Precipitation and Soil Moisture Variation over the Tibetan Plateau to the Anomaly of Indian Summer Monsoon from 1979 to 2019
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of Precipitation and Soil Moisture over the TP during Normal ISM Years
3.2. Response of Soil Moisture to the Precipitation in IRR during Strong ISM Years
3.3. Response of Soil Moisture to the Precipitation in IRR during Weak ISM Years
4. Discussion
4.1. Relationship between TP Soil Moisture, Precipitation, Temperature, and Other Factors
4.2. Data Uncertainties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Lu, C.; Shi, X.; Gao, S. World Water Tower: An Atmospheric Perspective. Geophys. Res. Lett. 2008, 35, 2008GL035867. [Google Scholar] [CrossRef]
- Yao, T.; Bolch, T.; Chen, D.; Gao, J.; Immerzeel, W.; Piao, S.; Su, F.; Thompson, L.; Wada, Y.; Wang, L.; et al. The Imbalance of the Asian Water Tower. Nat. Rev. Earth Env. 2022, 3, 618–632. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y. Impacts of the Tibetan Plateau on Asian Climate. Meteorol. Monogr. 2016, 56, 7.1–7.29. [Google Scholar] [CrossRef]
- Li, J.; Deng, M.; Wang, X.; Wang, X.; Ma, R. Clustering and Analysis of Air Source Heat Pump Air Heater Usage Patterns of Inhabitants in Qinghai-Tibet Plateau Areas. J. Build. Eng. 2023, 68, 106149. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.G.; Mosbrugger, V.; Zhang, F.; Ma, Y.; Luo, T.; Xu, B.; Yang, X.; Joswiak, D.R.; Wang, W.; et al. Third Pole Environment (TPE). Environ. Dev. 2012, 3, 52–64. [Google Scholar] [CrossRef]
- Kang, S.; Xu, Y.; You, Q.; Flügel, W.-A.; Pepin, N.; Yao, T. Review of Climate and Cryospheric Change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 015101. [Google Scholar] [CrossRef]
- Jin, H.; Jin, X.; He, R.; Luo, D.; Chang, X.; Wang, S.; Marchenko, S.S.; Yang, S.; Yi, C.; Li, S.; et al. Evolution of Permafrost in China during the Last 20 Ka. Sci. China Earth Sci. 2019, 62, 1207–1223. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, L.; Zhou, H.; Liu, S.; Du, E.; Zou, D.; Liu, G.; Xiao, Y.; Hu, G.; Wang, C.; et al. Contribution of Ground Ice Melting to the Expansion of Selin Co (Lake) on the Tibetan Plateau. Cryosphere 2022, 16, 2745–2767. [Google Scholar] [CrossRef]
- Li, L.; He, C.; Li, J.; Zhang, J.; Li, J. The Supply and Demand of Water-Related Ecosystem Services in the Asian Water Tower and Its Downstream Area. Sci. Total Environ. 2023, 887, 164205. [Google Scholar] [CrossRef] [PubMed]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and Vulnerability of the World’s Water Towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
- Li, S.-L.; Yue, F.-J.; Liu, C.-Q.; Ding, H.; Zhao, Z.-Q.; Li, X. The O and H Isotope Characteristics of Water from Major Rivers in China. Chin. J. Geochem. 2015, 34, 28–37. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Li, M.; Wang, L.; Li, X.; Zhu, L. Response of Terrestrial Water Storage and Its Change to Climate Change in the Endorheic Tibetan Plateau. J. Hydrol. 2022, 612, 128231. [Google Scholar] [CrossRef]
- Yang, C.; Ma, Y.; Yuan, Y. Terrestrial and Atmospheric Controls on Surface Energy Partitioning and Evaporative Fraction Regimes Over the Tibetan Plateau in the Growing Season. JGR Atmos. 2021, 126, e2021JD035011. [Google Scholar] [CrossRef]
