Extraction and Analysis of Grasshopper Potential Habitat in Hulunbuir Based on the Maximum Entropy Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Determination of Grasshopper Developmental Stage
2.3. Construction of Environmental Factors
2.3.1. Field Survey Data
2.3.2. Environmental Factors Based on Multisource Data
2.3.3. Selection of Environmental Factors
2.4. Extraction of GPH Based on MaxEnt
2.4.1. Principles of MaxEnt
2.4.2. GPH Classification
2.5. Spatiotemporal Analysis of GPH
2.6. Analysis Process
3. Results
3.1. Accuracy Evaluation
3.2. The Spatial Distribution of GPH
3.3. The Temporal Variation in GPH
3.4. Key Factors of Grasshopper Outbreaks
3.4.1. Key Factors Per Year
3.4.2. Key Factors Playing a Comprehensive Role in the 13 Years
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Lecoq, M.; Latchininsky, A.; Hunter, D. Locust and Grasshopper Management. Annu. Rev. Entomol. 2019, 64, 15–34. [Google Scholar] [CrossRef]
- Hong, J.; Du, G.-l.; Wang, G.-J. The Occurring and Control Situation of Grasshopper in the Grassland of China (Review). Acta Agrestia Sin. 2014, 22, 929–934. [Google Scholar] [CrossRef]
- Cullen, D.A.; Cease, A.J.; Latchininsky, A.V.; Ayali, A.; Berry, K.; Buhl, J.; De Keyser, R.; Foquet, B.; Hadrich, J.C.; Matheson, T.; et al. Chapter Seven—From Molecules to Management: Mechanisms and Consequences of Locust Phase Polyphenism. In Advances in Insect Physiology; Verlinden, H., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 53, pp. 167–285. [Google Scholar]
- Pener, M.P.; Simpson, S.J. Locust Phase Polyphenism: An Update. In Advances in Insect Physiology; Simpson, S.J., Pener, M.P., Eds.; Academic Press: Cambridge, MA, USA, 2009; Volume 36, pp. 1–272. [Google Scholar]
- Song, H.; Mariño-Pérez, R.; Woller, D.A.; Cigliano, M.M. Evolution, Diversification, and Biogeography of Grasshoppers (Orthoptera: Acrididae). Insect Syst. Divers. 2018, 2, 3. [Google Scholar] [CrossRef]
- Wegier, A.; Alavez, V.; Pérez-López, J.; Calzada, L.; Cerritos, R. Beef or grasshopper hamburgers: The ecological implications of choosing one over the other. Basic Appl. Ecol. 2018, 26, 89–100. [Google Scholar] [CrossRef]
- Li, L.; Zhao, C.; Zhao, X.; Wang, D.; Li, Y. Pattern of plant communities’ influence to grasshopper abundance distribution in heterogeneous landscapes at the upper reaches of Heihe River, Qilian Mountains, China. Environ. Sci. Pollut. Res. 2022, 29, 13177–13187. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Dong, Y.; Zhao, L.; Geng, Y.; Ruan, C.; Zhang, B.; Sun, Z.; Zhang, S.; Ye, H.; Wang, K. Review of locust remote sensing monitoring and early warning. J. Remote Sens. 2020, 24, 1270–1279. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, F.; Liu, L.; Du, X.; Ren, B.; Guo, A.; Geng, Y.; Ruan, C.; Ye, H.; Huang, W.; et al. Automatic System for Crop Pest and Disease Dynamic Monitoring and Early Forecasting. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4410–4418. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Kistner-Thomas, E.; Kumar, S.; Jech, L.; Woller, D.A. Modeling Rangeland Grasshopper (Orthoptera: Acrididae) Population Density Using a Landscape-Level Predictive Mapping Approach. J. Econ. Entomol. 2021, 114, 1557–1567. [Google Scholar] [CrossRef]
