Estimation of Glacier Outline and Volume Changes in the Vilcanota Range Snow-Capped Mountains, Peru, Using Temporal Series of Landsat and a Combination of Satellite Radar and Aerial LIDAR Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
- LANDSAT
- ALOS PALSAR
- LIDAR POINT CLOUD
- PISCO GRIDDED DATASET
2.3. Methods
2.3.1. Glacier Outline Estimation
Landsat Image Processing
Glacier Outline Detection
2.3.2. Estimating Snow Volume Changes
Processing ALOS PALSAR Images
Processing Airborne LIDAR Data
Volume Changes in Glaciers
2.4. Snow Cover and Climate Data
3. Results
3.1. Glacier Outline Detection
3.2. Volume Changes in Glacier
3.3. The Climate Effect on Snow Cover
4. Discussion
4.1. Glacier Outline
4.2. Changes in Snow Volume in the Glaciers
4.3. Climate Data and Glacier Surface Changes Correlations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña. Inventario Nacional de Glaciares y Lagunas de Origen Glaciar 2023; Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña: Huaraz, Peru, 2023. [Google Scholar]
- Seehaus, T.; Malz, P.; Sommer, C.; Lippl, S.; Cochachin, A.; Braun, M. Changes of the Tropical Glaciers throughout Peru between 2000 and 2016—Mass Balance and Area Fluctuations. Cryosphere 2019, 13, 2537–2556. [Google Scholar] [CrossRef]
- Rybak, O.O.; Rybak, E.A. Model-Based Calculations of Surface Mass Balance of Mountain Glaciers for the Purpose of Water Consumption Planning: Focus on Djankuat Glacier (Central Caucasus). IOP Conf. Ser. Earth Environ. Sci. 2018, 107, 012041. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, S.; Zhao, L.; Li, Z.; Kang, S. Global Warming Weakening the Inherent Stability of Glaciers and Permafrost. Sci. Bull. 2019, 64, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, F.-T.; Zhou, P. Changes in Climate Extremes in a Typical Glacierized Region in Central Eastern Tianshan Mountains and Their Relationship with Observed Glacier Mass Balance. Adv. Clim. Change Res. 2022, 13, 909–922. [Google Scholar] [CrossRef]
- Vuille, M.; Kaser, G.; Juen, I. Glacier Mass Balance Variability in the Cordillera Blanca, Peru and Its Relationship with Climate and the Large-Scale Circulation. Glob. Planet. Change 2008, 62, 14–28. [Google Scholar] [CrossRef]
- Vuille, M.; Francou, B.; Wagnon, P.; Juen, I.; Kaser, G.; Mark, B.G.; Bradley, R.S. Climate Change and Tropical Andean Glaciers: Past, Present and Future. Earth-Sci. Rev. 2008, 89, 79–96. [Google Scholar] [CrossRef]
- Colbeck, S.C. Glaciers, Ice Sheets and Volcanoes: A Tribute to Mark F. Meier; U.S. Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1996. [Google Scholar]
- Bahr, D.B.; Meier, M.F.; Peckham, S.D. The Physical Basis of Glacier Volume-Area Scaling. J. Geophys. Res. Solid Earth 1997, 102, 20355–20362. [Google Scholar] [CrossRef]
- Tawde, S.A.; Kulkarni, A.V.; Bala, G. An Assessment of Climate Change Impacts on Glacier Mass Balance and Geometry in the Chandra Basin, Western Himalaya for the 21st Century. Environ. Res. Commun. 2019, 1, 041003. [Google Scholar] [CrossRef]
