The Variation Characteristics of Stratospheric Circulation under the Interdecadal Variability of Antarctic Total Column Ozone in Early Austral Spring
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
- (1)
- Polar TCO index from the BS–TCO dataset is TCO averaged over 63°S~90°S [10].
- (2)
- Polar TCO index from Satellite (S–TCO) is provided by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center online database, missing for 1994 and 1995.
- (3)
- Equivalent effective stratospheric chlorine (EESC) is obtained from the Goddard Space Flight Center, which has been widely used to relate predictions of human-generated ODS abundances to future ozone changes [5,12]. It uses the parameters suggested by Newman et al. [8,13] and corresponds to the WMO A1-2014 scenarios, with an age spectrum width of 2.75 year (symbol a is an abbreviation of year), a constant factor of 60, and a mean age-of-air of 5.5 a. This parameter is different from the classical EESC, which is thought to be more suitable for the polar region.
- (4)
- The index of the PSC area is also from the NASA Goddard Space Flight Center.
- (5)
- Due to the close correlation between TCO and polar (60°S~90°S) temperature, in particular with 50 hPa [12], the index of stratospheric temperature is represented by temperature averaged over 60°S~90°S (polar temperature, PT) at 50 hPa.
- (6)
- In the same way as the temperature, the polar vortex is greatly related to TCO, in which a 10 hPa polar vortex variability explains approximately 85% of the variance of polar TCO anomalies [37]. The index of the stratospheric polar vortex is also represented by geopotential height averaged over 60°S~90°S (polar geopotential height, PGH) at 10 hPa.
- (7)
- Additionally, the index of the stratospheric polar vortex is calculated by the zonal-mean zonal wind (U) at 60°S (U at 60°S, U60) and 30 hPa, which has the highest correlation with TCO and approaches the center of the mean position of the polar vortex in the mid-stratosphere. The polar vortex tends to enhance (weaken) the reduced (elevated) PGH and the accelerating (decelerating) U60.
2.2. Methods
3. Results
3.1. The Variation Characteristics of Antarctic Total Column Ozone and Stratospheric Circulation during the Recovery Period and Depletion Period
3.1.1. The Temporal Characteristics of Antarctic Total Column Ozone
3.1.2. The Temporal Characteristics of Stratospheric Temperature and Polar Vortex
3.1.3. The Spatial Characteristics of Antarctic Total Column Ozone and Stratospheric Circulation
3.1.4. The Interannual Variability of Antarctic Total Column Ozone and Stratospheric Circulation
3.2. The Variation Characteristics of Planetary Waves on Antarctic Total Column Ozone during the Recovery Period and Depletion Period
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farman, J.C.; Gardiner, B.G.; Shanklin, J.D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 1985, 315, 207–210. [Google Scholar] [CrossRef]
- World Meteorological Organization/United Nations Environment Programme (WMO/UNEP). Scientific Assessment of Ozone Depletion: 2014; Global Ozone Research and Monitoring Project Report No. 55; World Meteorological Organization/United Nations Environment Programme (WMO/UNEP): Geneva, Switzerland, 2014. [Google Scholar]
