Microwave Coincidence Imaging with Phase-Coded Stochastic Radiation Field
Abstract
:1. Introduction
2. Radiation Field Generation
2.1. Radiation Field Characterization
2.2. Design of Code Sequence
3. Imaging Model
4. Imaging Algorithm and Results
4.1. Sparse Bayesian Learning
4.2. ADMM-Based Total Variation
4.2.1. w Sub-Problem
4.2.2. Sub-Problem
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, M.; Qi, F.; Zhao, Y.; Ji, C. Resolution enhancement based on antenna aperture compensation in synthetic aperture radar imaging with hyper-laplacian prior deconvolution. IEEE Sens. J. 2019, 23, 21679–21686. [Google Scholar] [CrossRef]
- Wu, H.; Cheng, Y.; Chen, X. Information geometry-based track-before-detect algorithm for slow-moving fluctuating target detection. IEEE Trans. Signal Process. 2023, 71, 1833–1848. [Google Scholar] [CrossRef]
- Wu, H.; Cheng, Y.; Chen, X. Power spectrum information geometry-based radar target detection in heterogeneous clutter. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5102016. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Huang, Y. Focusing bistatic forward-looking SAR with stationary transmitter based on keystone transform and nonlinear chirp scaling. IEEE Geosci. Remote Sens. Lett. 2014, 11, 148–152. [Google Scholar] [CrossRef]
- Yang, J. Multi-directional evolution trend and law analysis of radar ground imaging technology. J. Radars. 2019, 8, 669–692. [Google Scholar]
- Li, D.; Li, X.; Qin, Y. Radar coincidence imaging: An instantaneous imaging technique with stochastic signals. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2261–2277. [Google Scholar]
- Zhu, S.; Zhang, A.; Xu, Z. Radar coincidence imaging with random microwave source. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1239–1242. [Google Scholar] [CrossRef]
- Guo, Y.; He, X.; Wang, D. A novel super-resolution imaging method based on stochastic radiation radar array. Meas. Sci. Technol. 2013, 24, 074013. [Google Scholar] [CrossRef]
- He, X.; Liu, C.; Liu, B. Sparse frequency diverse MIMO radar imaging for off-grid target based on adaptive iterative MAP. Remote Sens. 2013, 5, 631–647. [Google Scholar] [CrossRef]
- Zhao, M. Frequency-diverse metacavity cassegrain antenna for differential coincidence imaging. IEEE Trans. Antennas Propag. 2023, 71, 9054–9059. [Google Scholar] [CrossRef]
- Cao, K.; Cheng, Y.; Liu, Q. Microwave coincidence imaging based on attributed scattering model. IEEE Signal Process. Lett. 2022, 29, 1694–1698. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Z.; Yang, J. Star-machine dual-base SAR imaging based on GF-3 irradiation and experimental validation. Radar Sci. Technol. 2021, 19, 241–247. [Google Scholar]
- Zhang, Y. Fast inverse-scattering reconstruction for airborne high squint radar imagery based on doppler centroid compensation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5205517. [Google Scholar] [CrossRef]
- Zhu, Y.; He, M.; He, Z. Joint minimum variance and maximum likelihood spectral estimation for forward-looking imaging methods. Syst. Eng. Electron. 2023, 45, 3108–3115. [Google Scholar]
- Li, W.; Zhang, B.; Li, K.; Yan, J. LRSD-ADMM-NET: Simultaneous super-resolution imaging and target detection for forward-looking scanning radar. Remote Sens. 2024, 17, 4052–4061. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, Y.; Cao, K. Radar 3-D forward-looking imaging for extended targets based on attribute scattering model. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3502305. [Google Scholar] [CrossRef]
- Cao, K.; Cheng, Y.; Liu, K. Reweighted-dynamic-grid-based microwave coincidence imaging with grid mismatch. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5102510. [Google Scholar] [CrossRef]
- Zhu, S.; He, Y.; Chen, X. Resolution Threshold Analysis of the Microwave Radar Coincidence Imaging. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2232–2243. [Google Scholar] [CrossRef]
- Zhou, X.; Fan, B.; Wang, H. Sparse Bayesian perspective for radar coincidence imaging with array position error. IEEE Sens. J. 2017, 17, 5209–5219. [Google Scholar] [CrossRef]
- Tian, B.; Zhang, X.; Tang, X. A joint sparse recovery algorithm for coprime adjacent array synthetic aperture radar 3D sparse imaging. Int. J. Remote Sens. 2021, 42, 6560–6580. [Google Scholar] [CrossRef]