- Feng, L.; Zhou, T. Water Vapor Transport for Summer Precipitation over the Tibetan Plateau: Multidata Set Analysis. J. Geophys. Res. 2012, 117, 2011JD017012. [Google Scholar] [CrossRef]
- Ma, Y.; Tang, G.; Long, D.; Yong, B.; Zhong, L.; Wan, W.; Hong, Y. Similarity and Error Intercomparison of the GPM and Its Predecessor-TRMM Multisatellite Precipitation Analysis Using the Best Available Hourly Gauge Network over the Tibetan Plateau. Remote Sens. 2016, 8, 569. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, A.; Yang, S.; Ullah, K. Atmospheric Moisture Budget and Its Regulation on the Variability of Summer Precipitation over the Tibetan Plateau. JGR Atmos. 2017, 122, 614–630. [Google Scholar] [CrossRef]
- Tong, K.; Su, F.; Yang, D.; Zhang, L.; Hao, Z. Tibetan Plateau Precipitation as Depicted by Gauge Observations, Reanalyses and Satellite Retrievals. Int. J. Climatol. 2014, 34, 265–285. [Google Scholar] [CrossRef]
- Lu, N.; Qin, J.; Gao, Y.; Yang, K.; Trenberth, K.E.; Gehne, M.; Zhu, Y. Trends and Variability in Atmospheric Precipitable Water over the Tibetan Plateau for 2000–2010: PW TREND TP. Int. J. Climatol. 2015, 35, 1394–1404. [Google Scholar] [CrossRef]
- Curio, J.; Maussion, F.; Scherer, D. A 12-Year High-Resolution Climatology of Atmospheric Water Transport over the Tibetan Plateau. Earth Syst. Dynam. 2015, 6, 109–124. [Google Scholar] [CrossRef]
- Gao, Y.; Cuo, L.; Zhang, Y. Changes in Moisture Flux over the Tibetan Plateau during 1979–2011 and Possible Mechanisms. J. Clim. 2014, 27, 1876–1893. [Google Scholar] [CrossRef]
- Bothe, O.; Fraedrich, K.; Zhu, X. Tibetan Plateau Summer Precipitation: Covariability with Circulation Indices. Theor. Appl. Clim. 2012, 108, 293–300. [Google Scholar] [CrossRef]
- Guo, X.; Tian, L.; Wang, L.; Wang, Y.; Zhou, J. Controls of the Recent Precipitation Anomalies in the Southeastern Tibetan Plateau: From the Perspective of Indian Summer Monsoon Activities and Moisture Sources. Clim. Dyn. 2023, 62, 399–412. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, W.; Yang, S.; Xu, X. Identifying and Contrasting the Sources of the Water Vapor Reaching the Subregions of the Tibetan Plateau during the Wet Season. Clim. Dyn. 2019, 53, 6891–6907. [Google Scholar] [CrossRef]
- Chen, B.; Xu, X.-D.; Yang, S.; Zhang, W. On the Origin and Destination of Atmospheric Moisture and Air Mass over the Tibetan Plateau. Theor. Appl. Clim. 2012, 110, 423–435. [Google Scholar] [CrossRef]
- Tian, L.; Masson-Delmotte, V.; Stievenard, M.; Yao, T.; Jouzel, J. Tibetan Plateau Summer Monsoon Northward Extent Revealed by Measurements of Water Stable Isotopes. J. Geophys. Res. 2001, 106, 28081–28088. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, Q.; Chen, D.; Van Der Ent, R.J.; Liu, X.; Li, W.; Haile, G.G. Moisture Source Changes Contributed to Different Precipitation Changes over the Northern and Southern Tibetan Plateau. J. Hydrometeorol. 2019, 20, 217–229. [Google Scholar] [CrossRef]
- Yao, T.; Masson-Delmotte, V.; Gao, J.; Yu, W.; Yang, X.; Risi, C.; Sturm, C.; Werner, M.; Zhao, H.; He, Y.; et al. A Review of Climatic Controls on δ18O in Precipitation over the Tibetan Plateau: Observations and Simulations. Rev. Geophys. 2013, 51, 525–548. [Google Scholar] [CrossRef]
- Cheng, M.; Zhong, L.; Ma, Y.; Zou, M.; Ge, N.; Wang, X.; Hu, Y. A Study on the Assessment of Multi-Source Satellite Soil Moisture Products and Reanalysis Data for the Tibetan Plateau. Remote Sens. 2019, 11, 1196. [Google Scholar] [CrossRef]
