Person Mobility Algorithm and Geographic Information System for Search and Rescue Missions Planning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Used Software Tools and Procedure Overview
- Starting/opening a new mission using the QGIS plugin;
- Inserting a georeferenced stitched image (collected with UAV) as a new raster layer in QGIS or using existing maps (Google, Bing, …);
- Editing mission data and optionally adjusting imported statistical data on missing people (ISRID data);
- Terrain segmentation and inserting the segmented image as a new QGIS layer;
- Dividing the segmented terrain image into polygons (with each polygon representing a different type of terrain);
- Optional manual corrections of polygons using available QGIS interaction tools;
- Person mobility estimation (PMA algorithm);
- The calculation of POA for chosen segments/polygons.
2.2. Person Mobility Algorithm
Algorithm 1 PMA algorithm for person mobility estimation |
1: Set initial values for all segments, except IPP, on (initialize_matrix); 2: → edge list, → neighbors list; Put IPP coordinates on the edge list = {(,)}; 3: Do this for each segment in list and 8-neighbours; Neighbors ∉ {} are put in {} end for end for; 4: for each segment in the list , ni,j = = the value of passability at segment ’s location Then, for all neighbors of segment calculate: if is 4-neighbor nk,l() = () + or a diagonal neighbor nk,l () = () + if nk,l () < ni,j then ni,j = nk,l () end for end for; 5: Find from with Put → 6: If n ≥ STOP; 7: for each segment in list if ∌ 8-neighbor | n = , then remove the segment from the list 8: Go to step 3. |
3. Results
3.1. PMA Algorithm Test on Sintetic Map
3.2. PMA Algorithm Test on a Real Map and a Simulated Scenario
3.3. PMA Algorithm Test on Examples of Real Cases
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, Y.-C.; Zhang, M.-X.; Ling, H.-F.; Zheng, Y.-J. Evolutionary Planning of Multi-UAV Search for Missing Tourists. IEEE Access 2019, 7, 73480–73492. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Y.; Qin, H.; Geng, Z. USV Search Mission Planning Methodology for Lost Target Rescue on Sea. Electronics 2023, 12, 4584. [Google Scholar] [CrossRef]
- Koester, R.J. Lost Person Behavior: A Search and Rescue Guide on Where to Look for Land, Air, and Water, 1st ed.; dbS Productions LLC: Charlottesville, VA, USA, 2008. [Google Scholar]
- Rudol, P.; Doherty, P. Human Body Detection and Geolocalization for UAV Search and Rescue Missions Using Color and Thermal Imagery. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008. [Google Scholar]
- Burke, C.; McWhirter, P.R.; Veitch-Michaelis, J.; McAree, O.; Pointon, H.A.G.; Wich, S.; Longmore, S. Requirements and Limitations of Thermal Drones for Effective Search and Rescue in Marine and Coastal Areas. Drones 2019, 3, 78. [Google Scholar] [CrossRef]
- Dinh, T.D.; Pirmagomedov, R.; Pham, V.D.; Ahmed, A.A.; Kirichek, R.; Glushakov, R.; Vladyko, A. Unmanned aerial system–assisted wilderness search and rescue mission. Int. J. Distrib. Sens. Netw. 2019, 15, 6. [Google Scholar] [CrossRef]
- Wright, S.; Smith, R. The SAR Planning ‘P’ Process. J. Search Rescue 2020, 4, 111–135. [Google Scholar] [CrossRef]
- ESRI: Gis Mapping Software. Available online: https://www.esri.com/en-us/home (accessed on 28 September 2023).
- QGIS. Available online: https://qgis.org/en/site/ (accessed on 28 September 2023).
- Koester, R.J. 2010 International Search and Rescue Incident Database (ISRID). Available online: http://www.dbs-sar.com/SAR_Research/ISRID.htm (accessed on 28 September 2023).
- Elena, S.; Charles, T.; Robert, K.; Mukul, S. Evaluating Lost Person Behavior Models. Trans. GIS 2015, 20, 38–53. [Google Scholar]
- Paul, D.; Jared, D.; Quinghua, G.; Don, F. An analysis of probability of area techniques for missing persons in Yosemite National Park. Appl. Geogr. 2014, 47, 99–110. [Google Scholar]
- Lin, L.; Goodrich, M.A. A Bayesian approach to modeling lost person behaviors based on terrain features in wilderness search and rescue. Comput. Math. Organ. Theory 2010, 16, 300–323. [Google Scholar] [CrossRef]
- Šerić, L.; Pinjušić, T.; Topić, K.; Blažević, T. Lost Person Search Area Prediction Based on Regression and Transfer Learning Models. ISPRS Int. J. Geo-Inf. 2021, 10, 80. [Google Scholar] [CrossRef]
- Rossmo, D.K.; Velarde, L.; Mahood, T. Optimizing Wilderness Search and Rescue: A Bayesian GIS Analysis. J. Search Rescue 2019, 3, 44–58. [Google Scholar] [CrossRef]
- Rossmo, D.K.; Velarde, L.; Mahood, T. Optimizing Wilderness Search and Rescue: Discovery and Outcomes. J. Search Rescue 2023, 6, 37–45. [Google Scholar] [CrossRef]
- MapSAR Online Web Mapping Application v3. Available online: https://www.arcgis.com/home/item.html?id=bedf10d744ce471b8a28c3e059a49b7e (accessed on 28 September 2023).
