediction model data. Atmos. Meas. Tech. 2016, 9, 281–293. [Google Scholar] [CrossRef]
- Zhao, D.; Xin, J.; Gong, C.; Quan, J.; Wang, Y.; Tang, G.; Ma, Y.; Dai, L.; Wu, X.; Liu, G.; et al. The impact threshold of the aerosol radiative forcing on the boundary layer structure in the pollution region. Atmos. Chem. Phys. 2021, 21, 5739–5753. [Google Scholar] [CrossRef]
- Maryon, R.H.; Smith, F.B.; Conway, B.J.; Goddard, D.M. The UK nuclear accident model. Prog. Nucl. Energy 1991, 26, 85–104. [Google Scholar] [CrossRef]
- Abarbanel, H.D.; Holm, D.D.; Marsden, J.E.; Ratiu, T. Richardson number criterion for the nonlinear stability of three-dimensional stratified flow. Phys. Rev. Lett. 1984, 52, 2352. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; pp. 381–383. [Google Scholar]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; pp. 100–103. [Google Scholar]
- Zhang, X.; Zhong, J.; Wang, J.; Wang, Y.; Liu, Y. The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming. Atmos. Chem. Phys. 2018, 18, 5991–5999. [Google Scholar] [CrossRef]
- Górska, M.; de Arellano, J.V.G.; LeMone, M.A.; Van Heerwaarden, C.C. Mean and flux horizontal variability of virtual potential temperature, moisture, and carbon dioxide: Aircraft observations and LES study. Mon. Meather Rev. 2008, 136, 4435–4451. [Google Scholar] [CrossRef]
- Troen, I.B.; Mahrt, L. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound. Layer Meteorol. 1986, 37, 129–148. [Google Scholar] [CrossRef]
- Vogelezang, D.H.P.; Holtslag, A.A.M. Evaluation and model impacts of alternative boundary-layer height formulations. Bound. Layer Meteorol. 1996, 81, 245–269. [Google Scholar] [CrossRef]
- Cheng-Ying, D.; Zhi-Qiu, G.; Qing, W.; Gang, C. Analysis of atmospheric boundary layer height characteristics over the Arctic Ocean using the aircraft and GPS soundings. Atmos. Ocean. Sci. Lett. 2011, 4, 124–130. [Google Scholar] [CrossRef]
- Smeda, M.S. Incorporation of planetary boundary-layer processes into numerical forecasting models. Bound. Layer Meteorol. 1979, 16, 115–129. [Google Scholar] [CrossRef]
- Zilitinkevich, S.S. On the determination of the height of the Ekman boundary layer. Bound. Layer Meteorol. 1972, 3, 141–145. [Google Scholar] [CrossRef]
- Mahrt, L. Modelling the depth of the stable boundary-layer. Bound. Layer Meteorol. 1981, 21, 3–19. [Google Scholar] [CrossRef]
- Kim, J.; Mahrt, L.J.T.A. Simple formulation of turbulent mixing in the stable free atmosphere and nocturnal boundary layer. Tellus A 1992, 44, 381–394. [Google Scholar] [CrossRef]
- Woods, J.D. On Richardson’s number as a criterion for laminar-turbulent-laminar transition in the ocean and atmosphere. Radio Sci. 1969, 4, 1289–1298. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Ma, Y.; Zhang, W.; Ren, X.; Peng, K.; Ahmad, M.; Jia, D.; Zhao, D.; Kong, L.; Ma, Y.; et al. High-Resolution Remote Sensing of the Gradient Richardson Number in a Megacity Boundary Layer. Remote Sens. 2024, 16, 1075. https://doi.org/10.3390/rs16061075
Yang S, Ma Y, Zhang W, Ren X, Peng K, Ahmad M, Jia D, Zhao D, Kong L, Ma Y, et al. High-Resolution Remote Sensing of the Gradient Richardson Number in a Megacity Boundary Layer. Remote Sensing. 2024; 16(6):1075. https://doi.org/10.3390/rs16061075
Chicago/Turabian StyleYang, Simin, Yongjing Ma, Wenyu Zhang, Xinbing Ren, Kecheng Peng, Masroor Ahmad, Danjie Jia, Dandan Zhao, Lingbin Kong, Yining Ma, and et al. 2024. "High-Resolution Remote Sensing of the Gradient Richardson Number in a Megacity Boundary Layer" Remote Sensing 16, no. 6: 1075. https://doi.org/10.3390/rs16061075
APA StyleYang, S., Ma, Y., Zhang, W., Ren, X., Peng, K., Ahmad, M., Jia, D., Zhao, D., Kong, L., Ma, Y., & Xin, J. (2024). High-Resolution Remote Sensing of the Gradient Richardson Number in a Megacity Boundary Layer. Remote Sensing, 16(6), 1075. https://doi.org/10.3390/rs16061075