A Temporal Downscaling Model for Gridded Geophysical Data with Enhanced Residual U-Net
Abstract
:1. Introduction
- We introduce an enhanced residual U-Net architecture for the downscaling of geophysical data. Unlike traditional U-Net architectures, this enhanced model incorporates advection loss in addition to regression loss for training the entire network, so that the model is not overly reliant on fitting to the data (as in pure regression loss) but also considers the underlying physical processes that drive changes in the atmosphere, which allow for a deeper network that can capture complex patterns without succumbing to issues like overfitting or vanishing gradient problems. The depth and architecture of the enhanced residual U-Net are also effective at capturing multi-scale temporal features, a quality lacking in many existing temporal downscaling methods.
- We introduce the concept of flow regularization, which has been traditionally leveraged in computer vision tasks, to the domain of geophysical data downscaling. This addition serves as an auxiliary constraint that guides the model to adhere to the physical laws governing the movement and interaction of geophysical fields with higher accuracy than existing techniques.
- We validate our model using multiple real-world geophysical data sets, comparing its performance against existing methods in terms of accuracy, computational efficiency, and fidelity of temporal features.
2. Related Work
2.1. Temporal Downscaling
2.2. Regularization
2.3. Residual Connections
2.4. U-Net
3. Study Area and Dataset
4. Model
4.1. Problem Definition
4.2. Residual U-Net
4.3. Flow Regularization Using Advection Loss
5. Experiments
5.1. Quantitative Comparison with Conventional Methods
5.2. Visual and Qualitative Analysis
5.3. Ablation Studies
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Scipal, K.; Holmes, T.R.H.; de Jeu, R.A.M.; Naeimi, V.; Wagner, W. A possible solution for the problem of estimating the error structure of global soil moisture data sets. Geophys. Res. Lett. 2008, 35, 24. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, M.; Lei, F. Mapping Vegetation Types by Different Fully Convolutional Neural Network Structures with Inadequate Training Labels in Complex Landscape Urban Areas. Forests 2023, 14, 1788. [Google Scholar] [CrossRef]
- Marthews, T.R.; Dadson, S.J.; Lehner, B.; Abele, S.; Gedney, N. High-resolution global topographic index values for use in large-scale hydrological modelling. Hydrol. Earth Syst. Sci. 2015, 19, 91–104. [Google Scholar] [CrossRef]
- Loew, A.; Bell, W.; Brocca, L.L.; Bulgin, C.E.; Burdanowitz, J.; Calbet, X.; Donner, R.V.; Ghent, D.; Gruber, A.; Kaminski, T.; et al. Validation practices for satellite-based Earth observation data across communities. Rev. Geophys. 2017, 55, 779–817. [Google Scholar] [CrossRef]
- Mann, M.E.; Rahmstorf, S.; Kornhuber, K.; Steinman, B.A.; Miller, S.K.; Coumou, D. Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Rogelj, J.; Forster, P.M.; Kriegler, E.; Smith, C.J.; Séférian, R. Estimating and tracking the remaining carbon budget for stringent climate targets. Nature 2019, 571, 335–342. [Google Scholar] [CrossRef]
- Mason, S.J.; Stephenson, D.B. How Do We Know Whether Seasonal Climate Forecasts are Any Good. In Seasonal Climate: Forecasting and Managing Risk; Springer: Dordrecht, The Netherlands, 2008; pp. 259–289. [Google Scholar]
- Schloss, A.; Kicklighter, D.W.; Kaduk, J.; Wittenberg, U.; ThE Participants OF ThE Potsdam NpP Model Intercomparison. Comparing global models of terrestrial net primary productivity (NPP): Comparison of NPP to climate and the Normalized Difference Vegetation Index (NDVI). Glob. Chang. Biol. 1999, 5, 25–34. [Google Scholar] [CrossRef]
- Schleussner, C.; Lissner, T.; Fischer, E.M.; Wohland, J.; Perrette, M.; Golly, A.; Rogelj, J.; Childers, K.H.; Schewe, J.; Frieler, K.; et al. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 °C and 2 °C. Earth Syst. Dyn. Discuss. 2015, 7, 327–351. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Mearns, L.; Giorgi, F.; Whetton, P.H.; Pabón, D.; Hulme, M.; Lal, M. Guidelines for Use of Climate Scenarios Developed from Regional Climate Model Experiments. Data Distrib. Cent. Intergov. Panel Clim. Chang. 2003, 38. [Google Scholar]
- Challinor, A.J.; Watson, J.E.M.; Lobell, D.; Howden, S.M.; Smith, D.R.; Chhetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Gupta, R.; Yadav, A.K.; Jha, S.; Pathak, P.K. Time Series Forecasting of Solar Power Generation Using Facebook Prophet and XG Boost. In Proceedings of the 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 11–13 February 2022; pp. 1–5. [Google Scholar]
- Monteith, J.L.; Oke, T.R. Boundary Layer Climates. J. Appl. Ecol. 1979, 17, 517. [Google Scholar] [CrossRef]
- Salehnia, N.; Hosseini, F.S.; Farid, A.; Kolsoumi, S.; Zarrin, A.; Hasheminia, M. Comparing the Performance of Dynamical and Statistical Downscaling on Historical Run Precipitation Data over a Semi-Arid Region. Asia-Pac. J. Atmos. Sci. 2019, 55, 737–749. [Google Scholar] [CrossRef]
- Global Circulation Models. In Proceedings of the ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems (SIGSPATIAL 2017), Redondo Beach, CA, USA, 7 November 2017.