- Bai, W.; Chen, X.; Tang, Y.; He, Y.; Zheng, Y. Temporal and Spatial Changes of Soil Moisture and Its Response to Temperature and Precipitation over the Tibetan Plateau. Hydrol. Sci. J. 2019, 64, 1370–1384. [Google Scholar] [CrossRef]
- Deng, M.; Meng, X.; Li, Z.; Lyv, Y.; Lei, H.; Zhao, L.; Zhao, S.; Ge, J.; Jing, H. Responses of Soil Moisture to Regional Climate Change over the Three Rivers Source Region on the Tibetan Plateau. Int. J. Climatol. 2020, 40, 2403–2417. [Google Scholar] [CrossRef]
- Meng, X.; Li, R.; Luan, L.; Lyu, S.; Zhang, T.; Ao, Y.; Han, B.; Zhao, L.; Ma, Y. Detecting Hydrological Consistency between Soil Moisture and Precipitation and Changes of Soil Moisture in Summer over the Tibetan Plateau. Clim. Dyn. 2018, 51, 4157–4168. [Google Scholar] [CrossRef]
- Lieting, C.; Renguang, W. Interannual and Decadal Variations of Snow Cover over Qinghai-Xizang Plateau and Their Relationships to Summer Monsoon Rainfall in China. Adv. Atmos. Sci. 2000, 17, 18–30. [Google Scholar] [CrossRef]
- Yang, K.; Wang, C. Seasonal Persistence of Soil Moisture Anomalies Related to Freeze–Thaw over the Tibetan Plateau and Prediction Signal of Summer Precipitation in Eastern China. Clim. Dyn. 2019, 53, 2411–2424. [Google Scholar] [CrossRef]
- Yang, M.; Yao, T.; Gou, X.; Koike, T.; He, Y. The Soil Moisture Distribution, Thawing–Freezing Processes and Their Effects on the Seasonal Transition on the Qinghai–Xizang (Tibetan) Plateau. J. Asian Earth Sci. 2003, 21, 457–465. [Google Scholar] [CrossRef]
- Barnett, T.P.; Dümenil, L.; Schlese, U.; Roeckner, E. The Effect of Eurasian Snow Cover on Global Climate. Science 1988, 239, 504–507. [Google Scholar] [CrossRef]
- Yasunari, T.; Kitoh, A.; Tokioka, T. Local and Remote Responses to Excessive Snow Mass over Eurasia Appearing in the Northern Spring and Summer Climate. J. Meteorol. Soc. Jpn. Ser. II 1991, 69, 473–487. [Google Scholar] [CrossRef]
- Chow, K.C.; Chan, J.C.L.; Shi, X.; Liu, Y.; Ding, Y. Time-Lagged Effects of Spring Tibetan Plateau Soil Moisture on the Monsoon over China in Early Summer. Int. J. Climatol. 2007, 28, 55–67. [Google Scholar] [CrossRef]
- Wang, C.; Yang, K.; Zhang, F. Impacts of Soil Freeze–Thaw Process and Snow Melting Over Tibetan Plateau on Asian Summer Monsoon System: A Review and Perspective. Front. Earth Sci. 2020, 8, 133. [Google Scholar] [CrossRef]
- Ullah, W.; Wang, G.; Lou, D.; Gao, Z.; Zhu, C.; Bhatti, A.S.; Hagan, D.F.T.; Li, S.; Jiang, T.; Su, B.; et al. The Empirical Influence of Tibetan Plateau Spring Soil Moisture on South Asian Monsoon Onset: A Linear Diagnostic Perspective. J. Clim. 2023, 36, 8723–8742. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, K.; Qi, Y.; Zhou, X.; He, J.; Lu, H.; Li, X.; Chen, Y.; Li, X.; Zhou, B.; et al. TPHiPr: A Long-Term (1979–2020) High-Accuracy Precipitation Dataset (1/30°, Daily) for the Third Pole Region Based on High-Resolution Atmospheric Modeling and Dense Observations. Earth Syst. Sci. Data 2023, 15, 621–638. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, K.; Ouyang, L.; Wang, Y.; Jiang, Y.; Li, X.; Chen, D.; Prein, A. Added value of kilometer-scale modeling over the third pole region: A CORDEX-CPTP pilot study. Clim. Dyn. 2021, 57, 1673–1687. [Google Scholar] [CrossRef]
