Terrestrial Photogrammetry–GIS Methodology for Measuring Rill Erosion at the Sparacia Experimental Area, Sicily
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Measurements of Total Soil Loss and Rill Erosion
2.3. Modeling Rill Erosion
3. Results
3.1. Automatic Extraction of Contributing Rill Network to Plot Soil Loss
3.2. Relationship Between Rill Length and Eroded Volume
4. Discussion
4.1. Automatic Extraction of Contributing Rill Network to Plot Soil Loss
4.2. Relationship Between Rill Length and Eroded Volume
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Di Stefano, C.; Nicosia, A.; Palmeri, V.; Pampalone, V.; Ferro, V. Rill flow velocity and resistance law: A review. Earth-Sci. Rev. 2022, 231, 104092. [Google Scholar] [CrossRef]
- Shi, H.; Xiao, H.; Liu, G.; Abd Elbasit, M.A.; Zheng, F.; Zhang, Q.; Zhang, Y.; Guo, Z. Identifying interrill, rill, and ephemeral gully erosion evolution by using rare earth elements as tracers. J. Hydrol. 2022, 612, 128271. [Google Scholar] [CrossRef]
- Luo, J.; Zheng, Z.; Li, T.; He, S.; Zhang, X.; Huang, H.; Wang, Y. Quantifying the contributions of soil surface microtopography and sediment concentration to rill erosion. Sci. Total Environ. 2021, 752, 141886. [Google Scholar] [CrossRef] [PubMed]
- Foster, G.R.; Huggins, L.F.; Meyer, L.D. A laboratory study of rill hydraulics: I. Velocity relationships. Trans. ASAE 1984, 27, 790–796. [Google Scholar] [CrossRef]
- Carollo, F.G.; Di Stefano, C.; Nicosia, A.; Palmeri, V.; Pampalone, V.; Ferro, V. Flow resistance in mobile bed rills shaped in soils with different texture. Eur. J. Soil Sci. 2021, 72, 2062–2075. [Google Scholar] [CrossRef]
- Mutchler, C.K.; Young, R.A. Soil detachment by raindrops. In Present and Prospective Technology for Predicting Sediment Yields and Sources; ARS-S-40; Agricultural Research Service: Washington, DC, USA, 1975; pp. 113–117. [Google Scholar]
- Di Stefano, C.; Nicosia, A.; Palmeri, V.; Pampalone, V.; Ferro, V. Rill flow resistance law under sediment transport. J. Soils Sediments 2022, 22, 334–347. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, F.; Wilson, G.V.; Xu, X.; Liu, C. Three decades of ephemeral gully erosion studies. Soil. Tillage Res. 2021, 212, 105046. [Google Scholar] [CrossRef]
- Wang, N.; Luo, J.; He, S.; Li, T.; Zhao, Y.; Zhang, X.; Wang, Y.; Huang, H.; Yu, H.; Ye, D.; et al. Characterizing the rill erosion process from eroded morphology and sediment connectivity on purple soil slope with upslope earthen dike terraces. Sci. Total Environ. 2023, 860, 160486. [Google Scholar] [CrossRef]
- Eltner, A.; Baumgart, P.; Maas, H.G.; Faust, D. Multi-temporal UAV data for automatic measurement of rill and interrill erosion on loess soil. Earth Surf. Process. Landf. 2015, 40, 741–755. [Google Scholar] [CrossRef]
- Vinci, A.; Brigante, R.; Todisco, F.; Mannocchi, F.; Radicioni, F. Measuring rill erosion by laser scanning. Catena 2015, 124, 97–108. [Google Scholar] [CrossRef]
- Gessesse, G.; Fuchs, H.; Mansberger, R.; Klik, A.; Rieke-Zapp, D.H. Assessment of erosion, deposition and rill development on irregular soil surfaces using close range digital photogrammetry. Photogramm. Rec. 2010, 25, 299–318. [Google Scholar] [CrossRef]
- Di Stefano, C.; Ferro, V.; Palmeri, V.; Pampalone, V. Measuring rill erosion using structure from motion: A plot experiment. Catena 2017, 156, 383–392. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, H.; Wen, Z.; Guo, M.; Zhao, J.; Cao, X.; Fan, Y.; Zheng, C. The dynamic process of slope rill erosion analyzed with a digital close range photogrammetry observation system under laboratory conditions. Geomorphology 2020, 350, 106893. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, H.; Wen, Z.; Guo, M.; Zhao, J.; Cao, X.; Shui, J.; Paull, D. A comparative experimental study of rill erosion on loess soil and clay loam soil based on a digital close-range photogrammetry technology. Geomorphology 2022, 419, 108487. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef]
