Evaluation of Boundary Layer Characteristics at Mount Si’e Based on UAV and Lidar Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. UAV Observation Data
2.1.2. LiDAR Data
2.1.3. Wind Tower Data
2.2. WRF Simulation Design
2.3. Calculation Method of ABLH
3. Results
3.1. Vertical Variation Characteristics of Meteorological Elements in ABL
3.1.1. Vertical Profiles of Temperature, Pressure, and Humidity
3.1.2. Vertical Variation Characteristics of Wind Speed and Wind Direction
3.2. The ABLH Characteristics
3.2.1. Temporal Distribution Characteristics of ABLH
3.2.2. Spatial Distribution Characteristics of ABLH
4. Discussions
5. Conclusions
- During April in the Mount Si’e region, the boundary layer height shows a notable diurnal variation. Daytime heating drives intense thermal convection, raising the boundary layer to a peak of around 900 m, generally ranging between 600 to 1200 m, with localized areas occasionally exceeding this. At night, radiative cooling causes the boundary layer to drop to 100–200 m, forming a stable layer, typically staying below 300 m.
- Daytime temperatures reach up to 18°C, while humidity drops to around 35%, reflecting active vertical mixing. At night, temperatures drop significantly, reducing the near-surface temperature gradient, while humidity rises above 50%.
- Prevailing winds in the Mount Si’e region mainly come from the south-southwest, south, and southwest. Daytime wind speeds range from 4 to 8 m/s, occasionally exceeding 8 m/s due to enhanced turbulence. At night, wind speeds decrease to 2–4 m/s, influenced by local topography, vegetation, and stable atmospheric conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- An Introduction to Boundary Layer Meteorology; Stull, R.B. (Ed.) Springer: Dordrecht, The Netherlands, 1988; ISBN 978-90-277-2769-5. [Google Scholar]
- Su, Y.; Lü, S.; Fan, G. The Characteristics Analysis on the Summer Atmospheric Boundary Layer Height and Surface Heat Fluxes over the Qinghai-Tibetan Plateau. Plateau Meteorol. 2018, 37, 1470–1485. [Google Scholar]
- Li, Y.; Hu, Z.; Zhao, H. Overview on the Characteristic of Boundary Layer Structure in Tibetan Plateau. Plateau Mt. Meteorol. Res. 2012, 32, 91–96. [Google Scholar]
- Baklanov, A.A.; Grisogono, B.; Bornstein, R.; Mahrt, L.; Zilitinkevich, S.S.; Taylor, P.; Larsen, S.E.; Rotach, M.W.; Fernando, H.J.S. The Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers. Bull. Amer. Meteor. Soc. 2011, 92, 123–128. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Qiao, J.; Wang, S. Relationship of Atmospheric Boundary Layer Depth with Thermodynamic Processes at the Land Surface in Arid Regions of China. Sci. China Earth Sci. 2011, 54, 1586–1594. [Google Scholar] [CrossRef]
- Zhao, M. A Review of the Research on the Effects of Boundary Layer and Land Surface Process on Heavy Rain in China. Torrential Rain Disasters 2008, 2, 186–190. [Google Scholar]
- Ma, Y.; Hu, Z.; Wang, B.; Ma, W.; Chen, X.; Han, C.; Li, M.; Zhong, L.; Gu, L.; Sun, F.; et al. The Review of the Observation Experiments on Land-Atmosphere Interaction Progress on the Qinghai-Xizang(Tibetan)Plateau. Plateau Meteorol. 2021, 40, 1241–1262. [Google Scholar]
- Fu, W.; Li, M.; Yin, S.; Lü, Z.; Wang, L.; Shu, L. Study on the Atmospheric Boundary Layer Structure of the Qinghai-Xizang Plateau under the South Branch of the Westerly Wind and the Plateau Monsoon Circulation Field. Plateau Meteorol. 2022, 41, 190–203. [Google Scholar]
- Song, X.; Zhang, H.; Liu, X.; Fan, S.; Liu, H.; Hu, F.; Li, S.; Zhou, M.; Bian, L.; Xu, X. Determination of Atmospheric Boundary Layer Height in Unstable Conditions over the Middle Tibetan Plateau. Acta Sci. Nat. Univ. Pekin. 2006, 42, 328–333. [Google Scholar]
