Land Use/Cover-Related Ecosystem Service Value in Fragile Ecological Environments: A Case Study in Hexi Region, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Processing and Study Methods
2.3.1. LULC Reclassification
2.3.2. Dynamic Degree and Transfer Matrix of LULC
2.3.3. ESV Estimation Model
Revision of the Standard Equivalent Factor for ESV
Estimation of ESV Based on the Standard Equivalent Factor
2.3.4. Spatial Autocorrelation and Hotspot Analysis of ESV
2.3.5. Ecological Contribution Rate
2.3.6. Elasticity of the ESV Response to LULC Change
3. Results
3.1. Spatio-Temporal Changes of LULC
3.2. Spatio-Temporal Variations of ESV
3.3. Spatial Autocorrelation of ESV
3.4. Contribution of LULC to ESV Change
3.5. Elasticity Response of the ESV to LULC Changes
4. Discussion
4.1. Driving Factors of LULC Dynamics and Their Impact on the ESV
4.2. ESV versus GDP
4.3. Comparison ESV with Other Regions
4.4. Implications of ESV Research for Sustainable Development of Natural-Social Systems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Granstrand, O.; Holgersson, M. Innovation ecosystems: A conceptual review and a new definition. Technovation 2020, 90–91, 102098. [Google Scholar] [CrossRef]
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Báldi, A.; et al. The IPBES Conceptual Framework—Connecting nature and people. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef]
- Cimatti, M.; Chaplin-Kramer, R.; di Marco, M. The role of high-biodiversity regions in preserving Nature’s Contributions to People. Nat. Sustain. 2023, 6, 1385–1393. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Chakraborti, S.; Kumar Joshi, P.; Keesstra, S.; Sen, S.; Paul, S.K.; Kreuter, U.; Sutton, P.C.; Jha, S.; Dang, K.B. Ecosystem service value assessment of a natural reserve region for strengthening protection and conservation. J. Environ. Manag. 2019, 244, 208–227. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, X.; Yang, L.; Zhu, Z. Variations in Ecosystem Service Value and Its Driving Factors in the Nanjing Metropolitan Area of China. Forests 2023, 14, 113. [Google Scholar] [CrossRef]
- Tolessa, T.; Senbeta, F.; Abebe, T. Land use/land cover analysis and ecosystem services valuation in the central highlands of Ethiopia. For. Trees Livelihoods 2017, 26, 111–123. [Google Scholar] [CrossRef]
- Ouyang, Z.; Song, C.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Liu, J.; Ruckelshaus, M.; Shi, F.; Xiao, Y.; et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef] [PubMed]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S.; et al. Bringing ecosystem services into economic decision-making: Land use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef]
- Butler, J.R.A.; Wong, G.Y.; Metcalfe, D.J.; Honzák, M.; Pert, P.L.; Rao, N.; van Grieken, M.E.; Lawson, T.; Bruce, C.; Kroon, F.J.; et al. An analysis of trade-offs between multiple ecosystem services and stakeholders linked to land use and water quality management in the Great Barrier Reef, Australia. Agric. Ecosyst. Environ. 2013, 180, 176–191. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, Y.; Wu, X.; Xie, Y.; Zhang, T.; Zou, Z.; Zhang, R.; Zhang, Z. Evaluating temporal-spatial variations of wetland ecosystem service value in China during 1990–2020 from the donor side based on cosmic exergy. J. Clean. Prod. 2023, 414, 137485. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Zorrilla-Miras, P.; Palomo, I.; Gómez-Baggethun, E.; Martín-López, B.; Lomas, P.L.; Montes, C. Effects of land-use change on wetland ecosystem services: A case study in the Doñana marshes (SW Spain). Landsc. Urban Plan. 2014, 122, 160–174. [Google Scholar] [CrossRef]
- Karki, S.; Thandar, A.M.; Uddin, K.; Tun, S.; Aye, W.M.; Aryal, K.; Kandel, P.; Chettri, N. Impact of land use land cover change on ecosystem services: A comparative analysis on observed data and people’s perception in Inle Lake, Myanmar. Environ. Syst. Res. 2018, 7, 25. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W.; Tolessa, T.; Kindu, M. Estimating the impacts of land use/land cover changes on Ecosystem Service Values: The case of the Andassa watershed in the Upper Blue Nile basin of Ethiopia. Ecosyst. Serv. 2018, 31, 219–228. [Google Scholar] [CrossRef]