- Ochieng’, V.; Rwomushana, I.; Ong’amo, G.; Ndegwa, P.; Kamau, S.; Makale, F.; Chacha, D.; Gadhia, K.; Akiri, M. Optimum Flight Height for the Control of Desert Locusts Using Unmanned Aerial Vehicles (UAV). Drones 2023, 7, 233. [Google Scholar] [CrossRef]
- Olfert, O.; Weiss, R.M.; Giffen, D.; Vankosky, M.A. Modeling Ecological Dynamics of a Major Agricultural Pest Insect (Melanoplus sanguinipes; Orthoptera: Acrididae): A Cohort-Based Approach Incorporating the Effects of Weather on Grasshopper Development and Abundance. J. Econ. Entomol. 2020, 114, 122–130. [Google Scholar] [CrossRef]
- Klein, I.; Oppelt, N.; Kuenzer, C. Application of Remote Sensing Data for Locust Research and Management—A Review. Insects 2021, 12, 233. [Google Scholar] [CrossRef]
- Abd El-Ghany, N.M.; Abd El-Aziz, S.E.; Marei, S.S. A review: Application of remote sensing as a promising strategy for insect pests and diseases management. Environ. Sci. Pollut. Res. 2020, 27, 33503–33515. [Google Scholar] [CrossRef]
- Bai, J.; Hou, P.; Zhao, Y.; Xv, H.; Zhang, B. Research progress of species habitat suitability models and their verification. Chin. J. Ecol. 2022, 41, 1423–1432. [Google Scholar] [CrossRef]
- Ju, X.; Lin, J.; Wu, J.; Chen, J.; Guan, J.; Li, M.; Zheng, J. Prediction of potential living area of typical locusts in Xinjiang based on species distribution model. Acta Ecol. Sin. 2022, 42, 8605–8617. [Google Scholar] [CrossRef]
- Sun, Z.; Ye, H.; Huang, W.; Qimuge, E.; Bai, H.; Nie, C.; Lu, L.; Qian, B.; Wu, B. Assessment on Potential Suitable Habitats of the Grasshopper Oedaleus decorus asiaticus in North China based on MaxEnt Modeling and Remote Sensing Data. Insects 2023, 14, 138. [Google Scholar] [CrossRef] [PubMed]
- Norberg, A.; Abrego, N.; Blanchet, F.G.; Adler, F.R.; Anderson, B.J.; Anttila, J.V.; Araújo, M.B.; Dallas, T.A.; Dunson, D.B.; Elith, J.; et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. 2019, 89, e01370. [Google Scholar] [CrossRef]
- Xu, D.; Zhuo, Z.; Wang, R.; Ye, M.; Pu, B. Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling. Glob. Ecol. Conserv. 2019, 19, e00691. [Google Scholar] [CrossRef]
- Yan, H.; Feng, L.; Zhao, Y.; Feng, L.; Wu, D.; Zhu, C. Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt. Glob. Ecol. Conserv. 2020, 21, e00856. [Google Scholar] [CrossRef]
- Sivyer, L.; Morgan-Richards, M.; Koot, E.; Trewick, S.A. Anthropogenic cause of range shifts and gene flow between two grasshopper species revealed by environmental modelling, geometric morphometrics and population genetics. Insect Conserv. Divers. 2018, 11, 415–434. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, J.; Wu, X.; Mu, C.; Lin, J.; Xu, Z. Prediction of Potential Distribution Area of Gomphocerus sibiric in China Based on the MaxEnt Model. Xinjiang Agric. Sci. 2016, 53, 43–50. [Google Scholar]
