Trends in Concentration and Flux of Total Suspended Matter in the Irrawaddy River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Remote Sensing Data
2.2.2. Land Use Data
2.2.3. Remote Sensing Data Preprocessing
- (1)
- Radiometric Calibration
- (2)
- Atmospheric Correction
- (3)
- Validation of Landsat Data with Sentinel Data
3. Results
- We extracted the remote sensing reflectance for all bands within the selected 10 × 10 pixel area (Figure 1B).
- We applied Gaussian filtering.
- Pixels with deviations significantly exceeding the standard deviation were sequentially removed, ensuring that the variation coefficient (VC, SD/mean) was within 15%, and the mean of the remaining pixels was calculated.
3.1. Imputing Missing Data
3.2. The M–K Test
4. Results
4.1. The CTSM Inversion Model
4.2. Distribution of CTSM to the Irrawaddy River
4.3. Changes in FTSM in the Irrawaddy River
5. Discussion
5.1. The FTSM of the Irrawaddy River Is Strongly Correlated with the CTSM and Discharge
5.2. Influence of Suspended Matter Input from Land over the FTSM in the Irrawaddy River
6. Conclusions
- (1)
- The CTSM of the Irrawaddy River is evenly distributed between the upstream and downstream sections of the river. The waters with relatively high CTSM values are distributed along the east bank of the river channel, suggesting that the east bank may be among the main sources of terrestrial suspended solids. Considering the seasonal distribution trends, the CTSM in spring (i.e., March–May) was the lowest of the year. In summer (i.e., June–August) and autumn (i.e., September–November), the CTSM increases significantly. The CTSM in winter (i.e., December–February of the following year) is similar to but slightly greater than that in spring.
- (2)
- From 1990 to 2020, the CTSM of the Irrawaddy River exhibited a downward trend during the study period. Moreover, based on the discharge, we estimated the long-term change trend in the FTSM for the Irrawaddy River. Considering the calculated seasonally averaged flux results in the M–K test formula, we calculate that in the last 30 years, the FTSM in the Irrawaddy River decreased at a rate of 3.9 mt/yr and was significant at the 99% confidence interval (slope = −3.91, Z = −3.28, p < 0.01). The results of this study showed that between 1966 and 1970, the annual FTSM in the Irrawaddy River was 340 mt/yr; between 2016 and 2020, it was 241 mt/yr; and the current transport flux of the Irrawaddy River has decreased by approximately 29.25%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.; Ni, J.; Chang, F.; Yue, Y.; Frolova, N.; Magritsky, D.; Borthwick, A.G.L.; Ciais, P.; Wang, Y.; Zheng, C.; et al. Global trends in water and sediment fluxes of the world’s large rivers. Sci. Bull. 2020, 65, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Milliman, J.D.; Mei-e, R. River flux to the sea: Impact of human intervention on river systems and adjacent coastal areas. In Climate Change; Taylor & Francis: Abingdon, UK, 2021; pp. 57–83. [Google Scholar]
- Li, T.; Wang, S.; Liu, Y.; Fu, B.; Zhao, W. Driving forces and their contribution to the recent decrease in sediment flux to ocean of major rivers in China. Sci. Total Environ. 2018, 634, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Darby, S.E.; Hackney, C.R.; Leyland, J.; Kummu, M.; Lauri, H.; Parsons, D.R. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity. Nature 2016, 539, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Wang, D.; Gong, F.; He, X.; Bai, Y. A Study on the Flux of Total Suspended Matter in the Padma River in Bangladesh Based on Remote-Sensing Data. Water 2021, 13, 2373. [Google Scholar] [CrossRef]
- Portenga, E.W.; Bierman, P.R.; Trodick Jr, C.D.; Greene, S.E.; DeJong, B.D.; Rood, D.H.; Pavich, M.J. Erosion rates and sediment flux within the Potomac River basin quantified over millennial timescales using beryllium isotopes. GSA Bull. 2019, 131, 1295–1311. [Google Scholar] [CrossRef]