- Li, R.Q.; Dong, M.; Cui, J.Y.; Zhang, L.L.; Cui, Q.G.; He, W.M. Quantification of the impact of land-use changes on ecosystem services: A case study in Pingbian County, China. Environ. Monit. Assess. 2007, 128, 503–510. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Zhang, N.; Dou, S.Q.; Xu, Y.; Jing, J.L.; Zhang, H.B. Temporal spatial changes of ecosystem health in Guangxi in the past 14 years. J. Guilin Univ. Technol. 2021, 41, 370–378. [Google Scholar]
- Wang, S.; Zhong, R.; Liu, L.; Zhang, J. Ecological effect of ecological engineering projects on low-temperature forest cover in Great Khingan Mountain, China. Int. J. Environ. Res. Public Health 2021, 18, 10625. [Google Scholar] [CrossRef]
- Huang, L.; Qin, X.; Hu, B.; Huang, S.M.; Wei, W.W.; Chen, S.Q. Analysis of Spatial and Temporal Changes in Ecosystem Health and Its Drivers in Southwest Guangxi in the Last 20 Years. J. Guangxi Acad. Sci. 2023, 39, 268–279. [Google Scholar]
- Kark, S. Ecotones and Ecological Gradients. In Ecological Systems: Selected Entries from the Encyclopedia of Sustainability Science and Technology; Leemans, R., Ed.; Springer: New York, NY, USA, 2013; pp. 147–160. [Google Scholar]
- Huang, Q.; Zhang, F.; Zhang, Q.; Jin, Y.; Lu, X.; Li, X.; Liu, J. Assessing the Effects of Human Activities on Terrestrial Net Primary Productivity of Grasslands in Typical Ecologically Fragile Areas. Biology 2023, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Zhang, Z.; Huisingh, D. Combating desertification in China: Monitoring, control, management and revegetation. J. Clean. Prod. 2018, 182, 765–775. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, L.; Gong, X.; Liu, J.; Liao, X.; Dong, Y. Empirical study of the coupling relationship between biodiversity and environmental geology under different ecological status: Evidence from five typical areas in Guizhou, China. Environ. Sci. Pollut. Res. 2022, 29, 51398–51410. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zhao, Y.Q. Investigation and analysis of the Xiangning landslide in Shanxi Province, China. Nat. Hazards 2020, 103, 3837–3845. [Google Scholar] [CrossRef]
- Tan, W.; Li, X. Guidance of the coordination theory of man-land relationship to land exploitation and utilization. In Proceedings of the 2017 4th International Conference on Industrial Economics System and Industrial Security Engineering (IEIS), Kyoto, Japan, 24–27 July 2017. [Google Scholar] [CrossRef]
- Xie, W.; Huang, Q.; He, C.; Zhao, X. Projecting the impacts of urban expansion on simultaneous losses of ecosystem services: A case study in Beijing, China. Ecol. Indic. 2018, 84, 183–193. [Google Scholar] [CrossRef]
- Jiang, C.; Nath, R.; Labzovskii, L.; Wang, D. Integrating ecosystem services into effectiveness assessment of ecological restoration program in northern China’s arid areas: Insights from the Beijing-Tianjin Sandstorm Source Region. Land Use Policy 2018, 75, 201–214. [Google Scholar] [CrossRef]
- Wang, Z.J.; Liu, S.J.; Li, J.H.; Pan, C.; Wu, J.L.; Ran, J.; Su, Y. Remarkable improvement of ecosystem service values promoted by land use/land cover changes on the Yungui Plateau of China during 2001–2020. Ecol. Indic. 2022, 142, 109303. [Google Scholar] [CrossRef]
- Wang, S.D.; Zhang, H.B.; Wang, X.C. Analysis on the dynamic changes in a regional ecosystem and evaluation of its service values based on remote sensing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2015, 47, 169–174. [Google Scholar] [CrossRef]
- Pan, N.; Guan, Q.; Wang, Q.; Sun, Y.; Li, H.; Ma, Y. Spatial Differentiation and Driving Mechanisms in Ecosystem Service Value of Arid Region: A case study in the middle and lower reaches of Shule River Basin, NW China. J. Clean. Prod. 2021, 319, 128718. [Google Scholar] [CrossRef]
