Development and Utilization of Bridge Data of the United States for Predicting Deck Condition Rating Using Random Forest, XGBoost, and Artificial Neural Network
Abstract
:1. Introduction
2. Research Methodology
- Data preparation: This study developed two sets of national bridge data by incorporating NBI, traffic, and climate regions. One dataset is for the year 2020 and another encompasses five years (2016–2020) of historical bridge data.
- Model development and evaluation: Each dataset was preprocessed and divided into an 80% training set and a 20% test set. Subsequently, three models including Random Forest, XGBoost, and ANN were trained and evaluated based on overall accuracy and average F1 score on the test set. To address the imbalance in bridge deck condition rating across ten categories, separate F1 scores were computed for each condition rating to comprehensively assess models’ performance. Meanwhile, a permutation-based approach was employed to identify important features, among NBI, traffic, and climate regions, for development of the ML models.
- Model selection and discussion: The effectiveness of the developed models was examined using training time, overall accuracy, and average F1 score.
3. Data Preparation
3.1. NBI and Traffic Data Collection
- “Reconstructed”: zero, if “year reconstructed” (item 106) is zero, otherwise one.
- “Age”: subtraction of “year built” (item 27) from “year of inspection” (two last digits of item 90), if “Reconstructed” is zero, otherwise subtraction of “year reconstructed” (item 106) from “year of inspection” (two last digits of item 90). Note that for a reconstructed bridge “Age” would be equivalent to the number of years since the last major reconstruction.
- ADT: is computed using Equation (1).
- 4.
- Curb_Width: sum of the “left curb width” (item 50A) and the “right curb width” (item 50B).
- 5.
- Deck_Area: multiplying the “structure length” (item 49) and the “deck width” (item 52).
3.2. Spatially Locating Bridges
3.3. Climate Region Collection
4. Model Development and Evaluation
4.1. Predictor and Response Variables
4.2. Feature Selection
4.3. Data Cleaning
4.4. Data Partitioning
4.5. Model Performance
5. Results of Training and Evaluating Models
5.1. Random Forest
5.2. XGBoost
5.3. ANN
- Sigmoid, described in Equation (4), looks like an s-shape and is used to predict the probability that varies between 0 and 1.
- 2.
- The Hyperbolic Tangent (TanH), described in Equation (5), is also sigmoidal (s-shaped). The range of TanH is between −1 and 1.
- 3.
- The Rectified Linear Unit (ReLU), described in Equation (6), is the most common activation function with better performance than other functions [96]. ReLU will output input directly if it is positive, otherwise, it will output zero.
- 4.
- The Scaled Exponential Linear Unit (SELU), described in Equation (7), automatically converges to a zero mean and unit variance.
- 5.
- The Softmax activation function, described in Equation (8), is a combination of multiple sigmoid functions that can be used as a function in the output layer of an ANN in multiclass classification problems. The function for every data point of all individual classes returns the probability [95]. Then the class of each data point is identified based on the highest probability.
6. Model Selection and Discussion
7. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Creary, P.A.; Fang, F.C. Forecasting long-term bridge deterioration conditions using artificial intelligence techniques. Int. J. Intell. Syst. Technol. Appl. 2014, 13, 280–293. [Google Scholar] [CrossRef]
- Hooks, J.M.; Frangopol, D.M. LTBP Bridge Performance Primer; United States, Federal Highway Administration, Office of Infrastructure: Washington, DC, USA, 2013. [Google Scholar]
- ARTBA. Bridge Report; American Road and Transportation Builders Association: Washington, DC, USA, 2022. [Google Scholar]
- ASCE. Report card for America’s Infrastructure. 2022. Available online: https://infrastructurereportcard.org/cat-item/bridges-infrastructure/ (accessed on 1 November 2023).