- Papić, V.; Šolić, P.; Milan, A.; Gotovac, S.; Polić, M. High-Resolution Image Transmission from UAV to Ground Station for Search and Rescue Missions Planning. Appl. Sci. 2021, 11, 2105. [Google Scholar] [CrossRef]
- Niedzielski, T.; Jurecka, M.; Miziński, B.; Remisz, J.; Ślopek, J.; Spallek, W.; Witek-Kasprzak, M.; Kasprzak, Ł.; Świerczyńska-Chlaściak, M. A real-time field experiment on search and rescue operations assisted by unmanned aerial vehicles. J. Field Robot. 2018, 35, 906–920. [Google Scholar] [CrossRef]
- Turić, H.; Dujmić, H.; Papić, V. Two-stage Segmentation of Aerial Images for Search and Rescue. Inf. Technol. Control 2010, 2, 138–145. [Google Scholar]
- Božić-Štulić, D.; Marušić, Ž.; Gotovac, S. Deep Learning Approach in Aerial Imagery for Supporting Land Search and Rescue Missions. Int. J. Comput. Vis. 2019, 127, 1256–1278. [Google Scholar] [CrossRef]
- Wysokiński, M.; Marcjan, R.; Dajda, J. Decision Support Software for Search & Rescue Operations. Procedia Comput. Sci. 2014, 35, 776–785. [Google Scholar]
- Nasar, W.; Da Silva Torres, R.; Gundersen, O.E.; Karlsen, A.T. The Use of Decision Support in Search and Rescue: A Systematic Literature Review. ISPRS Int. J. Geo-Inf. 2023, 12, 182. [Google Scholar] [CrossRef]
- Kundid Vasić, M.; Papić, V. Multimodel Deep Learning for Person Detection in Aerial Images. Electronics 2020, 9, 1459. [Google Scholar] [CrossRef]
- Kundid Vasić, M.; Papić, V. Improving the Model for Person Detection in Aerial Image Sequences Using the Displacement Vector: A Search and Rescue Scenario. Drones 2022, 6, 19. [Google Scholar] [CrossRef]
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef]
- Pokonieczny, K.; Dawid, W.; Wyszyński, M. Methodology of using pathfinding methods in military passability maps. In Proceedings of the International Conference on Military Technologies (ICMT), Brno, Czech Republic, 23–26 May 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Dawid, W.; Pokonieczny, K. Methodology of Using Terrain Passability Maps for Planning the Movement of Troops and Navigation of Unmanned Ground Vehicles. Sensors 2021, 21, 4682. [Google Scholar] [CrossRef]
- Yang, J.; Xu, J.; Lv, Y.; Zhou, C.; Zhu, Y.; Cheng, W. Deep learning-based automated terrain classification using high-resolution DEM data. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103249. [Google Scholar] [CrossRef]
- Zhang, G.; Roslan, S.N.A.B.; Wang, C.; Quan, L. Research on land cover classification of multi-source remote sensing data based on improved U-net network. Sci. Rep. 2023, 13, 16275. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Hong, Z.; Sun, P.; Tong, X.; Pan, H.; Zhou, R.; Zhang, Y.; Han, Y.; Wang, J.; Yang, S.; Xu, L. Improved A-Star Algorithm for Long-Distance Off-Road Path Planning Using Terrain Data Map. ISPRS Int. J. Geo-Inf. 2021, 10, 785. [Google Scholar] [CrossRef]
- Agisoft Metashape. Available online: https://www.agisoft.com (accessed on 30 September 2023).
- Koester, R.J. Lost Person Behavior: Instructor Activity Guide. 2010. Available online: https://www.dbs-sar.com/InstructorNetwork/DRAFT%20Instructors%20Activity%20Guide.pdf (accessed on 30 September 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papić, V.; Gudelj, A.Š.; Milan, A.; Miličević, M. Person Mobility Algorithm and Geographic Information System for Search and Rescue Missions Planning. Remote Sens. 2024, 16, 670. https://doi.org/10.3390/rs16040670
Papić V, Gudelj AŠ, Milan A, Miličević M. Person Mobility Algorithm and Geographic Information System for Search and Rescue Missions Planning. Remote Sensing. 2024; 16(4):670. https://doi.org/10.3390/rs16040670
Chicago/Turabian StylePapić, Vladan, Ana Šarić Gudelj, Ante Milan, and Mario Miličević. 2024. "Person Mobility Algorithm and Geographic Information System for Search and Rescue Missions Planning" Remote Sensing 16, no. 4: 670. https://doi.org/10.3390/rs16040670
APA StylePapić, V., Gudelj, A. Š., Milan, A., & Miličević, M. (2024). Person Mobility Algorithm and Geographic Information System for Search and Rescue Missions Planning. Remote Sensing, 16(4), 670. https://doi.org/10.3390/rs16040670