- Broscoe, A.J. Quantitative analysis of longitudinal stream profiles of small watersheds. In Technical Report; New York Department of Geology, Columbia University: New York, NY, USA, 1959. [Google Scholar]
- Pirotti, F.; Tarolli, P. Suitability of LiDAR point density and derived landform curvature maps for channel network extraction. Hydrol. Process. 2010, 24, 1187–1197. [Google Scholar] [CrossRef]
- Tarolli, P.; Sofia, G.; Dalla Fontana, G. Geomorphic features extraction from high-resolution topography: Landslide crowns and bank erosion. Nat. Hazards 2012, 61, 65–83. [Google Scholar] [CrossRef]
- Di Stefano, C.; Palmeri, V.; Pampalone, V. An automatic approach for rill network extraction to measure rill erosion by terrestrial and low-cost unmanned aerial vehicle photogrammetry. Hydrol. Process. 2019, 33, 1883–1895. [Google Scholar] [CrossRef]
- Carollo, F.G.; Di Stefano, C.; Nicosia, A.; Palmeri, V.; Pampalone, V.; Ferro, V. Testing an automatic approach for rill network extraction to measure rill erosion by terrestrial photogrammetry. In Proceedings of the Conference of the Italian Society of Agricultural Engineering, Palermo, Italy, 19–22 September 2022; Springer: Berlin/Heidelberg, Germany, 2023; pp. 89–96. [Google Scholar]
- Bruno, C.; Di Stefano, C.; Ferro, V. Field investigation on rilling in the experimental Sparacia area, South Italy. Earth Surf. Proc. Land. 2008, 33, 263–279. [Google Scholar] [CrossRef]
- Rejman, J.; Brodowski, R. Rill characteristics and sediment transport as a function of slope length during a storm event on loess soil. Earth Surface Processes and Landforms: J. Br. Geomorphol. Res. Group 2005, 30, 231–239. [Google Scholar] [CrossRef]
- Nachtergaele, J.; Poesen, J.; Steegen, A.; Takken, I.; Beuselinck, L.; Vandekerckhove, L.; Govers, G. The value of a physically based model versus an empirical approach in the prediction of ephemeral gully erosion for loess-derived soils. Geomorphology 2001, 40, 237–252. [Google Scholar] [CrossRef]
- Capra, A.; Di Stefano, C.; Ferro, V.; Scicolone, B. Similarity between morphological characteristics of rills and ephemeral gullies in Sicily, Italy. Hydrol. Process. 2009, 23, 3334–3341. [Google Scholar] [CrossRef]
- Di Stefano, C.; Ferro, V. Measurements of rill and gully erosion in Sicily. Hydrol. Process. 2011, 25, 2221–2227. [Google Scholar] [CrossRef]
- Di Stefano, C.; Ferro, V.; Pampalone, V.; Sanzone, F. Field investigation of rill and ephemeral gully erosion in the Sparacia experimental area, South Italy. Catena 2013, 101, 226–234. [Google Scholar] [CrossRef]
- Ichim, I.; Mihaiu, G.; Surdeanu, V.; Radoane, M.; Radoane, N. Gully erosion agricultural lands in Romania. In Soil Erosion on Agricultural Land; Boardman, J., Foster, D.L., Dearing, J.A., Eds.; Wiley: Hoboken, NJ, USA, 1990; pp. 55–67. [Google Scholar]
- Daba, S.; Rieger, W.; Strauss, P. Assessment of gully erosion in eastern Ethiopia using photogrammetric technique. Catena 2003, 50, 273–291. [Google Scholar] [CrossRef]
- Moges, A.; Holden, H.M. Estimating the rate and consequences of gully development, a case study of Umbulo Catchment in southern Ethiopia. Land. Degrad. Dev. 2008, 19, 574–586. [Google Scholar] [CrossRef]
- Vandaele, K. Assessment of factors affecting ephemeral gully erosion in cultivated catchments of the Belgian loam belt. In Farm Land Erosion in Temperate Plains Environment and Hills; Elsevier Science Publishers: Amsterdam, The Netherlands, 1993; pp. 125–136. [Google Scholar]
- Di Stefano, C.; Ferro, V.; Pampalone, V. Modeling rill erosion at the Sparacia experimental area. J. Hydrol. Eng. 2015, 20, C5014001. [Google Scholar] [CrossRef]