- Bolch, T.; Kamp, U. Glacier Mapping in High Mountains Using DEMs, Landsat and ASTER Data. In Proceedings of the 8th International Symposium on High Mountain Remote Sensing Cartography (HMRSC), La Paz, Bolivia, 21–27 March 2005; Volume 41, pp. 37–48. [Google Scholar]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.P.; Konovalov, V.; Bris, R.L.; et al. On the Accuracy of Glacier Outlines Derived from Remote-Sensing Data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef]
- Veettil, B.K.; Kamp, U. Remote Sensing of Glaciers in the Tropical Andes: A Review. Int. J. Remote Sens. 2017, 38, 7101–7137. [Google Scholar] [CrossRef]
- Shafique, M.; Faiz, B.; Bacha, A.S.; Ullah, S. Evaluating Glacier Dynamics Using Temporal Remote Sensing Images: A Case Study of Hunza Valley, Northern Pakistan. Environ. Earth Sci. 2018, 77, 162. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectroradiometer Data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. Normalized-Difference Snow Index (NDSI). In Encyclopedia of Snow, Ice and Glaciers; Singh, V.P., Singh, P., Haritashya, U.K., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 779–780. ISBN 978-90-481-2642-2. [Google Scholar]
- Silverio, W.; Jaquet, J.-M. Glacial Cover Mapping (1987–1996) of the Cordillera Blanca (Peru) Using Satellite Imagery. Remote Sens. Environ. 2005, 95, 342–350. [Google Scholar] [CrossRef]
- Acuña, J.R.; Puchuc, J.T. Estimación Del Área de La Superficie y El Cambio de Volumen Del Glaciar Del Nevado Champará (Cordillera Blanca, Perú) a Partir de Las Imágenes y Los Modelos de Elevación Digital Del Sensor ASTER/Terra (2000–2010). In Revista de Glaciares y Ecosistemas de Montaña; ResearchGate: Lima, Peru, 2018; p. 20. [Google Scholar]
- Albert, T.H. Evaluation of Remote Sensing Techniques for Ice-Area Classification Applied to the Tropical Quelccaya Ice Cap, Peru. Polar Geogr. 2002, 26, 210–226. [Google Scholar] [CrossRef]
- Muñoz, R.; Huggel, C.; Drenkhan, F.; Vis, M.; Viviroli, D. Comparing Model Complexity for Glacio-Hydrological Simulation in the Data-Scarce Peruvian Andes. J. Hydrol. Reg. Stud. 2021, 37, 100932. [Google Scholar] [CrossRef]
- Taylor, L.S.; Quincey, D.J.; Smith, M.W.; Potter, E.R.; Castro, J.; Fyffe, C.L. Multi-Decadal Glacier Area and Mass Balance Change in the Southern Peruvian Andes. Front. Earth Sci. 2022, 10, 863933. [Google Scholar] [CrossRef]
- Kochtitzky, W.H.; Edwards, B.R.; Enderlin, E.M.; Marino, J.; Marinque, N. Improved Estimates of Glacier Change Rates at Nevado Coropuna Ice Cap, Peru. J. Glaciol. 2018, 64, 175–184. [Google Scholar] [CrossRef]
- Veettil, B.K. Glacier Mapping in the Cordillera Blanca, Peru, Tropical Andes, Using Sentinel-2 and Landsat Data. Singap. J. Trop. Geogr. 2018, 39, 351–363. [Google Scholar] [CrossRef]
- Koch, B.; Heyder, U.; Weinacker, H. Detection of Individual Tree Crowns in Airborne Lidar Data. Photogramm. Eng. Remote Sens. 2006, 72, 357–363. [Google Scholar] [CrossRef]
- Hudak, A.T.; Crookston, N.L.; Evans, J.S.; Falkowski, M.J.; Smith, A.M.S.; Gessler, P.E.; Morgan, P. Regression Modeling and Mapping of Coniferous Forest Basal Area and Tree Density from Discrete-Return Lidar and Multispectral Satellite Data. Can. J. Remote Sens. 2006, 32, 126–138. [Google Scholar] [CrossRef]
- Yan, S.; Guo, H.; Liu, G.; Ruan, Z. Mountain Glacier Displacement Estimation Using a DEM-Assisted Offset Tracking Method with ALOS/PALSAR Data. Remote Sens. Lett. 2013, 4, 494–503. [Google Scholar] [CrossRef]