- Cheng, W.; Shen, B.; Xin, X.; Gu, Q.; Guo, T. Spatiotemporal Variations of Grassland Ecosystem Service Value and Its Influencing Factors in Inner Mongolia, China. Agronomy 2022, 12, 2090. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, C.; Yang, Y.; Huang, C.; Wang, M.; Tan, W. Coordination of economic development and ecological conservation during spatiotemporal evolution of land use/cover in eco-fragile areas. Catena 2023, 226, 107097. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Tian, W.; Xu, X.F.; He, C.S. Land use and land cover change in agro-pastoral ecotone in Northern China: A review. Chin. J. Appl. Ecol. 2018, 29, 3487–3495. [Google Scholar]
- Han, L.; Zhang, Z.; Zhang, Q.; Wan, X. Desertification assessments in the Hexi corridor of northern China’s Gansu Province by remote sensing. Nat. Hazards 2015, 75, 2715–2731. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Q.; Singh, V.P.; Zhao, J.; Song, J.; Sun, S.; Wang, G.; Shen, Z.; Wu, W. Identification of Degradation Areas of Ecological Environment and Degradation Intensity Assessment in the Yellow River Basin. Front. Earth Sci. 2022, 10, 922013. [Google Scholar] [CrossRef]
- Du, X.; Qin, Y.; Huang, C. Status and Prospect of Ecological Environment in the Belt and Road Initiative Regions. Int. J. Environ. Res. Public Health 2022, 19, 17091. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhang, B. Spatial-temporal Change Characteristics and Driving Factors of Land Use in Hexi corridor. Geomat. Spat. Inf. Technol. 2023, 46, 75–81. [Google Scholar]
- Pan, N.; Du, Q.; Guan, Q.; Tan, Z.; Sun, Y.; Wang, Q. Ecological security assessment and pattern construction in arid and semi-arid areas: A case study of the Hexi Region, NW China. Ecol. Indic. 2022, 138, 108797. [Google Scholar] [CrossRef]
- Wei, W.; Liu, C.; Liu, C.; Xie, B.; Zhou, J.; Nan, S. Spatio-temporal analysis of ecological vulnerability in arid region: A case study of hexi corridor, northwest China. Hum. Ecol. Risk Assess. Int. J. 2022, 28, 564–593. [Google Scholar] [CrossRef]
- Xue, J.; Li, Z.X.; Chen, X.J.; Zhou, H.L.; Gui, J. Spatial and temporal variation of ecosystem service functions in the Hexi region from 2000 to 2020 and its influence factors analysis. Environ. Ecol. 2023, 5, 1–12. [Google Scholar]
- Wang, G.; Cheng, G.; Shen, Y. Features of eco-environmental changes in Hexi Corridor Region in the last 50 years and comprehensive control strategies. J. Nat. Resour. 2002, 17, 78–86. [Google Scholar]
- Cheng, W.; Feng, Q.; Xi, H.; Yin, X.; Sindikubwabo, C.; Habiyakare, T.; Chen, Y.; Zhao, X. Spatiotemporal variability and controlling factors of groundwater depletion in endorheic basins of Northwest China. J. Environ. Manag. 2023, 344, 118468. [Google Scholar] [CrossRef]
- Feng, Q.; Li, Z.; Liu, W.; Li, J.; Guo, X.; Wang, T. Relationship between large scale atmospheric circulation, temperature and precipitation in the Extensive HXR, China, 1960–2011. Quat. Int. 2016, 392, 187–196. [Google Scholar] [CrossRef]
- Fan, D.; Ni, L.; Jiang, X.; Fang, S.; Wu, H.; Zhang, X. Spatiotemporal Analysis of Vegetation Changes along the Belt and Road Initiative Region from 1982 to 2015. IEEE Access 2020, 8, 122579–122588. [Google Scholar] [CrossRef]
- Han, X.; Yu, J.; Shi, L.; Zhao, X.; Wang, J. Spatiotemporal evolution of ecosystem service values in an area dominated by vegetation restoration: Quantification and mechanisms. Ecol. Indic. 2021, 131, 108191. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.H.; Li, S.M. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Zheng, D.F.; Hao, S.; Lv, L.T.; Xu, W.J.; Wang, Y.Y.; Wang, H. Spatial-temporal change and trade-off/synergy relationships among multiple ecosystem services in Three-River-Source National Park. Geogr. Res. 2020, 39, 64–78. [Google Scholar]