- Zulifqar, A.; Cabieses, M.; Mikhail, A.; Khan, N. Design of a Bridge Inspection System (BIS) to Reduce Time and Cost; George Mason University: Farifax, VA, USA, 2014. [Google Scholar]
- Jeong, Y.; Kim, W.; Lee, I.; Lee, J. Bridge inspection practices and bridge management programs in China, Japan, Korea, and US. J. Struct. Integr. Maint. 2018, 3, 126–135. [Google Scholar]
- Ranjith, S.; Setunge, S.; Gravina, R.; Venkatesan, S. Deterioration prediction of timber bridge elements using the Markov chain. J. Perform. Constr. Facil. 2013, 27, 319–325. [Google Scholar] [CrossRef]
- Hasan, S.; Elwakil, E. National bridge inventory data-based stochastic modeling for deck condition rating of prestressed concrete bridges. Pract. Period. Struct. Des. Constr. 2020, 25, 04020022. [Google Scholar] [CrossRef]
- Huang, Y.-H. Artificial neural network model of bridge deterioration. J. Perform. Constr. Facil. 2010, 24, 597–602. [Google Scholar] [CrossRef]
- Liu, H.; Madanat, S. Adaptive optimisation methods in system-level bridge management. Struct. Infrastruct. Eng. 2015, 11, 884–896. [Google Scholar] [CrossRef]
- Morcous, G.; Rivard, H.; Hanna, A. Modeling bridge deterioration using case-based reasoning. J. Infrastruct. Syst. 2002, 8, 86–95. [Google Scholar] [CrossRef]
- Qiao, Y.; Moomen, M.; Zhang, Z.; Agbelie, B.; Labi, S.; Sinha, K.C. Modeling deterioration of bridge components with binary probit techniques with random effects. Transp. Res. Rec. 2016, 2550, 96–105. [Google Scholar] [CrossRef]
- Chang, M.; Maguire, M.; Sun, Y. Framework for mitigating human bias in selection of explanatory variables for bridge deterioration modeling. J. Infrastruct. Syst. 2017, 23, 04017002. [Google Scholar] [CrossRef]
- Inkoom, S.; Sobanjo, J. Availability function as bridge element’s importance weight in computing overall bridge health index. Struct. Infrastruct. Eng. 2018, 14, 1598–1610. [Google Scholar] [CrossRef]
- Mohammed Abdelkader, E.; Marzouk, M.; Zayed, T. Modeling of Concrete Bridge Decks Deterioration Using a Hybrid Stochastic Model. In Proceedings of the Building Tomorrow’s Society, Fredericton, NB, Canada, 13–16 June 2018. [Google Scholar]
- Cesare, M.A.; Santamarina, C.; Turkstra, C.; Vanmarcke, E.H. Modeling bridge deterioration with Markov chains. J. Transp. Eng. 1992, 118, 820–833. [Google Scholar] [CrossRef]
- Morcous, G. Performance prediction of bridge deck systems using Markov chains. J. Perform. Constr. Facil. 2006, 20, 146–155. [Google Scholar] [CrossRef]
- Ramaswamy, R. Estimation of Latent Pavement Performance from Damage Measurements; Massachusetts Institute of Technology: Cambridge, MA, USA, 1989. [Google Scholar]
- Alipour, M.; Harris, D.K.; Barnes, L.E.; Ozbulut, O.E.; Carroll, J. Load-capacity rating of bridge populations through machine learning: Application of decision trees and random forests. J. Bridge Eng. 2017, 22, 04017076. [Google Scholar] [CrossRef]
- Almarahlleh, N.H. Deterioration Prediction Models for Condition Assessment of Concrete Bridge Decks Using Machine Learning Techniques; Western Michigan University: Kalamazoo, MI, USA, 2021. [Google Scholar]
- Garg, Y.; Masih, A.; Sharma, U. Predicting bridge damage during earthquake using machine learning algorithms. In Proceedings of the 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 28–29 January 2021; pp. 725–728. [Google Scholar]
- Kong, X.; Li, Z.; Zhang, Y.; Das, S. Bridge deck deterioration: Reasons and patterns. Transp. Res. Rec. 2022, 2676, 570–584. [Google Scholar] [CrossRef]
- Liu, K.; El-Gohary, N. A smart bridge data analytics framework for enhanced bridge deterioration prediction. In Proceedings of the Construction Research Congress 2020, Tempe, AZ, USA, 8–10 March 2020; pp. 1194–1202. [Google Scholar]
- Ojha, V.K.; Abraham, A.; Snášel, V. Metaheuristic design of feedforward neural networks: A review of two decades of research. Eng. Appl. Artif. Intell. 2017, 60, 97–116. [Google Scholar] [CrossRef]