- Flores, R.C.; Ponce-Reye, R.; Rojas-García4, F. Exploiting a pest insect species Sphenarium purpurascens for human consumption: Ecological, social, and economic repercussions. J. Insects Food Feed 2015, 1, 75–84. [Google Scholar] [CrossRef]
- Adu-Acheampong, S.; Samways, M.J.; Landmann, T.; Kyerematen, R.; Minkah, R.; Mukundamago, M.; Moshobane, C.M. Endemic grasshopper species distribution in an agro-natural landscape of the Cape Floristic Region, South Africa. Ecol. Eng. 2017, 105, 133–140. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, Z.; Ye, H.; Huang, W.; Erden, Q.; Zhang, Y. Application of MaxEnt and Remote Sensing Technology in Grassland Locust Disaster Risk Monitoring: An Example from the Agricultural Heritage Systems of East Ujimqin Banner. J. Ecol. Rural Environ. 2022, 38, 1265–1272. (In Chinese) [Google Scholar] [CrossRef]
- Klein, I.; Uereyen, S.; Eisfelder, C.; Pankov, V.; Oppelt, N.; Kuenzer, C. Application of geospatial and remote sensing data to support locust management. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103212. [Google Scholar] [CrossRef]
- Li, J.; Liu, Q.; Liu, P. Spatio-temporal changes and driving forces of fraction of vegetation coverage in Hulunbuir (1998-2018). Acta Ecol. Sin. 2022, 42, 220–235. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, X.; Hu, H.; Shen, H.; Fang, J. Long-term vegetation changes in the four mega-sandy lands in Inner Mongolia, China. Landsc. Ecol. 2015, 30, 1613–1626. [Google Scholar] [CrossRef]
- Yunxiang, C.; Kamijo, T.; Tsubo, M.; Nakamura, T. Phytosociology of Hulunbeier grassland vegetation in Inner Mongolia, China. Phytocoenologia 2013, 43, 41–51. [Google Scholar] [CrossRef]
- Branson, D.H.; Joern, A.; Sword, G.A. Sustainable Management of Insect Herbivores in Grassland Ecosystems: New Perspectives in Grasshopper Control. BioScience 2006, 56, 743–755. [Google Scholar] [CrossRef]
- Chudzik, P.; Mitchell, A.; Alkaseem, M.; Wu, Y.; Fang, S.; Hudaib, T.; Pearson, S.; Al-Diri, B. Mobile Real-Time Grasshopper Detection and Data Aggregation Framework. Sci. Rep. 2020, 10, 1150. [Google Scholar] [CrossRef]
- Lockwood, J.A.; Hong-Chang, L.; Dodd, J.L.; Williams, S.E. Comparison of Grasshopper (Orthoptera: Acrididae) Ecology on the Grasslands of the Asian Steppe in Inner Mongolia and the Great Plains of North America. J. Orthoptera Res. 1994, 2, 4–14. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Q. Discussion on the Development of Physical Method in Locust Disaster-controlling and its Prospect. J. Anhui Agric. Sci. 2008, 36, 4. [Google Scholar]
- Shan, Y.; Ji, Y.; Li, S.; Ma, C.; Tu, X.; Wang, J.; Wei, J.; Zhang, Z.; Xv, C. Control of Locusts in Different Grasslands by Metarhizium anisopliae. Chin. J. Biol. Control 2021, 37, 946–955. [Google Scholar] [CrossRef]
- Zhao, C.; Li, L.; Wang, D.; Yin, C.; Sheng, Y. Analysis on grasshopper spatial heterogeneity and pattern of natural grass in upper reaches of Heihe. Acta Ecologica Sinica 2012, 32, 4166–4172. [Google Scholar] [CrossRef]
- Zhu, Y.; Ma, Q.; Zhong, Z.; Jiang, M.; Bakker, E.S.; Harvey, J.A.; Veen, G.F.; Chen, C.; Wang, D. Contrasting effects of nitrogen fertiliser application on the performance of closely related grasshoppers through changes in plant nutrient concentrations. Ecol. Entomol. 2023, 48, 347–357. [Google Scholar] [CrossRef]