- Yu, P.; Davis, S.M.; Toon, O.B.; Portmann, R.W.; Bardeen, C.G.; Barnes, J.E.; Telg, H.; Maloney, C.; Rosenlof, K.H. Persistent stratospheric warming due to 2019–2020 Australian wildfire smoke. Geophys. Res. Lett. 2021, 48, e2021GL092609. [Google Scholar] [CrossRef]
- Hu, D.Z.; Guo, Y.P.; Wang, F.Y.; Xu, Q.; Li, Y.P.; Sang, W.J.; Wang, X.; Liu, M. Brewer-Dobson Circulation: Recent-Past and Near-Future Trends Simulated by Chemistry-Climate Models. Adv. Meteorol. 2017, 2017, 2913895. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2018; Global Ozone Research and Monitoring Project-Report No. 58; World Meteorological Organization (WMO): Geneva, Switzerland, 2018; Volume 588. [Google Scholar]
- Hu, Y.-Y. The discovery of the Antarctic ozone hole. Chin. Sci. Bull. 2020, 65, 1797–1803. (In Chinese) [Google Scholar] [CrossRef]
- Stone, K.A.; Solomon, S.; Kinnison, D.E.; Mills, M.J. On recent large Antarctic ozone holes and ozone recovery metrics. Geophys. Res. Lett. 2021, 48, e2021GL095232. [Google Scholar] [CrossRef]
- Newman, P.A.; Daniel, J.S.; Waugh, D.W.; Nash, E.R. A new formulation of equivalent effective stratospheric chlorine (EESC). Atmos. Chem. Phys. 2007, 7, 4537–4552. [Google Scholar] [CrossRef]
- Chipperfield, M.P.; Bekki, S.; Dhomse, S.; Harris, N.R.P.; Hassler, B.; Hossaini, R.; Steinbrecht, W.; Thiéblemont, R.; Weber, M. Detecting recovery of the stratospheric ozone layer. Nature 2017, 549, 211–218. [Google Scholar] [CrossRef]
- Solomon, S.; Ivy, D.J.; Kinnison, D.; Mills, M.J.; Neely, R.R., III; Schmidt, A. Emergence of healing in the Antarctic ozone layer. Science 2016, 353, 269–274. [Google Scholar] [CrossRef]
- Strahan, S.E.; Douglass, A.R.; Damon, M.R. Why do Antarctic ozone recovery trends vary? J. Geophys. Res. Atmos. 2019, 124, 8837–8850. [Google Scholar] [CrossRef]
- Bian, L.G.; Lin, Z.; Zheng, X.D.; Ma, Y.F.; Lu, L.H. The trend of Antarctic ozone hole and its influencing factors. Adv. Clim. Chang. Res. 2012, 3, 68–75. [Google Scholar]
- Newman, P.A.; Nash, E.R.; Kawa, S.R.; Montzka, S.A.; Schauffler, S.M. When will the Antarctic ozone hole recover? Geophys. Res. Lett. 2006, 33, L12814. [Google Scholar] [CrossRef]
- Kravchenko, V.O.; Evtushevsky, O.M.; Grytsai, A.V.; Klekociuk, A.R.; Milinevsky, G.P.; Grytsai, Z.I. Quasi-stationary planetary waves in late winter Antarctic stratosphere temperature as a possible indicator of spring total ozone. Atmos. Chem. Phys. 2012, 12, 2865–2879. [Google Scholar] [CrossRef]
- Shantikumar, S.N.; Vemareddy, P.; Song, H.-J. Effect of lower stratospheric temperature on total ozone column (TOC) during the ozone depletion and recovery phases. Atmos. Res. 2020, 232, 104686. [Google Scholar]
- Chen, W.; Huang, R.H. The numerical Study of Seasonal and lnterannual Variabilities of Ozone due to Planetary Wave Transport in the Middle Atmosphere: Part I. The Case of Steady Mean Flows. Sci. Atmos. Sin. 1996, 20, 513–523. (In Chinese) [Google Scholar]
- Chen, W.; Huang, R.H. A Numerical Study of Seasonal and lnterannual Variabilities of Ozone due to Planetary Wave Transport in the Middle Atmosphere: Part II. The Case of Wave-Flow Interaction. Sci. Atmos. Sin. 1996, 20, 703–712. (In Chinese) [Google Scholar]