- Lu, X.; Yang, J.; Tan, K. Range-Doppler image reconstruction for collocated MIMO noise radar by sparse recovery. Remote Sens. Lett. 2022, 13, 279–289. [Google Scholar] [CrossRef]
- Candès, J.; Wakin, M. An introduction to compressive sampling: A sensing sampling paradigm that goes against the common knowledge in data acquisition. IEEE Signal Process. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, B.; Yu, H.; Chen, J. Sparse Synthetic Aperture Radar Imaging from Compressed Sensing and Machine Learning: Theories, applications, and trends. IEEE Geosci. Remote Sens. 2022, 10, 32–69. [Google Scholar] [CrossRef]
- Seidi, M.; Shah, U.; Oberhammer, J. Analysis of a Minimalistic Imaging Radar Concept Employing Beam Shape Switching and Compressed Sensing. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–12. [Google Scholar] [CrossRef]
- Bai, X.; Wang, G.; Liu, S. High-Resolution Radar Imaging in Low SNR Environments Based on Expectation Propagation. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1275–1284. [Google Scholar] [CrossRef]
- Hariprasad, M. Circulant decomposition of a matrix and the eigenvalues of Toeplitz type matrices. Appl. Math. Comput. 2024, 468, 128473. [Google Scholar] [CrossRef]
- Heng, Z.; Wang, X.; Li, X. Constructions of cyclic codes and extended primitive cyclic codes with their applications. Finite Fields Appl. 2023, 89, 102208. [Google Scholar] [CrossRef]
- Babur, G.; Aubry, P. Space-time radar waveforms: Circulating codes. Electr. Comput. Eng. 2013, 2013, 9. [Google Scholar] [CrossRef]
- Zhu, J.; Xie, Z.; Jiang, N. Delay-Doppler map shaping through oversampled complementary sets for high speed target detection. Remote Sens. 2024, 16, 2898. [Google Scholar] [CrossRef]
- Zou, L. Study of wavelet entropy for airport pavement inspection using a multistatic ground-penetrating radar system. Geophysics 2021, 86, 69–78. [Google Scholar] [CrossRef]
- Zhang, X. Singular value analysis. In Matrix Analysis and Application, 2nd ed.; Tsinghua Univ. Press: Beijing, China, 2013; pp. 301–312. [Google Scholar]
- Mankar, V.; Das, T.; Sarkar, S. Discrete chaotic sequence based on logistic map in digital communications. arXiv 2012, arXiv:1207.2694. [Google Scholar]
- Li, C.; Li, Y. Research on statistical characteristics of chaotic pseudorandom sequence for one-dimensional Logistic map. Appl. Res. Comput. 2014, 5, 1403–1406. [Google Scholar]
- Fan, B.; Zhou, X.; Chen, S. Sparse bayesian perspective for radar coincidence imaging with model errors. Math. Probl. Eng. 2020, 2020, 9202654. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, J. A fast algorithm for total variation image reconstruction from random projections. Mathematics 2010, 6, 547–563. [Google Scholar]
- Wang, Y. A new alternating minimization Algorithm for total variation image reconstruction. Imaging Sci. 2008, 1, 248–272. [Google Scholar] [CrossRef]
- Liu, X. Augmented lagrangian method for total generalized variation based poissonian image restoration. Comput. Math. Appl. 2013, 71, 1649–1705. [Google Scholar] [CrossRef]
- Eltiyeb, A.; Salem, M. Adaptive hybrid mixed two-point step size gradient algorithm for solving non-linear systems. Mathematics 2023, 11, 2102. [Google Scholar] [CrossRef]
Bandwidths | 200 MHz | 400 MHz | 600 MHz | 800 MHz |
2.4052 | 2.7805 | 2.9573 | 3.1301 |
Parameters | Values |
---|---|
Carrier frequency | 90 GHz |
Bandwidth | 800 MHz |
Number of modulations | 16 |
Array number | 16 (16 × 1) |
Imaging range | 100 m |
Array aperture | 0.15 m × 0.15 m |
Grid size | 0.5 m × 0.5 m |
Number of grids | 30 × 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Liu, H.; Cheng, Y.; Xu, K.; Liu, K.; Yang, Y. Microwave Coincidence Imaging with Phase-Coded Stochastic Radiation Field. Remote Sens. 2024, 16, 3851. https://doi.org/10.3390/rs16203851
Lin H, Liu H, Cheng Y, Xu K, Liu K, Yang Y. Microwave Coincidence Imaging with Phase-Coded Stochastic Radiation Field. Remote Sensing. 2024; 16(20):3851. https://doi.org/10.3390/rs16203851
Chicago/Turabian StyleLin, Hang, Hongyan Liu, Yongqiang Cheng, Ke Xu, Kang Liu, and Yang Yang. 2024. "Microwave Coincidence Imaging with Phase-Coded Stochastic Radiation Field" Remote Sensing 16, no. 20: 3851. https://doi.org/10.3390/rs16203851
APA StyleLin, H., Liu, H., Cheng, Y., Xu, K., Liu, K., & Yang, Y. (2024). Microwave Coincidence Imaging with Phase-Coded Stochastic Radiation Field. Remote Sensing, 16(20), 3851. https://doi.org/10.3390/rs16203851