- Lecoq, M. Integrated Pest Management for Locusts and Grasshoppers: Are Alternatives to Chemical Pesticides Credible? J. Orthoptera Res. 2010, 19, 131–132. [Google Scholar] [CrossRef]
- Guo, J.; Lu, L.; Dong, Y.; Huang, W.; Zhang, B.; Du, B.; Ding, C.; Ye, H.; Wang, K.; Huang, Y.; et al. Spatiotemporal Distribution and Main Influencing Factors of Grasshopper Potential Habitats in Two Steppe Types of Inner Mongolia, China. Remote Sens. 2023, 15, 866. [Google Scholar] [CrossRef]
- Lu, L.; Kong, W.; Eerdengqimuge; Ye, H.; Sun, Z.; Wang, N.; Du, B.; Zhou, Y.; Weijun; Huang, W. Detecting Key Factors of Grasshopper Occurrence in Typical Steppe and Meadow Steppe by Integrating Machine Learning Model and Remote Sensing Data. Insects 2022, 13, 894. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Liu, X.; McNeill, M.R.; Wang, Y.; Sun, W.; Tu, X.; Wang, G.; Ban, L.; Zhang, Z.; Zhang, R. Identification of spatial distribution and drivers for grasshopper populations based on geographic detectors. Ecol. Indic. 2023, 154, 110500. [Google Scholar] [CrossRef]
- Piou, C.; Gay, P.E.; Benahi, A.S.; Babah Ebbe, M.A.O.; Chihrane, J.; Ghaout, S.; Cisse, S.; Diakite, F.; Lazar, M.; Cressman, K.; et al. Soil moisture from remote sensing to forecast desert locust presence. J. Appl. Ecol. 2019, 56, 966–975. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Du, G.; Hu, G.; Zhang, Y.; Tu, X.; Zhang, Z. An analysis of the possible migration routes of Oedaleus decorus asiaticus Bey-Bienko (Orthoptera: Acrididae) from Mongolia to China. Insects 2022, 13, 72. [Google Scholar] [CrossRef]
- Huang, X.; Ma, J.; Qin, X.; Tu, X.; Cao, G.; Wang, G.; Nong, X.; Zhang, Z. Biology, physiology and gene expression of grasshopper Oedaleus asiaticus exposed to diet stress from plant secondary compounds. Sci. Rep. 2017, 7, 8655. [Google Scholar] [CrossRef] [PubMed]
- GB/T 25875-2010; Guideline for Segmenting and Monitoring the Inhabitable areas of for Locusts and Grasshoppers in Grasslands. Standardization Administration of the People’s Republic of China: Beijing, China, 2011.
- Ma, W.; Fang, J.; Yang, Y.; Mohammat, A. Biomass carbon stocks and their changes in northern China’s grasslands during 1982–2006. Sci. China Life Sci. 2010, 53, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.-R.; Feng, Y.-G.; Yang, G.; Wang, P.; Huang, W.-J. Method of Estimating Vegetation Coverage Based on Remote Sensing. Remote Sens. Technol. Appl. 2012, 24, 849–854. [Google Scholar] [CrossRef]
- Jia, K.; Yao, Y.; Wei, X.; Gaoi, S.; Jiang, B.; Zhao, X. A Review on Fractional Vegetation Cover Estimation Using Remote Sensing. Adv. Earth Sci. 2013, 28, 774–782. [Google Scholar] [CrossRef]
- Tu, Y.; Jia, K.; Wei, X.; Yao, Y.; Xia, M.; Zhang, X.; Jiang, B. A time-efficient fractional vegetation cover estimation method using the dynamic vegetation growth information from time series Glass FVC product. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1672–1676. [Google Scholar] [CrossRef]