- Yang, K.; Chen, Y.; Lazhu; Zhan, C.; Ling, X.; Zhou, X.; Jiang, Y.; Yao, X.; Lu, H.; Ma, X.; et al. Cross-Sectional Rainfall Observation on the Central-Western Tibetan Plateau in the Warm Season: System Design and Preliminary Results. Sci. China Earth Sci. 2023, 66, 1015–1030. [Google Scholar] [CrossRef]
- Dorigo, W.; Preimesberger, W.; Reimer, C.; Van der Schalie, R.; Pasik, A.; De Jeu, R.; Paulik, C. Soil Moisture Gridded Data from 1978 to Present, v202212.1.0. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-soil-moisture?tab=overview (accessed on 31 October 2023).
- Wang, L.; Han, S.; Tian, F.; Li, K.; Li, Y.; Tudaji, M.; Cao, X.; Nan, Y.; Cui, T.; Zheng, X.; et al. The Evaporation on the Tibetan Plateau Stops Increasing in the Recent Two Decades. J. Geophys. Res. 2022, 127, e2022JD037377. [Google Scholar] [CrossRef]
- Wang, L.; Tian, F.; Han, S.; Cui, T.; Meng, X.; Hu, H. Determination of the Asymmetric Parameter in Complementary Relations of Evaporation in Alpine Grasslands of the Tibetan Plateau. J. Hydrol. 2022, 605, 127306. [Google Scholar] [CrossRef]
- Rajeevan, M.; Gadgil, S.; Bhate, J. Active and Break Spells of the Indian Summer Monsoon. J. Earth Syst. Sci. 2010, 119, 229–247. [Google Scholar] [CrossRef]
- Wang, B.; Fan, Z. Choice of South Asian Summer Monsoon Indices. Bull. Am. Meteorol. Soc. 1999, 80, 629–638. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Lau, K.-M. Interannual Variability of the Asian Summer Monsoon: Contrasts between the Indian and the Western North Pacific–East Asian Monsoons. J. Clim. 2001, 14, 4073–4090. [Google Scholar] [CrossRef]
- Reid, K.J.; King, A.D.; Lane, T.P.; Short, E. The Sensitivity of Atmospheric River Identification to Integrated Water Vapor Transport Threshold, Resolution, and Regridding Method. JGR Atmos. 2020, 125, e2020JD032897. [Google Scholar] [CrossRef]
- Sousa, P.M.; Ramos, A.M.; Raible, C.C.; Messmer, M.; Tomé, R.; Pinto, J.G.; Trigo, R.M. North Atlantic Integrated Water Vapor Transport—From 850 to 2100 CE: Impacts on Western European Rainfall. J. Clim. 2020, 33, 263–279. [Google Scholar] [CrossRef]
- Wan, G.; Yang, M.; Liu, Z.; Wang, X.; Liang, X. The Precipitation Variations in the Qinghai-Xizang (Tibetan) Plateau during 1961–2015. Atmosphere 2017, 8, 80. [Google Scholar] [CrossRef]
- Sun, C.; Xu, X.; Zhao, T.; Yao, T.; Zhang, D.; Wang, N.; Ma, Y.; Ma, W.; Chen, B.; Zhang, S.; et al. Distinct Impacts of Vapor Transport from the Tropical Oceans on the Regional Glacier Retreat over the Qinghai-Tibet Plateau. Sci. Total Environ. 2022, 823, 153545. [Google Scholar] [CrossRef]
- Liu, T.; Chen, J.; Yang, K.; Deng, L.; Guo, Z. Impacts of the Indian Summer Monsoon on the southern boundary water vapor transport and precipitation over the Tibetan Plateau. Atmosphere 2023, 14, 20. [Google Scholar] [CrossRef]
- Sun, Y.; Gong, Y. Characteristics of abnormal changes of precipitation over the Tibetan Plateau and atmospheric circulation under the influence of Indian summer monsoon. J. Chengdu Univ. Inf. Technol. 2019, 34, 411–419. [Google Scholar] [CrossRef]
- Tang, Y.; Dan, J.; Zhang, M.; Jiang, H.; Gao, Y. Recycling and Transport of Evapotranspiration over the Tibetan Plateau: Detected by a Water Vapour Tracer Method Embedded in Regional Climate Model. Int. J. Clim. 2023, 43, 7899–7914. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, R.; Huang, G. Low-frequency Snow Changes over the Tibetan Plateau. Int. J. Clim. 2018, 38, 949–963. [Google Scholar] [CrossRef]