- Kisembe, J.; Favre, A.; Dosio, A.; Lennard, C.J.; Sabiiti, G.; Nimusiima, A. Evaluation of rainfall simulations over Uganda in CORDEX regional climate models. Theor. Appl. Climatol. 2018, 137, 1117–1134. [Google Scholar] [CrossRef]
- Vandal, T.J.; Kodra, E.; Ganguly, A.R. Intercomparison of machine learning methods for statistical downscaling: The case of daily and extreme precipitation. Theor. Appl. Climatol. 2017, 137, 557–570. [Google Scholar] [CrossRef]
- Tang, J.; Niu, X.; Wang, S.; Gao, H.; Wang, X.; Wu, J. Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections. J. Geophys. Res. Atmos. 2016, 121, 2110–2129. [Google Scholar] [CrossRef]
- Isotta, F.A.; Begert, M.; Frei, C. Long-Term Consistent Monthly Temperature and Precipitation Grid Data Sets for Switzerland Over the Past 150 Years. J. Geophys. Res. Atmos. 2019, 124, 3783–3799. [Google Scholar] [CrossRef]
- ArunKumar, K.E.; Kalaga, D.V.; Mohan Sai Kumar, C.; Kawaji, M.; Brenza, T.M. Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends. Alex. Eng. J. 2022, 61, 7585–7603. [Google Scholar] [CrossRef]
- Majda, A.J.; Harlim, J. Physics constrained nonlinear regression models for time series. Nonlinearity 2012, 26, 201–217. [Google Scholar] [CrossRef]
- Yang, H.; Wang, T.; Zhou, X.; Dong, J.; Gao, X.; Niu, S. Quantitative Estimation of Rainfall Rate Intensity Based on Deep Convolutional Neural Network and Radar Reflectivity Factor. In Proceedings of the 2nd International Conference on Big Data Technologies, Jinan, China, 28 August 2019; pp. 244–247. [Google Scholar]
- Misra, S.; Sarkar, S.; Mitra, P. Statistical downscaling of precipitation using long short-term memory recurrent neural networks. Theor. Appl. Climatol. 2018, 134, 1179–1196. [Google Scholar] [CrossRef]
- Xiang, X.; Tian, Y.; Zhang, Y.; Fu, Y.R.; Allebach, J.P.; Xu, C. Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 3367–3376. [Google Scholar]
- Jiang, H.; Sun, D.; Jampani, V.; Yang, M.-H.; Learned-Miller, E.G.; Kautz, J. Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9000–9008. [Google Scholar]
- Lees, T.; Buechel, M.; Anderson, B.; Slater, L.J.; Reece, S.; Coxon, G.; Dadson, S.J. Rainfall-Runoff Simulation and Interpretation in Great Britain using LSTMs. In Proceedings of the 23rd EGU General Assembly, Online, 19–30 April 2021. EGU21-2778. [Google Scholar]
- Kajbaf, A.A.; Bensi, M.T.; Brubaker, K.L. Temporal downscaling of precipitation from climate model projections using machine learning. Stoch. Environ. Res. Risk Assess. 2022, 36, 2173–2194. [Google Scholar] [CrossRef]
- Barboza, L.A.; Chen, S.; Alfaro-Córdoba, M. Spatio-temporal downscaling emulator for regional climate models. Environmetrics 2022, 34, e2815. [Google Scholar] [CrossRef]
- Huang, J.; Perez, M.J.R.; Perez, R.; Yang, D.; Keelin, P.; Hoff, T.E. Nonparametric Temporal Downscaling of GHI Clearsky Indices using Gaussian Copula. In Proceedings of the 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), Philadelphia, PA, USA, 5–10 June 2022; pp. 0654–0657. [Google Scholar]