- Wang, F.; Chen, X.; Luo, G.; Ding, J.; Chen, X. Detecting soil salinity with arid fraction integrated index and salinity index in feature space using Landsat TM imagery. J. Arid Land 2013, 5, 340–353. [Google Scholar] [CrossRef]
- Bujang, M.A. A simplified guide to determination of sample size requirements for estimating the value of intraclass correlation coefficient: A review. Arch. Orofac. Sci. 2017, 12, 1–11. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Kaky, E.; Nolan, V.; Alatawi, A.; Gilbert, F. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol. Inform. 2020, 60, 101150. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Gowthaman, T.; Kumar, S.; Bhattacharyya, B. Detecting air pollutants trends using Mann-Kendall tests and Sen’s slope estimates. Environ. Conserv. J. 2023, 24, 157–166. [Google Scholar] [CrossRef]
- Liu, S.; Xie, Y.; Fang, H.; Du, H.; Xu, P. Trend Test for Hydrological and Climatic Time Series Considering the Interaction of Trend and Autocorrelations. Water 2022, 14, 3006. [Google Scholar] [CrossRef]
- Shcheglovitova, M.; Anderson, R.P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Model. 2013, 269, 9–17. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, Q.; Bao, S.; Cao, X.; Huang, Q. Learning With Multiclass AUC: Theory and Algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 7747–7763. [Google Scholar] [CrossRef] [PubMed]
- Wan, G.-Z.; Wang, L.; Jin, L.; Chen, J. Evaluation of environmental factors affecting the quality of Codonopsis pilosula based on chromatographic fingerprint and MaxEnt model. Ind. Crops Prod. 2021, 170, 113783. [Google Scholar] [CrossRef]
- Du, B.; Wei, J.; Lin, K.; Lu, L.; Ding, X.; Ye, H.; Huang, W.; Wang, N. Spatial and Temporal Variability of Grassland Grasshopper Habitat Suitability and Its Main Influencing Factors. Remote Sens. 2022, 14, 3910. [Google Scholar] [CrossRef]
Category | Factors | Development Stage | Symbol | Data Source | Resolution |
---|---|---|---|---|---|
Meteorology | Average LST | Overwintering | LST_OP_mean | MOD11A1 | 1 km |
Incubation | LST_IP_mean | ||||
Eclosion | LST_EP_mean | ||||
Spawning | LST_SP_mean | ||||
Minimum LST | Overwintering | LST_IP_min | MOD11A1 | 1 km | |
Incubation | LST_IP_min | ||||
Eclosion | LST_EP_min | ||||
Spawning | LST_SP_min | ||||
Precipitation | Overwintering | OP_pr_mean | GPM | 11,132 m | |
Incubation | IP_pr_mean | ||||
Eclosion | EP_ pr_mean | ||||
Spawning | SP_ pr_mean | ||||
Vegetation | Aboveground Biomass | Eclosion | EPbio | MOD09A1 | 500 m |
Spawning | SPbio | ||||
Fractional Vegetation Cover | Incubation | IPFVC | MOD13A2 | 1 km | |
Eclosion | EPFVC | ||||
Spawning | SPFVC | ||||
Vegetation Type | Static Factor | VT | Chinese Academy of Sciences | ||
Soil | Soil Moisture | Overwintering | SPmoisture | FLDAS | 11,132 m |
Incubation | OPmoisture | ||||
Spawning | IPmoisture | ||||
Soil Salinity | Overwintering | IPsal | MOD13A2 | 1 km | |
Incubation | OPsal | ||||
Soil Type | Static Factor | Soil | Chinese Academy of Sciences | 1 km | |
Topographic | Elevation | Static Factor | Elevation | GDEM V2/3 | 30 m |