- Zheng, B.; Chen, Y.J.; Shi, C.H. Relationship of Zonal Ozone Seasonal Variations and Planetary Wave in the Stratosphere. Plateau Meteorol. 2006, 25, 366–374. (In Chinese) [Google Scholar]
- Thompson, D.W.J.; Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 2002, 296, 895–899. [Google Scholar] [CrossRef]
- Keeble, J.; Braesicke, P.; Abraham, N.L.; Roscoe, H.K.; Pyle, J.A. The impact of polar stratospheric ozone loss on Southern Hemisphere stratospheric circulation and climate. Atmos. Chem. Phys. 2014, 14, 13705–13717. [Google Scholar] [CrossRef]
- Waugh, D.W.; Plumb, R.A.; Elkins, J.W.; Fahey, D.W.; Boering, K.A.; Dutton, G.S.; Volk, C.M.; Keim, E.; Gao, R.-S.; Daube, B.C.; et al. Mixing of polar vortex air into middle latitudes as revealed by tracer-tracer scatter plots. J. Geophys. Res. 1997, 102, 13119–13134. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Zhou, L.B. The Relationship between Polar Vortex and Ozone Depletion in the Antarctic Stratosphere during the Period 1979–2016. Adv. Meteorol. 2017, 2017, 3078079. [Google Scholar] [CrossRef]
- Li, C.C.; Guo, S.C.; Yi, Q.; Li, H.F. Relationship between atmospheric ozone and polar vortex intensity in the mid-high latitude over the Northern Hemisphere in winter. Plateau Meteorol. 2016, 35, 1290–1297. (In Chinese) [Google Scholar]
- Seidel, D.J.; Li, J.; Mears, C.; Moradi, I.; Nash, J.; Randel, W.J.; Saunders, R.; Thompson, D.W.J.; Zou, C.-Z. Stratospheric temperature changes during the satellite era. J. Geophys. Res. Atmos. 2016, 121, 664–681. [Google Scholar] [CrossRef]
- Kidston, J.; Scaife, A.; Hardiman, S.; Mitchell, D.; Butchart, N.; Baldwin, M.; Gray, L. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci. 2015, 8, 433–440. [Google Scholar] [CrossRef]
- Son, S.W.; Gerber, E.P.; Perlwitz, J.; Polvani, L.M.; Gillett, N.P.; Seo, K.-H.; Eyring, V.; Shepherd, T.G.; Waugh, D.; Akiyoshi, H.; et al. The impact of stratospheric ozone on Southern Hemisphere circulation changes: A multimodel assessment. J. Geophys. Res. 2010, 115, D00M07. [Google Scholar] [CrossRef]
- Polvani, L.M.; Waugh, D.W.; Correa, G.J.P.; Son, S.-W. Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Clim. 2011, 24, 795–812. [Google Scholar] [CrossRef]
- Banerjee, A.; Fyfe, J.C.; Polvani, L.M.; Waugh, D.; Chang, K.-L. A pause in Southern Hemisphere circulation trends due to the Montreal protocol. Nature 2020, 579, 544–548. [Google Scholar] [CrossRef]
- Zambri, B.; Solomon, S.; Thompson, D.W.J.; Fu, Q. Emergence of Southern Hemisphere stratospheric circulation changes in response to ozone recovery. Nat. Geosci. 2021, 14, 638–644. [Google Scholar] [CrossRef]
- Ferreira, D.; Marshall, J.; Bitz, C.M.; Solomon, S.; Plumb, A. Antarctic ocean and sea ice response to ozone depletion: A two-time-scale problem. J. Clim. 2015, 28, 1206–1226. [Google Scholar] [CrossRef]
- Seviour, W.J.M.; Gnanadesikan, A.; Waugh, D.W. The Transient Response of the Southern Ocean to Stratospheric Ozone Depletion. J. Clim. 2016, 29, 7383–7396. [Google Scholar] [CrossRef]
- Turner, J.; Comiso, J.C.; Marshall, G.J.; Lachlan-Cope, T.A.; Bracegirdle, T.; Maksym, T.; Meredith, M.P.; Wang, Z.; Orr, A. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett. 2009, 36, L08502. [Google Scholar] [CrossRef]