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3307–3316. [Google Scholar] [CrossRef]
- Soruco, A.; Vincent, C.; Francou, B.; Ribstein, P.; Berger, T.; Sicart, J.E.; Wagnon, P.; Arnaud, Y.; Favier, V.; Lejeune, Y. Mass Balance of Glaciar Zongo, Bolivia, between 1956 and 2006, Using Glaciological, Hydrological and Geodetic Methods. Ann. Glaciol. 2009, 50, 1–8. [Google Scholar] [CrossRef]
- Soruco, Á.; Vincent, C.; Francou, B.; Rabatel, A. Comparación de métodos para estimar el balance de masa del glaciar de Zongo, Bolivia (16o S, 68o O). Geoacta 2014, 39, 154–164. [Google Scholar]
- Schauwecker, S.; Rohrer, M.; Huggel, C.; Endries, J.; Montoya, N.; Neukom, R.; Perry, B.; Salzmann, N.; Schwarb, M.; Suarez, W. The Freezing Level in the Tropical Andes, Peru: An Indicator for Present and Future Glacier Extents. J. Geophys. Res. Atmos. 2017, 122, 5172–5189. [Google Scholar] [CrossRef]
- Molina, E.; Schauwecker, S.; Huggel, C.; Haeberli, W.; Cochachin Rapre, A.; Condom, T.; Drenkhan, F.; Giráldez, C.; Salzmann, N.; Jiménez, L.; et al. Iniciación de un Monitoreo del Balance de Masa en el Glaciar Suyuparina, Cordillera Vilcanota, Perú; Autoridad Nacional del Agua: Lima, Peru, 2015. [Google Scholar]
- Franks, S.; Storey, J.; Rengarajan, R. The New Landsat Collection-2 Digital Elevation Model. Remote Sens. 2020, 12, 3909. [Google Scholar] [CrossRef]
- Rengarajan, R.; Choate, M.; Storey, J.; Franks, S.; Micijevic, E. Landsat Collection-2 Geometric Calibration Updates. In Proceedings of the Earth Observing Systems XXV; SPIE: Bellingham, WA, USA, 2020; Volume 11501, pp. 85–95. [Google Scholar]
- Aybar, C.; Fernández, C.; Huerta, A.; Lavado, W.; Vega, F.; Felipe-Obando, O. Construction of a High-Resolution Gridded Rainfall Dataset for Peru from 1981 to the Present Day. Hydrol. Sci. J. 2020, 65, 770–785. [Google Scholar] [CrossRef]
- Llauca, H.; Lavado-Casimiro, W.; Montesinos, C.; Santini, W.; Rau, P. PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020). Water 2021, 13, 1048. [Google Scholar] [CrossRef]
- Alawamy, J.S.; Balasundram, S.K.; Mohd. Hanif, A.H.; Boon Sung, C.T. Detecting and Analyzing Land Use and Land Cover Changes in the Region of Al-Jabal Al-Akhdar, Libya Using Time-Series Landsat Data from 1985 to 2017. Sustainability 2020, 12, 4490. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Berk, A.; Bernstein, L.S.; Anderson, G.P.; Acharya, P.K.; Robertson, D.C.; Chetwynd, J.H.; Adler-Golden, S.M. MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS. Remote Sens. Environ. 1998, 65, 367–375. [Google Scholar] [CrossRef]
- QGIS Development Team QGIS Geographic Information System. Available online: http://www.qgis.org/ (accessed on 10 March 2024).
- Autoridad Nacional del Agua; Dirección de Conservación y Planeamiento de Recursos Hídricos; Unidad de Glaciología y Recursos Hídricos. Inventario Nacional de Glaciares y Lagunas; Autoridad Nacional del Agua: Lima, Peru, 2014. [Google Scholar]
- The MathWorks Inc. MATLAB Version: 9.2 (R2017a) 2017; The MathWorks Inc.: Natick, MA, USA, 2017. [Google Scholar]
- R Core Team. The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 2 May 2024).