- Michel, A.; Sharma, V.; Lehning, M.; Huwald, H. Climate change scenarios at hourly time-step over Switzerland from an enhanced temporal downscaling approach. Int. J. Climatol. 2021, 41, 3503–3522. [Google Scholar] [CrossRef]
- Boehme, R.B.T.K. The Fourier Transform and its Applications. Am. Math. Monthly 1966, 73, 685. [Google Scholar] [CrossRef]
- Ahmmed, B.; Vesselinov, V.V.; Mudunuru, M.K. SmartTensors: Unsupervised and physics-informed machine learning framework for the geoscience applications. In Proceedings of the Second International Meeting for Applied Geoscience & Energy, Houston, TX, USA, 28 August–1 September 2022. [Google Scholar]
- Greiner, T.A.L.; Lie, J.E.; Kolbjørnsen, O.; Evensen, A.K.; Nilsen, E.H.; Zhao, H.; Demyanov, V.V.; Gelius, L.J. Unsupervised deep learning with higher-order total-variation regularization for multidimensional seismic data reconstruction. Geophysics 2021, 87, V59–V73. [Google Scholar] [CrossRef]
- Kim, J.; Yang, I. Hamilton-Jacobi-Bellman Equations for Maximum Entropy Optimal Control. arXiv 2020, arXiv:2009.13097. [Google Scholar]
- Gan, T.; Tarboton, D.G.; Gichamo, T.Z. Evaluation of Temperature-Index and Energy-Balance Snow Models for Hydrological Applications in Operational Water Supply Forecasts. Water 2023, 15, 1886. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Zhu, Y.; Zabaras, N.; Koutsourelakis, P.-S.; Perdikaris, P. Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data. J. Comput. Phys. 2019, 394, 56–81. [Google Scholar] [CrossRef]
- Mizukami, N.; Clark, M.P.; Newman, A.J.; Wood, A.W.; Gutmann, E.D.; Nijssen, B.; Rakovec, O.; Samaniego, L. Towards seamless large-domain parameter estimation for hydrologic models. Water Resour. Res. 2017, 53, 8020–8040. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Soulsby, C.; Tetzlaff, D.; Dawson, J.J.C.; Dunn, S.M.; Malcolm, I.A. Using long-term data sets to understand transit times in contrasting headwater catchments. J. Hydrol. 2009, 367, 237–248. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 25 June–1 July 2016; pp. 770–778. [Google Scholar]
- Laloy, E.; Hérault, R.; Jacques, D.; Linde, N. Training-Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network. Water Resour. Res. 2017, 54, 381–406. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.J.; Heinrich, M.P.; Misawa, K.; Mori, K.; McDonagh, S.G.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11045, pp. 3–11. [Google Scholar]
- Ibtehaz, N.; Rahman, M.S. MultiResUNet: Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation. Neural Netw. Off. J. Int. Neural Netw. Soc. 2019, 121, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 16–21 October 2016. [Google Scholar]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. J. Mach. Learn. Res. 2011, 15, 315–323. [Google Scholar]
- Huang, Z.; Zhang, T.; Heng, W.; Shi, B.; Zhou, S. RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation. arXiv 2022, arXiv:2011.06294. [Google Scholar]
- Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2017, 15, 749–753. [Google Scholar] [CrossRef]
- Alom, M.Z.; Yakopcic, C.; Hasan, M.; Taha, T.M.; Asari, V.K. Recurrent residual U-Net for medical image segmentation. J. Med. Imaging 2019, 6, 014006. [Google Scholar] [CrossRef]