- Zhang, J.K.; Tian, W.S.; Pyle, J.A.; Keeble, J.; Abraham, N.L.; Chipperfield, M.P.; Xie, F.; Yang, Q.H.; Mu, L.J.; Ren, H.-L.; et al. Responses of Arctic Sea Ice to Stratospheric Ozone Depletion. Sci. Bull. 2022, 67, 1182–1190. [Google Scholar] [CrossRef]
- Xia, Y.; Hu, Y.Y.; Liu, J.P.; Huang, Y.; Xie, F.; Lin, J.T. Stratospheric Ozone-induced Cloud Radiative Effects on Antarctic Sea Ice. Adv. Atmos. Sci. 2020, 37, 505–514. [Google Scholar] [CrossRef]
- Bodeker, G.E.; Kremser, S.; Tradowsky, J.S. BS Filled Total Column Ozone Database V3.5.1 (3.5.1). Zenodo 2021. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 monthly averaged data on pressure levels from 1979 to present. Copernic. Clim. Chang. Serv. (C3S) Clim. Data Store (CDS) 2019, 10, 252–266. [Google Scholar]
- Seviour, W.J.M.; Hardiman, S.C.; Gray, L.J.; Butchart, N.; Maclachlan, C.; Scaife, A.A. Skillful Seasonal Prediction of the Southern Annular Mode and Antarctic Ozone. J. Clim. 2014, 27, 7462–7474. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Orr, A.; Bracegirdle, T.J.; Hoskings, J.S.; Jung, T.; Haigh, J.D.; Phillips, T.; Feng, W. Possible dynamical mechanisms for Southern Hemisphere climate change due to the ozone hole. J. Atmos. Sci. 2012, 69, 2917–2932. [Google Scholar] [CrossRef]
- Lubis, S.W.; Silverman, V.; Matthes, K.; Harnik, N.; Omrani, N.-E.; Wahl, S. How does downward planetary wave coupling affect polar stratospheric ozone in the Arctic winter stratosphere? Atmos. Chem. Phys. 2017, 17, 2437–2458. [Google Scholar] [CrossRef]
- Dunkerton, T.; Hsu, C.F.; McIntyre, M.E. Some Eulerian and Lagrangian Diagnostics for a Model Stratospheric Warming. J. Atmos. Sci. 1981, 38, 819–844. [Google Scholar] [CrossRef]
- Dunn-Sigouin, E.; Shaw, T.A. Comparing and contrasting extreme stratospheric events, including their coupling to the tropospheric circulation. J. Geophys. Res. 2015, 120, 1374–1390. [Google Scholar] [CrossRef]
- Song, B.-G.; Chun, H.-Y. Residual circulation and temperature changes during the evolution of stratospheric sudden warming revealed in MERRA. Atmos. Chem. Phys. 2016, preprint. [Google Scholar]
- Chemke, R.; Polvani, L.M. Linking midlatitudes eddy heat flux trends and polar amplification. NPJ Clim. Atmos. Sci. 2020, 3, 8. [Google Scholar] [CrossRef]
- Orr, A.; Lu, H.; Martineau, P.; Gerber, E.P.; Marshall, G.J.; Bracegirdle, T.J. Is our dynamical understanding of the circulation changes associated with the Antarctic ozone hole sensitive to the choice of reanalysis dataset? Atmos. Chem. Phys. 2021, 21, 7451–7472. [Google Scholar] [CrossRef]
- Huck, P.E.; McDonald, A.J.; Bodeker, G.E.; Struthers, H. Interannual variability in Antarctic ozone depletion controlled by planetary waves and polar temperature. Geophys. Res. Lett. 2005, 32, L13819. [Google Scholar] [CrossRef]
- Lu, L.H.; Bian, L.G.; Jia, P.Q. Short-term climatic change of Antarctic ozone. Q. J. Appl. Meteorol. 1997, 8, 402–412. (In Chinese) [Google Scholar]
- Zou, H.; Gao, Y.Q. QBO and ENSO Signals in Total Ozone over 60~70°S. Clim. Environ. Res. 1997, 1, 62–71. (In Chinese) [Google Scholar]