- Jiang, X.; Li, Y.; He, G. The Climatic Characteristics Analysis of Radiosonde Data over East Part of Tibetan Plateau. Plateau Mt. Meteorol. Res. 2008, 28, 1–9. [Google Scholar]
- Ye, D. Meteorology of the Tibetan Plateau, 1st ed.; Science Press: Beijing, China, 1979. [Google Scholar]
- Xu, X.; Zhou, M.; Chen, J.; Bian, L.; Zhang, G.; Liu, H.; Li, S.; Zhang, H.; Zhao, J.; Suolang, D.; et al. Comprehensive Physical Representation of the Dynamic and Thermal Structure of the Land-Atmosphere Processes on the Tibetan Plateau. Sci. Sin. 2001, 31, 428–441. [Google Scholar]
- Li, M.; Dai, Y.; Ma, Y.; Zhong, L.; Lü, S. Analysis on Structure of Atmospheric Boundary Layer and Energy Exchange of Surface Layer over Mount Qomolangma Region. Plateau Meteorol. 2006, 25, 807–813. [Google Scholar]
- Chen, X.; Añel, J.A.; Su, Z.; De La Torre, L.; Kelder, H.; Van Peet, J.; Ma, Y. The Deep Atmospheric Boundary Layer and Its Significance to the Stratosphere and Troposphere Exchange over the Tibetan Plateau. PLoS ONE 2013, 8, e56909. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Yao, J.; Hu, Z.; Ma, Y.; Sun, F.; Yu, H.; Wang, S.; Yang, Y.; Guo, R.; Qin, Y. Characteristics of the Atmospheric Boundary Layer’s Structure and Heating (Cooling) Rate in Summer over the Northern Tibetan Plateau. Atmos. Res. 2022, 269, 106045. [Google Scholar] [CrossRef]
- Yang, K.; Koike, T.; Fujii, H.; Tamura, T.; Xu, X.; Bian, L.; Zhou, M. The Daytime Evolution of the Atmospheric Boundary Layer and Convection over the Tibetan Plateau: Observations and Simulations. J. Meteorol. Soc. Jpn. Ser. II 2004, 82, 1777–1792. [Google Scholar] [CrossRef]
- Li, F.; Zou, H.; Zhou, L.; Ma, S.; Li, P.; Zhu, J.; Zhang, Y. Study of Boundary Layer Parameterization Schemes’Applicability of WRF Model over Complex Underlying Surfaces in Southeast Tibet. Plateau Meteorol. 2017, 36, 340–357. [Google Scholar]
- Che, J.; Zhao, P. Characteristics of the Summer Atmospheric Boundary Layer Height over the Tibetan Plateau and Influential Factors. Atmos. Chem. Phys. 2021, 21, 5253–5268. [Google Scholar] [CrossRef]
- Zuo, H.; Hu, Y.; Li, D.; Lü, S.; Ma, Y. Seasonal Transition and Its Boundary Layer Characteristics in Anduo Area of Tibetan Plateau. Prog. Nat. Sci. 2005, 15, 239–245. [Google Scholar]
- Li, M.; Ma, Y.; Ma, W.; Ishikawa, H.; Sun, F.; Shin-Ya, O. Structural Difference of Atmospheric Boundary Layer between Dry and Rainy Seasons over the Central Tibetan Plateau. J. Glaciol. Geocryol. 2011, 33, 72–79. [Google Scholar]
- Zhou, W.; Yang, S.; Jiang, X.; Guo, Q. Study of the Atmospheric Boundary Layer Height over the Tibetan Plateau Using COSMIC Radio Occultation Data. Acta Meteorol. Sin. 2018, 76, 117–133. [Google Scholar]
- Wen, X.; Ma, J.; Chen, M. Analysis of Atmospheric Boundary Layer Characteristics on Different Underlying Surfaces of the Eastern Tibetan Plateau in Summer. Remote Sens. 2024, 16, 1645. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhao, X. The Comparison and Analysis of ABL observational data between the East of Tibetan Plateau and Chengdu Plain (I). Plateau Mt. Meteorol. Res. 2008, 28, 30–35. [Google Scholar]
- Lo, J.C.-F.; Yang, Z.-L.; Pielke, R.A., Sr. Assessment of Three Dynamical Climate Downscaling Methods Using the Weather Research and Forecasting (WRF) Model. J. Geophys. Res. 2008, 113, 2007JD009216. [Google Scholar] [CrossRef]
- Seibert, P.; Beyrich, F.; Gryning, S.-E.; Joffre, S.; Rasmussen, A.; Tercier, P. Review and Intercomparison of Operational Methods for the Determination of the Mixing Height. Atmos. Environ. 2000, 34, 1001–1027. [Google Scholar] [CrossRef]