- Huang, B.; Huang, J.; Pontius, R.G.; Tu, Z. Comparison of Intensity Analysis and the land use dynamic degrees to measure land changes outside versus inside the coastal zone of Longhai, China. Ecol. Indic. 2018, 89, 336–347. [Google Scholar] [CrossRef]
- Qiu, H.; Hu, B.; Zhang, Z. Study on ecosystem service value of Guangxi in the past 20 years based on land use change. J. Environ. Eng. Technol. 2022, 12, 1455–1465. [Google Scholar]
- Liu, Z.; Wang, S.; Fang, C. Spatiotemporal evolution and influencing mechanism of ecosystem service value in the Guangdong-Hong Kong-Macao Greater Bay Area. J. Geogr. Sci. 2021, 33, 1226–1244. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.; Zhang, J.; Yin, X. The role of land use change in affecting ecosystem services and the ecological security pattern of the Hexi Regions, Northwest China. Sci. Total Environ. 2023, 855, 158940. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Estimating the total ecosystem services value of Eastern Afromontane Biodiversity Hotspots in response to landscape dynamics. Environ. Sustain. Indic. 2022, 14, 100178. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Z.; Li, J.; Ran, D.; Zeng, J. Mapping the spatial relationship between ecosystem services and urbanization in the middle reaches of the Yangtze River Urban Agglomerations. Acta Ecol. Sin. 2020, 40, 5137–5150. [Google Scholar] [CrossRef]
- Zhang, X.B.; Luo, J.; Shi, P.J.; Zhou, L. Spatial-temporal evolution pattern and terrain gradient differentiation of ecosystem service value in Zhangye, Northwest China at the grid scale. Chin. J. Appl. Ecol. 2020, 31, 543–553. [Google Scholar]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef]
- Qiu, L.; Pan, Y.; Zhu, J.; Amable, G.S.; Xu, B. Integrated analysis of urbanization-triggered land use change trajectory and implications for ecological land management: A case study in Fuyang, China. Sci. Total Environ. 2019, 660, 209–217. [Google Scholar] [CrossRef]
- Wu, C.; Chen, B.; Huang, X.; Dennis Wei, Y.H. Effect of land-use change and optimization on the ecosystem service values of Jiangsu province, China. Ecol. Indic. 2020, 117, 106507. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Shiferaw, H.; Bewket, W.; Alamirew, T.; Zeleke, G.; Teketay, D.; Bekele, K.; Schaffner, U.; Eckert, S. Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia. Sci. Total Environ. 2019, 675, 354–366. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, Y.; Yang, Y. Spatio-temporal evaluation of ecosystem service value in Gansu Province based on optimization model. J. Desert Res. 2023, 43, 53–64. [Google Scholar]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Zeng, Q.; Ye, X.; Cao, Y.; Chuai, X.; Xu, H. Impact of expanded built-up land on ecosystem service value by considering regional interactions. Ecol. Indic. 2023, 153, 110397. [Google Scholar] [CrossRef]
- Qian, D.; Cao, G.; Du, Y.; Li, Q.; Guo, X.W. Spatio-temporal dynamics of ecosystem service value in the southern slope of Qilian Mountain from 2000 to 2015. Acta Ecol. Sin. 2020, 40, 1392–1404. [Google Scholar]
- Fan, Z.; Li, N.; Li, W. Evaluation of the ecosystem service value of the Qilian Mountain National Park in Gansu Province. Contemp. Econ. 2021, 12, 70–77. [Google Scholar]
- Shao, M.; Ma, L.; Wang, X.; Che, X.H.; Wang, F.; Lu, J.F.; Luo, W.Y. The valuation of ecosystem service value of desertification grassland from 2004 to 2014 in Hexi Corridor, China. J. Desert Res. 2022, 42, 63–73. [Google Scholar]
- Liu, H.; Wu, J.; Chen, X. Study on spatial-temporal change andtrade-off/synergy relationships of ecosystem services in the Danjiangkou water source area. Acta Ecol. Sin. 2018, 38, 4609–4624. [Google Scholar]
- Zhao, Y.F.; Han, Z.B.; Xu, Y.Q. Impact of Land Use/Cover Change on Ecosystem Service Value in Guangxi. Sustainability 2022, 14, 10867. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Yu, Y.; Zhao, W.; Yang, Q.; Liu, J. Evaluation of groundwater sustainability in the arid Hexi Corridor of Northwestern China, using GRACE, GLDAS and measured groundwater data products. Sci. Total Environ. 2020, 705, 135829. [Google Scholar] [CrossRef]