- Wang, Z.; Zhang, J.; Wang, T.; Feng, W.; Hu, Y.H.; Xu, X.R. Analysis of the Antarctic Ozone Hole in November. J. Clim. 2021, 34, 6513–6529. [Google Scholar] [CrossRef]
- Shen, X.C.; Wang, L.; Osprey, S. The Southern Hemisphere sudden stratospheric warming of September 2019. Sci. Bull. 2020, 65, 1800–1802. [Google Scholar] [CrossRef]
- Roy, R.; Kuttippurath, J.; Lefèvre, F.; Raj, S.; Kumar, P. The sudden stratospheric warming and chemical ozone loss in the Antarctic winter 2019: Comparison with the winters of 1988 and 2002. Theor. Appl. Climatol. 2022, 149, 119–130. [Google Scholar] [CrossRef]
- Maycock, A.C.; Randel, W.J.; Steiner, A.K.; Karpechko, A.Y.; Christy, J.; Saunders, R.; Thompson, D.W.J.; Zou, C.-Z.; Chrysanthou, A.; Abraham, N.L.; et al. Revisiting the mystery of recent stratospheric temperature trends. Geophys. Res. Lett. 2018, 45, 9919–9933. [Google Scholar] [CrossRef]
- Zou, H. Stratospheric sudden warming and its relationship with ozone on Antarctica in august. 1988. Antarct. Res. 1990, 2, 61–66. (In Chinese) [Google Scholar]
- Xiong, K.; Hu, R.M.; Shi, G.Y. Antarctic total ozone change correlated to the stratosphere wind and temperature during the polar night. Antarct. Res. 1992, 4, 45–50. (In Chinese) [Google Scholar]
- Shi, C.H.; Chen, Y.J.; Zheng, B.; Liu, Y. A comparison with the contribution of dynamics and chemistry in ozone’s seasonal variation in the stratosphere. Chin. J. Atmos. Sci. 2010, 34, 399–406. (In Chinese) [Google Scholar]
- Tian, W.S.; Huang, J.L.; Qie, K.; Wang, T.; Xu, M. Review of the general atmospheric circulation in the stratosphere and its variation features. J. Meteorol. Sci. 2020, 40, 628–638. (In Chinese) [Google Scholar]
Abbreviations | The Full Name |
---|---|
TCO | Total Column Ozone |
ODSs | Ozone-Depleting Substances |
EESC | Equivalent Effective Stratospheric Chlorine |
PSC area | Polar Stratospheric Cloud Area |
PT | Temperature Averaged Over 60°S~90°S |
PGH | Geopotential Height Averaged Over 60°S~90°S |
U60 | Zonal-Mean Zonal Wind (U) at 60°S |
EMF | Eddy Momentum Flux |
EHF | Eddy Heat Flux |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhou, S.; Guo, D.; Hu, D.; Yao, Y.; Wu, M. The Variation Characteristics of Stratospheric Circulation under the Interdecadal Variability of Antarctic Total Column Ozone in Early Austral Spring. Remote Sens. 2024, 16, 619. https://doi.org/10.3390/rs16040619
Li J, Zhou S, Guo D, Hu D, Yao Y, Wu M. The Variation Characteristics of Stratospheric Circulation under the Interdecadal Variability of Antarctic Total Column Ozone in Early Austral Spring. Remote Sensing. 2024; 16(4):619. https://doi.org/10.3390/rs16040619
Chicago/Turabian StyleLi, Jiayao, Shunwu Zhou, Dong Guo, Dingzhu Hu, Yao Yao, and Minghui Wu. 2024. "The Variation Characteristics of Stratospheric Circulation under the Interdecadal Variability of Antarctic Total Column Ozone in Early Austral Spring" Remote Sensing 16, no. 4: 619. https://doi.org/10.3390/rs16040619
APA StyleLi, J., Zhou, S., Guo, D., Hu, D., Yao, Y., & Wu, M. (2024). The Variation Characteristics of Stratospheric Circulation under the Interdecadal Variability of Antarctic Total Column Ozone in Early Austral Spring. Remote Sensing, 16(4), 619. https://doi.org/10.3390/rs16040619