Slope | Static Factor | Slope | Calculation in ArcGIS | ||
Slope Aspect | Static Factor | Aspect | Calculation in ArcGIS |
Sen Slope | Trend Level | |
---|---|---|
> 0 | > 1.96 | significant increase |
> 0 | 1.645 < < 1.96 | slight increase |
< 0 | 1.645 < < 1.96 | slight decrease |
< 0 | > 1.96 | significant decrease |
< 0, > 0 | < 1.645 | unchanged |
Year | Excellent (0.9, 1.0] | Good (0.8, 0.9] | Common (0.7, 0.8] | Bad (0.6, 0.7] | Failed ≤ 0.6 | Average AUC | Range |
---|---|---|---|---|---|---|---|
2008 | 29 | 1 | 0 | 0 | 0 | 0.919 | 0.892–0.946 |
2009 | 28 | 2 | 0 | 0 | 0 | 0.912 | 0.889–0.941 |
2010 | 30 | 0 | 0 | 0 | 0 | 0.955 | 0.942–0.972 |
2011 | 30 | 0 | 0 | 0 | 0 | 0.942 | 0.907–0.965 |
2012 | 3 | 27 | 0 | 0 | 0 | 0.883 | 0.853–0.911 |
2013 | 30 | 0 | 0 | 0 | 0 | 0.962 | 0.922–0.979 |
2014 | 27 | 3 | 0 | 0 | 0 | 0.944 | 0.860–0.990 |
2015 | 29 | 1 | 0 | 0 | 0 | 0.953 | 0.887–0.982 |
2016 | 29 | 1 | 0 | 0 | 0 | 0.934 | 0.892–0.969 |
2017 | 20 | 10 | 0 | 0 | 0 | 0.912 | 0.846–0.948 |
2018 | 26 | 4 | 0 | 0 | 0 | 0.928 | 0.881–0.965 |
2019 | 29 | 1 | 0 | 0 | 0 | 0.935 | 0.888–0.966 |
2020 | 26 | 4 | 0 | 0 | 0 | 0.967 | 0.880–0.958 |
Year | Key Factors |
---|---|
2008 | ①VT ②IP_pr_mean ③EP_pr_mean ④OP_pr_mean ⑤Soil |
2009 | ①VT ②OP_pr_mean ③SP_LST_min ④Soil ⑤IP_pr_mean ⑥SP_LST_mean |
2010 | ①EP_pr_mean ②OP_pr_mean ③VT ④Soil ⑤IP_pr_mean |
2011 | ①SP_pr_mean ②VT ③soil ④IP_pr_mean ⑤Elevation ⑥EP_pr_mean |
2012 | ①VT ②SP_pr_mean ③OP_LST_mean ④EP_LST_mean ⑤IP_pr_mean ⑥EP_pr_mean ⑦SPFVC |
2013 | ①OP_pr_mean ②SPFVC ③OPmoisture ④IP_pr_mean ⑤VT ⑥OPsal ⑦Soil ⑧EP_LST_mean |
2014 | ①IP_pr_mean ②VT ③Soil ④OPsal ⑤EP_pr_mean |
2015 | ①VT ②IP_pr_mean ③Soil ④Elevation ⑤OP_LST_mean ⑥EP_LST_mean ⑦OPsal ⑧SP_pr_mean |
2016 | ①EP_pr_mean ②VT ③SP_pr_mean ④Soil ⑤EP_LST_mean ⑥SP_LST_min |
2017 | ①VT ②SPFVC ③OP_pr_mean ④Soil ⑤IP_LST_mean ⑥SP_LST_min |
2018 | ①OPsal ②VT ③Soil ④OP_LST_mean ⑤OPmoisture ⑥EP_LST_mean ⑦OP_pr_mean |
2019 | ①VT ②OPmoisture ③Soil ④SP_pr_mean ⑤SPsal |
2020 | ①VT ②Soil ③SPFVC ⑤EP_pr_mean ⑥OP_pr_mean ⑦OPsal ⑧IP_pr_mean ⑨IP_LST_mean ⑩SP_LST_min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Dong, Y.; Huang, W.; Guo, J.; Wang, N.; Ding, X. Extraction and Analysis of Grasshopper Potential Habitat in Hulunbuir Based on the Maximum Entropy Model. Remote Sens. 2024, 16, 746. https://doi.org/10.3390/rs16050746
Zhang Y, Dong Y, Huang W, Guo J, Wang N, Ding X. Extraction and Analysis of Grasshopper Potential Habitat in Hulunbuir Based on the Maximum Entropy Model. Remote Sensing. 2024; 16(5):746. https://doi.org/10.3390/rs16050746
Chicago/Turabian StyleZhang, Yan, Yingying Dong, Wenjiang Huang, Jing Guo, Ning Wang, and Xiaolong Ding. 2024. "Extraction and Analysis of Grasshopper Potential Habitat in Hulunbuir Based on the Maximum Entropy Model" Remote Sensing 16, no. 5: 746. https://doi.org/10.3390/rs16050746
APA StyleZhang, Y., Dong, Y., Huang, W., Guo, J., Wang, N., & Ding, X. (2024). Extraction and Analysis of Grasshopper Potential Habitat in Hulunbuir Based on the Maximum Entropy Model. Remote Sensing, 16(5), 746. https://doi.org/10.3390/rs16050746