- Strick, R.J.; Ashworth, P.J.; Smith, G.H.S.; Nicholas, A.P.; Best, J.L.; Lane, S.N.; Parsons, D.R.; Simpson, C.J.; Unsworth, C.A.; Dale, J. Quantification of bedform dynamics and bedload sediment flux in sandy braided rivers from airborne and satellite imagery. Earth Surf. Process. Landf. 2019, 44, 953–972. [Google Scholar] [CrossRef]
- Rahman, M.M.; Goel, N.K.; Arya, D.S. Development of the Jamuneswari flood forecasting system: Case study in Bangladesh. J. Hydrol. Eng. 2012, 17, 1123–1140. [Google Scholar] [CrossRef]
- Gallay, M.; Martinez, J.M.; Mora, A.; Castellano, B.; Yépez, S.; Cochonneau, G.; Laraque, A. Assessing Orinoco river sediment discharge trend using MODIS satellite images. J. S. Am. Earth Sci. 2019, 91, 320–331. [Google Scholar] [CrossRef]
- Nechad, B.; Alvera-Azcaràte, A.; Ruddick, K.; Greenwood, N. Reconstruction of MODIS total suspended matter time series maps by DINEOF and validation with autonomous platform data. Ocean Dyn. 2011, 61, 1205–1214. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Y.; Hu, X. Evaluation of the suitability of Landsat, MERIS, and MODIS for identifying spatial distribution patterns of total suspended matter from a self-organizing map (SOM) perspective. Catena 2019, 172, 699–710. [Google Scholar] [CrossRef]
- Pang, C.; Yu, W.; Yang, Y.; Han, D. An improved method for evaluating the seasonal variability of total suspended sediment flux field in the Yellow and East China Seas. Int. J. Sediment Res. 2011, 26, 1–14. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Zhu, G.; Liu, X.; Zhou, Y.; Xu, H.; Qin, B.; Liu, G.; Li, Y. Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data. Remote Sens. Environ. 2015, 164, 43–56. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Song, Q. Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS. Remote Sens. Environ. 2014, 140, 779–788. [Google Scholar] [CrossRef]
- Liu, D.; Bai, Y.; He, X.; Pan, D.; Chen, C.-T.A.; Li, T.; Xu, Y.; Gong, C.; Zhang, L. Satellite-derived particulate organic carbon flux in the Changjiang River through different stages of the Three Gorges Dam. Remote Sens. Environ. 2019, 223, 154–165. [Google Scholar] [CrossRef]
- Crawford, C.J.; Roy, D.P.; Arab, S.; Barnes, C.; Vermote, E.; Hulley, G.; Gerace, A.; Choate, M.; Engebretson, C.; Micijevic, E.; et al. The 50-year Landsat collection 2 archive. Sci. Remote Sens. 2023, 8, 100103. [Google Scholar] [CrossRef]
- Chen, C.; Liang, J.; Yang, G.; Sun, W. Spatio-temporal distribution of harmful algal blooms and their correlations with marine hydrological elements in offshore areas, China. Ocean Coast. Manag. 2023, 238, 106554. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Cohen, S.; Kettner, A.J.; Brakenridge, G.R. How important and different are tropical rivers?—An overview. Geomorphology 2014, 227, 5–17. [Google Scholar] [CrossRef]
- Furuichi, T.; Win, Z.; Wasson, R.J. Discharge and suspended sediment transport in the Ayeyarwady River, Myanmar: Centennial and decadal changes. Hydrol. Proc. 2009, 23, 1631–1641. [Google Scholar] [CrossRef]
- Robinson, R.A.J.; Bird, M.J.; Oo, N.W.; Hoey, T.B.; Maung Aye, M.; Higgitt, D.L.; Lu, X.X.; Sandar Aye, K.; Swe, A.; Tun, T.; et al. The Irrawaddy river sediment flux to the Indian Ocean: The original nineteenth-century data revisited. J. Geol. 2007, 115, 629–640. [Google Scholar] [CrossRef]
- Hennig, T. Damming the transnational Ayeyarwady basin. Hydropower and the water-energy nexus. Ren. Sust. Energy Rev. 2016, 65, 1232–1246. [Google Scholar] [CrossRef]
- SOBA. Synthesis Report State of the Basin Assessment; The World Bank: Yangon, Myanmar, 2017; Volume 1, p. 251. [Google Scholar]
- Chen, D.; Li, X.; Saito, Y.; Liu, J.P.; Duan, Y.; Liu, S.; Zhang, L. Recent evolution of the Irrawaddy (Ayeyarwady) Delta and the impacts of anthropogenic activities: A review and remote sensing survey. Geomorphology 2020, 365, 107231. [Google Scholar] [CrossRef]