- Wang, H.; Miao, F. Building extraction from remote sensing images using deep residual U-Net. Eur. J. Remote Sens. 2022, 55, 71–85. [Google Scholar] [CrossRef]
- Afshari, A.; Vogel, J.; Chockalingam, G. Statistical Downscaling of SEVIRI Land Surface Temperature to WRF Near-Surface Air Temperature Using a Deep Learning Model. Remote Sens. 2023, 15, 4447. [Google Scholar] [CrossRef]
Method | 2 m Temperature (RMSE/MAE/MAPE) | Geopotential Height (RMSE/MAE/MAPE) | Relative Humidity (RMSE/MAE/MAPE) | Parameters (Million) |
---|---|---|---|---|
Linear Interpolation | 0.51/0.42/0.14% | 1.79/1.55/0.09% | 1.61/1.15/1.47% | / |
Cubic Spline | 0.42/0.35/0.12% | 1.50/1.30/0.08% | 1.35/0.96/1.23% | / |
ConvLSTM [26] | 0.31/0.25/0.10% | 1.20/1.03/0.07% | 0.90/0.64/0.82% | 11.1 |
Super-slomo [27] | 0.25/0.22/0.08% | 1.24/1.10/0.07% | 0.93/0.65/0.83% | 19.8 |
RIFE [50] | 0.23/0.20/0.07% | 0.87/0.74/0.05% | 0.75/0.51/0.65% | 9.8 |
Enhanced Residual U-Net | 0.20/0.17/0.06% | 0.72/0.61/0.05% | 0.64/0.45/0.59% | 11.0 |
Method | 2 m Temperature (RMSE/MAE/MAPE) | Geopotential Height (RMSE/MAE/MAPE) | Relative Humidity (RMSE/MAE/MAPE) |
---|---|---|---|
Without Multi-scale Features | 0.34/0.28/0.10% | 1.12/1.01/0.06% | 0.92/0.33/0.42% |
Without Residual Identities | 0.28/0.23/0.08% | 1.08/0.96/0.06% | 0.71/0.29/0.36% |
Without Flow Regularization | 0.23/0.19/0.06% | 0.96/0.82/0.05% | 0.87/0.34/0.44% |
Reduced Architectural Depth | 0.26/0.22/0.07% | 1.05/0.95/0.06% | 0.74/0.28/0.36% |
Full Model (Baseline) | 0.20/0.17/0.06% | 0.72/0.61/0.05% | 0.64/0.45/0.59% |
Method | Area I (RMSE/MAE/MAPE) | Area II (RMSE/MAE/MAPE) | Area III (RMSE/MAE/MAPE) | Area IV (RMSE/MAE/MAPE) | Area V (RMSE/MAE/MAPE) |
---|---|---|---|---|---|
Full model | 0.20/0.17/0.06% | 0.17/0.18/0.06% | 0.17/0.14/0.05% | 0.23/0.19/0.07% | 0.26/0.20/0.07% |
Reduced Depth | 0.26/0.22/0.07% | 0.23/0.21/0.07% | 0.24/0.17/0.06% | 0.28/0.24/0.08% | 0.30/0.27/0.09% |
Method | Kernel 3 × 3 (RMSE/MAE/MAPE) | Kernel 5 × 5 (RMSE/MAE/MAPE) | Kernel 7 × 7 (RMSE/MAE/MAPE) |
---|---|---|---|
Full model | 0.23/0.18/0.06% | 0.20/0.17/0.06% | 0.25/0.24/0.08% |
Reduced Depth | 0.26/0.24/0.08% | 0.26/0.22/0.07% | 0.31/0.26/0.09% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Li, Q.; Peng, X.; Lv, Q. A Temporal Downscaling Model for Gridded Geophysical Data with Enhanced Residual U-Net. Remote Sens. 2024, 16, 442. https://doi.org/10.3390/rs16030442
Wang L, Li Q, Peng X, Lv Q. A Temporal Downscaling Model for Gridded Geophysical Data with Enhanced Residual U-Net. Remote Sensing. 2024; 16(3):442. https://doi.org/10.3390/rs16030442
Chicago/Turabian StyleWang, Liwen, Qian Li, Xuan Peng, and Qi Lv. 2024. "A Temporal Downscaling Model for Gridded Geophysical Data with Enhanced Residual U-Net" Remote Sensing 16, no. 3: 442. https://doi.org/10.3390/rs16030442
APA StyleWang, L., Li, Q., Peng, X., & Lv, Q. (2024). A Temporal Downscaling Model for Gridded Geophysical Data with Enhanced Residual U-Net. Remote Sensing, 16(3), 442. https://doi.org/10.3390/rs16030442