- Du, J.; Zhou, K.; Ci, W. Spatial and temporal variations of surface soil freezing days in Chang Tang Natural Reserve of Tibet during 1981–2018. Chin. J. Ecol. 2020, 39, 1121–1129. [Google Scholar] [CrossRef]
- Liu, W.; Wen, J.; Chen, J.; Wang, Z.; Lu, C.; Wu, Y.; Jiang, Y. Characteristic Analysis of the Spatio-temporal Distribution of Key Variables during the Soil Freeze-thaw Process over the Qinghai-Xizang Plateau. Plateau Meteorol. 2022, 41, 11–23. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Z.; Yan, Y.; Ye, Z. Preliminary study on soil humidity and its relationships with soil temperature and air temperature in snow melting season. Arid. Zone Res. 2008, 25, 642–646. [Google Scholar] [CrossRef]
- Williams, C.J.; McNamara, J.P.; Chandler, D.G. Controls on the Temporal and Spatial Variability of Soil Moisture in a Mountainous Landscape: The Signature of Snow and Complex Terrain. Hydrol. Earth Syst. Sci. 2009, 13, 1325–1336. [Google Scholar] [CrossRef]
- Zhang, Y.; Ohata, T.; Kadota, T. Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau. J. Hydrol. 2003, 283, 41–56. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Yao, T.; Pu, J.; Lu, A.; Wang, Y.; Yu, W. Recent Glacial Retreat and Its Impact on Hydrological Processes on the Tibetan Plateau, China, and Surrounding Regions. Arct. Antarct. Alp. Res. 2007, 39, 642–650. [Google Scholar] [CrossRef]
- Paudyal, R.; Kang, S.; Huang, J.; Tripathee, L.; Zhang, Q.; Li, X.; Guo, J.; Sun, S.; He, X.; Sillanpää, M. Insights into Mercury Deposition and Spatiotemporal Variation in the Glacier and Melt Water from the Central Tibetan Plateau. Sci. Total Environ. 2017, 599, 2046–2053. [Google Scholar] [CrossRef]
- Su, F.; Zhang, Y.; Tang, Q.; Ding, J.; He, L.; Tang, Y.; Liu, X.; Liu, X.; Xu, X.; Sang, Y.; et al. Streamflow change on the Qinghai-Tibet Plateau and its impacts. Chin. Sci. Bull. 2019, 64, 2807–2821. [Google Scholar] [CrossRef]
- Yang, K.; Ye, B.; Zhou, D.; Wu, B.; Foken, T.; Qin, J.; Zhou, Z. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim. Chang. 2011, 109, 517–534. [Google Scholar] [CrossRef]
- Cheng, S.; Guan, X.; Huang, J.; Ji, F.; Guo, R. Long-term trend and variability of soil moisture over East Asia. J. Geophys. Res-Atmos. 2015, 120, 8658–8670. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, J.; Li, H.; Yan, L. Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011. J. Appl. Remote Sens. 2013, 7, 073582. [Google Scholar] [CrossRef]
- Xu, W.; Ma, H.; Wu, D.; Yuan, W. Assessment of the daily cloud-free MODIS snow-cover product for monitoring the snow-cover phenology over the Qinghai-Tibetan Plateau. Remote S. 2017, 9, 585. [Google Scholar] [CrossRef]
- Wang, G.; Dolman, A.J.; Blender, R.; Fraedrich, K. Fluctuation Regimes of Soil Moisture in ERA-40 Re-Analysis Data. Theor. Appl. Clim. 2010, 99, 1–8. [Google Scholar] [CrossRef]
- Davarzani, H.; Smits, K.; Tolene, R.M.; Illangasekare, T. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface. Water Resour. Res. Res. 2014, 50, 661–680. [Google Scholar] [CrossRef]
- Dorigo, W.; Preimesberger, W.; Reimer, C.; Van der Schalie, R.; Pasik, A.; De Jeu, R.; Paulik, C. Soil Moisture Gridded Data from 1978 to Present, v201912.1.0. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-soil-moisture?tab=overview (accessed on 31 October 2023).