- Chapman, H.; Bickle, M.; Thaw, S.H.; Thiam, H.N. Chemical fluxes from time series sampling of the Irrawaddy and Salween Rivers, Myanmar. Chem. Geol. 2015, 401, 15–27. [Google Scholar] [CrossRef]
- Webb, E.L.; Jachowski, N.R.A.; Phelps, J.; Friess, D.A.; Than, M.M.; Ziegler, A.D. Deforestation in the Ayeyarwady Delta and the conservation implications of an internationally-engaged Myanmar. Glob. Environ. Change 2014, 24, 321–333. [Google Scholar] [CrossRef]
- Alfieri, L.; Burek, P.; Dutra, E.; Krzeminski, B.; Muraro, D.; Thielen, J.; Pappenberger, F. GloFAS–global ensemble streamdischarge forecasting and flood early warning. Hydrol. Earth Sys. Sci. 2013, 17, 1161–1175. [Google Scholar] [CrossRef]
- Adler, R.; Wang, J.J.; Sapiano, M.; Huffman, G.; Chiu, L.; Xie, P.P.; NOAA CDR Program. Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR), Version 2.3 (Monthly). Natl. Cent. Environ. Inf. 2016, 10, V56971M6. [Google Scholar] [CrossRef]
- Cao, X.; Chen, X.H.; Zhang, W.W.; Liao, A.; Chen, L.; Chen, Z.; Chen, J. Global cultivated land mapping at 30 m spatial resolution. Sci. Chin. Earth Sci. 2016, 59, 2275–2284. [Google Scholar] [CrossRef]
- Keukelaere, L.D.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.; Neil, C.; Zande, D.V.; et al. Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: Validation for coastal and inland waters. Eur. J. Remote Sens. 2018, 51, 525–542. [Google Scholar] [CrossRef]
- Bernardo, N.; Watanabe, F.; Rodrigues, T.; Alcântara, E. Atmospheric correction issues for retrieving total suspended matter concentrations in inland waters using OLI/Landsat-8 image. Adv. Space Res. 2017, 59, 2335–2348. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance dataset. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Shao, Z.; Cai, J.; Fu, P.; Hu, L.; Liu, T. Deep learning-based fusion of Landsat-8 and Sentinel-2 images for a harmonized surface reflectance product. Remote Sens. Environ. 2019, 235, 111425. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P.; Yan, L.; Li, Z.; Huang, H.; Vermote, E.; Skakun, S.; Roger, J.-C. Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sens. Environ. 2018, 215, 482–494. [Google Scholar] [CrossRef]
- Bailey, S.W.; Werdell, P.J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank correlation methods. Br. J. Psychol. 1990, 25, 86–91. [Google Scholar] [CrossRef]
- Besset, M.; Anthony, E.J.; Bouchette, F. Multi-decadal variations in delta shorelines and their relationship to river sediment supply: An assessment and review. Earth Sci. Rev. 2019, 193, 199–219. [Google Scholar] [CrossRef]
- Stamp, L.D. The Irawadi River. Geogr. J. 1940, 95, 329–352. [Google Scholar] [CrossRef]
Band | Transformation Function | Sample Size | R2 (p-Value) | Mean Difference | Mean Difference (%) |
---|---|---|---|---|---|
Blue λ (~0.48 μm) | OLI = 0.0003 + 0.9570 MSI MSI = 0.0039 + 0.9383 OLI | 65,347,909 | 0.8980 (<0.0001) | −0.0014 | −4.64 |
Near-infrared λ (~0.85 μm) | OLI = 0.0077 + 0.9644 MSI MSI = 0.0147 + 0.9355 OLI | 65,380,148 | 0.9022 (<0.0001) | −0.0003 | −0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Wang, D.; Fu, D.; Gong, F.; Huang, J.; He, X.; Zhang, Q. Trends in Concentration and Flux of Total Suspended Matter in the Irrawaddy River. Remote Sens. 2024, 16, 753. https://doi.org/10.3390/rs16050753
Zheng Z, Wang D, Fu D, Gong F, Huang J, He X, Zhang Q. Trends in Concentration and Flux of Total Suspended Matter in the Irrawaddy River. Remote Sensing. 2024; 16(5):753. https://doi.org/10.3390/rs16050753
Chicago/Turabian StyleZheng, Zhuoqi, Difeng Wang, Dongyang Fu, Fang Gong, Jingjing Huang, Xianqiang He, and Qing Zhang. 2024. "Trends in Concentration and Flux of Total Suspended Matter in the Irrawaddy River" Remote Sensing 16, no. 5: 753. https://doi.org/10.3390/rs16050753
APA StyleZheng, Z., Wang, D., Fu, D., Gong, F., Huang, J., He, X., & Zhang, Q. (2024). Trends in Concentration and Flux of Total Suspended Matter in the Irrawaddy River. Remote Sensing, 16(5), 753. https://doi.org/10.3390/rs16050753