- Stereńczak, K.; Ciesielski, M.; Balazy, R.; Zawiła-Niedźwiecki, T. Comparison of Various Algorithms for DTM Interpolation from LIDAR Data in Dense Mountain Forests. Eur. J. Remote Sens. 2016, 49, 599–621. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated Global Glacier Mass Loss in the Early Twenty-First Century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Sikos, F.; Giráldez, C.; Schauwecker, S.; Molina, E.; Haeberli, W.; Drenkhan, F.; Salzmann, N.; Rado, M.; Chaparro, N.; Samata, J.; et al. Glacier Mass Balance in the Cordillera Vilcanota, Glacier Suyuparina, Cusco-Peru. In 19th EGU General Assembly, EGU2017, Conference Abstracts; Frontiers: Vienna, Austria, 2017; p. 7543. [Google Scholar]
- Garreaud, R.D.; Alvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.; Galleguillos, M.; LeQuesne, C.; McPhee, J.; Zambrano-Bigiarini, M. The 2010–2015 Megadrought in Central Chile: Impacts on Regional Hydroclimate and Vegetation. Hydrol. Earth Syst. Sci. 2017, 21, 6307–6327. [Google Scholar] [CrossRef]
- Montoya, N. Application of Terrestrial Scanning LIDAR to Study the Evolution of Surface Change of Quisoquipina and Suyuparina Glaciers in the Cordillera Vilcanota, Cusco-Peru. In AGU Fall Meeting 2019, General Assembly Conference Abstracts; American Geosciences Union: San Francisco, CA, USA, 2019; Volume 2019, p. C31B-1521. [Google Scholar]
- Kaser, G. Glacier-Climate Interaction at Low Latitudes. J. Glaciol. 2001, 47, 195–204. [Google Scholar] [CrossRef]
- Kaser, G.; Juen, I.; Georges, C.; Gómez, J.; Tamayo, W. The Impact of Glaciers on the Runoff and the Reconstruction of Mass Balance History from Hydrological Data in the Tropical Cordillera Blanca, Perú. J. Hydrol. 2003, 282, 130–144. [Google Scholar] [CrossRef]
- Perry, L.B.; Seimon, A.; Andrade-Flores, M.F.; Endries, J.L.; Yuter, S.E.; Velarde, F.; Arias, S.; Bonshoms, M.; Burton, E.J.; Winkelmann, I.R.; et al. Characteristics of Precipitating Storms in Glacierized Tropical Andean Cordilleras of Peru and Bolivia. Ann. Am. Assoc. Geogr. 2017, 107, 309–322. [Google Scholar] [CrossRef]
- Kaser, G. A Review of the Modern Fluctuations of Tropical Glaciers. Glob. Planet. Change 1999, 22, 93–103. [Google Scholar] [CrossRef]
- Mark, B.G.; Seltzer, G.O. Evaluation of Recent Glacier Recession in the Cordillera Blanca, Peru (AD 1962–1999): Spatial Distribution of Mass Loss and Climatic Forcing. Quat. Sci. Rev. 2005, 24, 2265–2280. [Google Scholar] [CrossRef]
- Pritchard, H.D. Asia’s Shrinking Glaciers Protect Large Populations from Drought Stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef]
- Veettil, B.K.; Kamp, U. Global Disappearance of Tropical Mountain Glaciers: Observations, Causes, and Challenges. Geosciences 2019, 9, 196. [Google Scholar] [CrossRef]
- Ferreira, Z.A.; Cabral, P. A Comparative Study about Vertical Accuracy of Four Freely Available Digital Elevation Models: A Case Study in the Balsas River Watershed, Brazil. ISPRS Int. J. Geo-Inf. 2022, 11, 106. [Google Scholar] [CrossRef]