- Dorigo, W.; Preimesberger, W.; Reimer, C.; Van der Schalie, R.; Pasik, A.; De Jeu, R.; Paulik, C. Soil Moisture Gridded Data from 1978 to Present, v202012.0.0. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-soil-moisture?tab=overview (accessed on 31 October 2023).
- Owe, M.; De Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. 2008, 113, 2007JF000769. [Google Scholar] [CrossRef]
- Gruber, A.; De Lannoy, G.; Albergel, C.; Al-Yaari, A.; Brocca, L.; Calvet, J.-C.; Colliander, A.; Cosh, M.; Crow, W.; Dorigo, W.; et al. Validation Practices for Satellite Soil Moisture Retrievals: What Are (the) Errors? Remote Sens. Environ. 2020, 244, 111806. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Yang, J.; Liu, Z. Multi-scale Evaluation and Validation of Soil Moisture Products of FY-3B/3C and CLDAS: A Case Study in Naqu Region of the Qinghai-Tibet Plateau. Chin. J. Agrometeorol. 2021, 42, 788–804. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Liu, C.; Shi, C. Analysis on the applicability of Fengyun-3 satellite microwave remote sensing soil moisture products in Shandong. Chin. J. Agrometeorol. 2021, 42, 318. [Google Scholar] [CrossRef]
Strong ISM Years | Weak ISM Years |
---|---|
1980 | 1979 |
1983 | 1987 |
1988 | 1997 |
1994 | 2009 |
1996 | 2012 |
1998 | 2014 |
2005 | 2015 |
2006 | 2018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Chen, J.; Zhang, Y.; Gao, Z. Precipitation and Soil Moisture Variation over the Tibetan Plateau to the Anomaly of Indian Summer Monsoon from 1979 to 2019. Remote Sens. 2024, 16, 1014. https://doi.org/10.3390/rs16061014
Liu T, Chen J, Zhang Y, Gao Z. Precipitation and Soil Moisture Variation over the Tibetan Plateau to the Anomaly of Indian Summer Monsoon from 1979 to 2019. Remote Sensing. 2024; 16(6):1014. https://doi.org/10.3390/rs16061014
Chicago/Turabian StyleLiu, Tianyu, Jinghua Chen, Yuanjie Zhang, and Zhiqiu Gao. 2024. "Precipitation and Soil Moisture Variation over the Tibetan Plateau to the Anomaly of Indian Summer Monsoon from 1979 to 2019" Remote Sensing 16, no. 6: 1014. https://doi.org/10.3390/rs16061014
APA StyleLiu, T., Chen, J., Zhang, Y., & Gao, Z. (2024). Precipitation and Soil Moisture Variation over the Tibetan Plateau to the Anomaly of Indian Summer Monsoon from 1979 to 2019. Remote Sensing, 16(6), 1014. https://doi.org/10.3390/rs16061014