- Natural Resources Conservation Service & Agriculture Department (Ed.) Keys to Soil Taxonomy: 2010; Government Printing Office: Washington, DC, USA, 2010. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosion Losses—A Guide to Conservation Farming; USDA Agricultural Handbook No. 537; USDA: Blacksburg, VA, USA, 1978. [Google Scholar]
- Carollo, F.G.; Di Stefano, C.; Ferro, V.; Pampalone, V.; Sanzone, F. Testing a new sampler for measuring plot soil loss. Earth Surf. Process. Landf. 2016, 41, 867–874. [Google Scholar] [CrossRef]
- Fiorillo, F.; Limongiello, M.; Fernández-Palacios, B.J. Testing GoPro for 3D model reconstruction in narrow spaces. Acta Imeko 2016, 5, 64–70. [Google Scholar] [CrossRef]
- Seiz, S.M.; Curless, B.; Diebel, J.; Scharstein, D.; Szeliski, R. A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006. [Google Scholar]
- Thommeret, N.; Bailly, J.S.; Puech, C. Extraction of thalweg networks from DTMs: Application to badlands. Hydrol. Earth Syst. Sci. 2010, 14, 1527–1536. [Google Scholar] [CrossRef]
- Nicosia, A.; Palmeri, V.; Pampalone, V.; Di Stefano, C.; Ferro, V. Slope threshold in rill flow resistance. Catena 2022, 208, 105789. [Google Scholar] [CrossRef]
- Di Stefano, C.; Nicosia, A.; Palmeri, V.; Pampalone, V.; Ferro, V. Estimating flow resistance in steep slope rills. Hydrol. Process. 2021, 35, e14296. [Google Scholar] [CrossRef]
- Fang, H.; Sun, L.; Tang, Z. Effects of rainfall and slope onrunoff, soil erosion and rill development: An experimental study using two loess soils. Hydrol. Process. 2015, 29, 2649–2658. [Google Scholar] [CrossRef]
- Bagarello, V.; Ferro, V.; Pampalone, V. A new version of theUSLE-MM for predicting bare plot soil loss at the Sparacia (South Italy) experimental site. Hydrol. Process. 2015, 29, 4210–4219. [Google Scholar] [CrossRef]
- Govers, G.; Poesen, J. Assessment of the interrill and rill contribution to total soil loss from an upland field plot. Geomorphology 1988, 1, 343–354. [Google Scholar] [CrossRef]
Event | Plot | Pe | Re | N |
---|---|---|---|---|
5 November 2004 | P1 | 49.4 | 122.2 | 10 |
16 November 2004 | P1 | 53.8 | 341.6 | 13 |
13 December 2005 | P1 | 97.8 | 334.0 | 8 |
1 September 2005 | C-P1-G | 64.6 | 975.9 | 50 |
28 June 2008 | P2/A-C-D-E-G-H-I-L | 52.2 | 680.1 | 144 |
1 October 2008 | P2-P1/A-C-D-G-H-I-L-M-N-P | 30.6 | 154.4 | 157 |
1 November 2008 | P3-P4 | 15.8 | 96.5 | 20 |
18 October 2008 | E | 116.2 | 393.8 | 19 |
3 October 2011 | C | 28.0 | 402.0 | 23 |
24 October 2016 | P2/P3 | 18.8 | 102.3 | 79 |
24 September 2017 | P2/P3-P4/I | 35.2 | 571.1 | 208 |
NT | 731 |
a | b | a with b = 1.3 | |
---|---|---|---|
Mean | 0.00173 | 1.24 | 0.0016 |
Standard deviation | 0.00123 | 0.23 | 0.0009 |
Coefficient of variation (CV) | 0.71037 | 0.18 | 0.57 |
Min | 0.00054 | 0.79 | 0.0006 |
Max | 0.00461 | 1.61 | 0.0033 |
Weighted arithmetic mean | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmeri, V.; Di Stefano, C.; Nicosia, A.; Pampalone, V.; Ferro, V. Terrestrial Photogrammetry–GIS Methodology for Measuring Rill Erosion at the Sparacia Experimental Area, Sicily. Remote Sens. 2024, 16, 4232. https://doi.org/10.3390/rs16224232
Palmeri V, Di Stefano C, Nicosia A, Pampalone V, Ferro V. Terrestrial Photogrammetry–GIS Methodology for Measuring Rill Erosion at the Sparacia Experimental Area, Sicily. Remote Sensing. 2024; 16(22):4232. https://doi.org/10.3390/rs16224232
Chicago/Turabian StylePalmeri, Vincenzo, Costanza Di Stefano, Alessio Nicosia, Vincenzo Pampalone, and Vito Ferro. 2024. "Terrestrial Photogrammetry–GIS Methodology for Measuring Rill Erosion at the Sparacia Experimental Area, Sicily" Remote Sensing 16, no. 22: 4232. https://doi.org/10.3390/rs16224232
APA StylePalmeri, V., Di Stefano, C., Nicosia, A., Pampalone, V., & Ferro, V. (2024). Terrestrial Photogrammetry–GIS Methodology for Measuring Rill Erosion at the Sparacia Experimental Area, Sicily. Remote Sensing, 16(22), 4232. https://doi.org/10.3390/rs16224232