- Persoiu, A.; Buzjak, N.; Onaca, A.; Pennos, C.; Sotiriadis, Y.; Ionita, M.; Zachariadis, S.; Styllas, M.; Kosutnik, J.; Hegyi, A.; et al. Record Summer Rains in 2019 Led to Massive Loss of Surface and Cave Ice in SE Europe. Cryosphere 2021, 15, 2383–2399. [Google Scholar] [CrossRef]
Glacier | Period | Rate (Km2/year) | Confidence Interval (Km2/year) | R2 |
---|---|---|---|---|
Quisoquipina | 1990–1999 | −0.00632 | [−0.00286, −0.00978] | 0.52 (**) |
Quisoquipina | 2000–2013 | −0.0155 | [−0.01252, −0.01848] | 0.94 (***) |
Suyuparina | 1990–1999 | −0.00947 | [−0.00720, −0.01173] | 0.85 (***) |
Suyuparina | 2000–2013 | −0.0163 | [−0.01164, −0.02102] | 0.89 (***) |
Platform | DEM | Landsat 7 | Quisoquipina (km3) | Suyuparina (km3) |
---|---|---|---|---|
ALOS | 16 October 2006 | 15 October 2006 | 11.7300 | 6.2571 |
ALOS | 26 November 2006 | 2 December 2006 | 11.7732 | 6.2062 |
ALOS | 10 June 2007 | 28 June 2007 | 11.6430 | 6.4272 |
ALOS | 26 July 2007 | 15 August 2007 | 11.7552 | 6.4872 |
ALOS | 12 June 2008 | 30 June 2008 | 11.6736 | 6.3754 |
ALOS | 28 July 2008 | 16 July 2008 | 11.6899 | 6.3852 |
ALOS | 31 July 2009 | 4 August 2009 | 11.6333 | 6.3615 |
ALOS | 3 May 2010 | 3 May 2010 | 11.5322 | 6.1190 |
ALOS | 3 August 2010 | 7 August 2010 | 11.4148 | 6.1506 |
Aerial LIDAR | 5 April 2013 | 5 April 2013 | 11.0398 | 5.9313 |
Climate variables | Quisoquipina R | Suyuparina R |
---|---|---|
Mean annual potential evapotranspiration | −0.1395 (0.6063) | 0.1484 (0.6126) |
Mean annual precipitation | −0.5236 (0.0374) * | −0.0610 (0.8358) |
Max. annual air temperature | −0.2298 (0.3918) | −0.3107 (0.2796) |
Mean. annual air temperature | −0.3405 (0.1969) | −0.2642 (0.3614) |
Min. annual air temperature | −0.3634 (0.1665) | −0.1229 (0.6754) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya-Jara, N.; Loayza, H.; Gutiérrez-Rosales, R.O.; Bueno, M.; Quiroz, R. Estimation of Glacier Outline and Volume Changes in the Vilcanota Range Snow-Capped Mountains, Peru, Using Temporal Series of Landsat and a Combination of Satellite Radar and Aerial LIDAR Images. Remote Sens. 2024, 16, 3901. https://doi.org/10.3390/rs16203901
Montoya-Jara N, Loayza H, Gutiérrez-Rosales RO, Bueno M, Quiroz R. Estimation of Glacier Outline and Volume Changes in the Vilcanota Range Snow-Capped Mountains, Peru, Using Temporal Series of Landsat and a Combination of Satellite Radar and Aerial LIDAR Images. Remote Sensing. 2024; 16(20):3901. https://doi.org/10.3390/rs16203901
Chicago/Turabian StyleMontoya-Jara, Nilton, Hildo Loayza, Raymundo Oscar Gutiérrez-Rosales, Marcelo Bueno, and Roberto Quiroz. 2024. "Estimation of Glacier Outline and Volume Changes in the Vilcanota Range Snow-Capped Mountains, Peru, Using Temporal Series of Landsat and a Combination of Satellite Radar and Aerial LIDAR Images" Remote Sensing 16, no. 20: 3901. https://doi.org/10.3390/rs16203901
APA StyleMontoya-Jara, N., Loayza, H., Gutiérrez-Rosales, R. O., Bueno, M., & Quiroz, R. (2024). Estimation of Glacier Outline and Volume Changes in the Vilcanota Range Snow-Capped Mountains, Peru, Using Temporal Series of Landsat and a Combination of Satellite Radar and Aerial LIDAR Images. Remote Sensing, 16(20), 3901. https://doi.org/10.3390/rs16203901