- Lim, C.H.; Song, C.; Choi, Y.; Jeon, S.W.; Lee, W.K. Decoupling of forest water supply and agricultural water demand attributable to deforestation in North Korea. J. Environ. Manag. 2019, 248, 109256. [Google Scholar] [CrossRef]
Ecosystem Service Type | Ecosystem Type | ||||||
---|---|---|---|---|---|---|---|
Groups | Indicators | Cultivated Land | Forest Land | Grassland | Wetland | Water Area | Desert |
Provisioning services | Food production | 0.8500 | 0.2300 | 0.1900 | 0.5100 | 0.2900 | 0.0001 |
Material production | 0.4000 | 0.5300 | 0.2700 | 0.5000 | 0.0800 | 0.0001 | |
Water resources supply | 0.0200 | 0.2700 | 0.1500 | 2.5900 | 4.3900 | 0.0001 | |
Regulating services | Gas regulation | 0.6700 | 1.7400 | 0.9700 | 1.9000 | 0.3900 | 0.0300 |
Climate regulation | 0.3600 | 5.2100 | 2.5700 | 3.6000 | 1.1800 | 0.0100 | |
Purify environment | 0.1000 | 1.5300 | 0.8500 | 3.6000 | 2.1200 | 0.1200 | |
Hydrological regulation | 0.2700 | 3.3900 | 1.8800 | 24.2300 | 41.7800 | 0.0500 | |
Supporting services | Soil conservation | 1.0300 | 2.1200 | 1.1800 | 2.3100 | 0.3400 | 0.0300 |
Maintain nutrient cycle | 0.1200 | 0.1600 | 0.0900 | 0.1800 | 0.0300 | 0.0001 | |
Biodiversity | 0.1300 | 1.9300 | 1.0700 | 7.8700 | 0.9400 | 0.0300 | |
Cultural services | Aesthetic landscape | 0.0600 | 0.8500 | 0.4800 | 4.7300 | 0.7500 | 0.0100 |
Total | 4.0099 | 17.9600 | 9.7000 | 52.0200 | 52.2900 | 0.2804 |
Ecosystem Service Type | Ecosystem Type | ||||||
---|---|---|---|---|---|---|---|
Groups | Indicators | Cultivated Land | Forest Land | Grassland | Wetland | Water Area | Desert |
Provisioning services | Food production | 1.283 | 0.3472 | 0.2868 | 0.7698 | 0.4377 | 0.0002 |
Material production | 0.6038 | 0.8000 | 0.4076 | 0.7547 | 0.1208 | 0.0002 | |
Water resources supply | 0.0302 | 0.4076 | 0.2264 | 3.9095 | 6.6265 | 0.0002 | |
Regulating services | Gas regulation | 1.0113 | 2.6265 | 1.4642 | 2.8680 | 0.5887 | 0.0453 |
Climate regulation | 0.5434 | 7.8643 | 3.8793 | 5.4341 | 1.7812 | 0.0151 | |
Purify environment | 0.1509 | 2.3095 | 1.2830 | 5.4341 | 3.2001 | 0.1811 | |
Hydrological regulation | 0.4076 | 5.1171 | 2.8378 | 36.5742 | 63.0652 | 0.0755 | |
Supporting services | Soil conservation | 1.5547 | 3.2001 | 1.7812 | 3.4869 | 0.5132 | 0.0453 |
Maintain nutrient cycle | 0.1811 | 0.2415 | 0.1359 | 0.2717 | 0.0453 | 0.0002 | |
Biodiversity | 0.1962 | 2.9133 | 1.6151 | 11.8795 | 1.4189 | 0.0453 | |
Cultural services | Aesthetic landscape | 0.0906 | 1.2830 | 0.7245 | 7.1397 | 1.1321 | 0.0151 |
Total | 6.0529 | 27.1099 | 14.6418 | 78.5221 | 78.9297 | 0.4233 |
1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 | |
---|---|---|---|---|---|---|---|
Moran’s Index | 0.7502 | 0.7742 | 0.7521 | 0.7528 | 0.7514 | 0.7520 | 0.7511 |
z-score | 169.95 | 175.38 | 170.37 | 170.54 | 170.19 | 170.35 | 170.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Feng, Q.; Li, Z.; Lu, Z.; Zhang, B.; Cheng, W. Land Use/Cover-Related Ecosystem Service Value in Fragile Ecological Environments: A Case Study in Hexi Region, China. Remote Sens. 2024, 16, 563. https://doi.org/10.3390/rs16030563
Zhang B, Feng Q, Li Z, Lu Z, Zhang B, Cheng W. Land Use/Cover-Related Ecosystem Service Value in Fragile Ecological Environments: A Case Study in Hexi Region, China. Remote Sensing. 2024; 16(3):563. https://doi.org/10.3390/rs16030563
Chicago/Turabian StyleZhang, Baiting, Qi Feng, Zongxing Li, Zhixiang Lu, Baijuan Zhang, and Wenju Cheng. 2024. "Land Use/Cover-Related Ecosystem Service Value in Fragile Ecological Environments: A Case Study in Hexi Region, China" Remote Sensing 16, no. 3: 563. https://doi.org/10.3390/rs16030563
APA StyleZhang, B., Feng, Q., Li, Z., Lu, Z., Zhang, B., & Cheng, W. (2024). Land Use/Cover-Related Ecosystem Service Value in Fragile Ecological Environments: A Case Study in Hexi Region, China. Remote Sensing, 16(3), 563. https://doi.org/10.3390/rs16030563