- Yang, F.Y. Comparison of Determination Methods and Characteristics of Boundary Layer Height in Semi-Arid Area. PhD Thesis, Lanzhou University, Lanzhou, China, 2018. [Google Scholar]
- Garratt, J.R. The Atmospheric Boundary Layer. Earth-Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Culf, A.D.; Fisch, G.; Malhi, Y.; Nobre, C.A. The Influence of the Atmospheric Boundary Layer on Carbon Dioxide Concentrations over a Tropical Forest. Agric. For. Meteorol. 1997, 85, 149–158. [Google Scholar] [CrossRef]
- Mahrt, L. Stratified Atmospheric Boundary Layers. Bound.-Layer Meteorol. 1999, 90, 375–396. [Google Scholar] [CrossRef]
- He, Y.; Zhu, X.; Sheng, Z.; He, M. Identification of Stratospheric Disturbance Information in China Based on the Round-Trip Intelligent Sounding System. Atmos. Chem. Phys. 2024, 24, 3839–3856. [Google Scholar] [CrossRef]
- Ayet, A.; Chapron, B. The Dynamical Coupling of Wind-Waves and Atmospheric Turbulence: A Review of Theoretical and Phenomenological Models. Bound.-Layer Meteorol. 2022, 183, 1–33. [Google Scholar] [CrossRef]
- Gohm, A.; Harnisch, F.; Vergeiner, J.; Obleitner, F.; Schnitzhofer, R.; Hansel, A.; Fix, A.; Neininger, B.; Emeis, S.; Schäfer, K. Air Pollution Transport in an Alpine Valley: Results from Airborne and Ground-Based Observations. Bound.-Layer Meteorol. 2009, 131, 441–463. [Google Scholar] [CrossRef]
Measuring Element | Measuring Range | Resolution | Accuracy |
---|---|---|---|
Temperature | −40~+80 °C | 0.1 °C | ±0.1 °C (+15~+25 °C); ±0.15 °C (0~+15 °C, +25~+40 °C); ±0.4 °C (−40~0 °C, +40~+80 °C) |
Pressure | 300~1100 hPa | 0.1 hPa | ±0.1 °C (+15~+25 °C); ±0.15 °C (0~+15 °C, +25~+40 °C); ±0.4 °C (−40~0 °C, +40~+80 °C) |
Humidity | 0~100% RH | 0.1% RH | 0~+40 °C: ±1.5% RH (0~90% RH); ±2.5% RH (90~100% RH) −40~0 °C, +40~+80 °C: ±3.0% RH (0~90% RH); ±4.0% RH (90~100% RH) |
Wind Speed | 0~50 m/s | 0.1 m/s | ±0.1 m/s (0–10 m/s); ±1% (11–30 m/s); ±2% (31–50 m/s) |
Wind Direction | 0~365° | ±0.1° | 1° |
Indicator | Parameter |
---|---|
Operating Wavelength | 1.5 μm |
Detection Range | 45–6000 m |
Spatial Distance Resolution | 45–6000 m |
Temporal Resolution | 4.5–150 m |
Horizontal Wind Speed Measurement Error | Wind Speed Line ≤ 1 m/s |
Horizontal Wind Direction Measurement Error | ≤3° |
Scanning Angle Accuracy | ≤0.1° |
Scanning Modes | Plan Position Indicator (PPI), Range Height Indicator (RHI), Doppler Beam Swinging (DBS), Sector Scanning, Volume Scanning, Custom Scanning Modes |
Physical Parameterizations | Configuration |
---|---|
Microphysics | Lin scheme |
Cumulus parameterization | Tiedtke scheme |
Longwave radiation | RRTM scheme |
Shortwave radiation | Dudhia scheme |
Cumulus clouds | Kain-Fritsch convection scheme |
Planetary boundary layer | YSU PBL scheme |
Surface layer | Noah land surface model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, J.; Xie, X.; Wen, X. Evaluation of Boundary Layer Characteristics at Mount Si’e Based on UAV and Lidar Data. Remote Sens. 2024, 16, 3816. https://doi.org/10.3390/rs16203816
Dang J, Xie X, Wen X. Evaluation of Boundary Layer Characteristics at Mount Si’e Based on UAV and Lidar Data. Remote Sensing. 2024; 16(20):3816. https://doi.org/10.3390/rs16203816
Chicago/Turabian StyleDang, Jiantao, Xinrui Xie, and Xiaohang Wen. 2024. "Evaluation of Boundary Layer Characteristics at Mount Si’e Based on UAV and Lidar Data" Remote Sensing 16, no. 20: 3816. https://doi.org/10.3390/rs16203816
APA StyleDang, J., Xie, X., & Wen, X. (2024). Evaluation of Boundary Layer Characteristics at Mount Si’e Based on UAV and Lidar Data. Remote Sensing, 16(20), 3816. https://doi.org/10.3390/rs16203816