- Srikanth, I.; Arockiasamy, M. Deterioration models for prediction of remaining useful life of timber and concrete bridges: A review. J. Traffic Transp. Eng. (Engl. Ed.) 2020, 7, 152–173. [Google Scholar] [CrossRef]
- Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A brief review of nearest neighbor algorithm for learning and classification. In Proceedings of the International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 1255–1260. [Google Scholar]
- Bektas, B.A.; Carriquiry, A.; Smadi, O. Using classification trees for predicting national bridge inventory condition ratings. J. Infrastruct. Syst. 2013, 19, 425–433. [Google Scholar] [CrossRef]
- Lim, S.; Chi, S. Xgboost application on bridge management systems for proactive damage estimation. Adv. Eng. Inform. 2019, 41, 100922. [Google Scholar] [CrossRef]
- Assaad, R.; El-adaway, I.H. Bridge infrastructure asset management system: Comparative computational machine learning approach for evaluating and predicting deck deterioration conditions. J. Infrastruct. Syst. 2020, 26, 04020032. [Google Scholar] [CrossRef]
- Chyad, A.M.; Abudayyeh, O.; Alkasisbeh, M.R. A nonlinear regression-based machine learning model for predicting concrete bridge deck condition. In Proceedings of the 1st International Congress on Engineering Technologies, Irbid, Jordan, 16–18 June 2020; pp. 131–136. [Google Scholar]
- Liu, H.; Nehme, J.; Lu, P. An application of convolutional neural network for deterioration modeling of highway bridge components in the United States. Struct. Infrastruct. Eng. 2023, 19, 731–744. [Google Scholar] [CrossRef]
- Liu, K.; El-Gohary, N. Learning from class-imbalanced bridge and weather data for supporting bridge deterioration prediction. In Advances in Informatics and Computing in Civil and Construction Engineering, Proceedings of the 35th CIB W78 2018 Conference: IT in Design, Construction, and Management, Chicago, IL, USA, 1–3 October 2018; Springer: Cham, Switzerland, 2019; pp. 749–756. [Google Scholar]
- Nguyen, T.T.; Dinh, K. Prediction of bridge deck condition rating based on artificial neural networks. J. Sci. Technol. Civ. Eng. (STCE)-HUCE 2019, 13, 15–25. [Google Scholar] [CrossRef]
- Manafpour, A.; Guler, I.; Radlińska, A.; Rajabipour, F.; Warn, G. Stochastic analysis and time-based modeling of concrete bridge deck deterioration. J. Bridge Eng. 2018, 23, 04018066. [Google Scholar] [CrossRef]
- Radovic, M.; Ghonima, O.; Schumacher, T. Data mining of bridge concrete deck parameters in the national bridge inventory by two-step cluster analysis. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2017, 3, F4016004. [Google Scholar] [CrossRef]
- Winn, E.K.; Burgueño, R. Development and Validation of Deterioration Models for Concrete Bridge Decks-Phase 1: Artificial Intelligence Models and Bridge Management System; Michigan Department of Transportation: Lansing, MI, USA, 2013. [Google Scholar]
- Hatami, A.; Morcous, G. Developing Deterioration Models for Nebraska Bridges; Nebraska Transportation Center: Lincoln, NE, USA, 2011. [Google Scholar]
- Hong, T.-H.; Chung, S.-H.; Han, S.-W.; Lee, S.-Y. Service life estimation of concrete bridge decks. KSCE J. Civ. Eng. 2006, 10, 233–241. [Google Scholar] [CrossRef]
- Morcous, G. Modeling bridge deck deterioration by using decision tree algorithms. Transportation Research Record: Journal of the Transportation Research Board; Transportation Research Board: Washington, DC, USA, 2005. [Google Scholar]
- Melhem, H.G.; Cheng, Y.; Kossler, D.; Scherschligt, D. Wrapper methods for inductive learning: Example application to bridge decks. J. Comput. Civ. Eng. 2003, 17, 46–57. [Google Scholar] [CrossRef]
- FHWA. Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation’s Bridges; Federal Highway Administration: Washington, DC, USA, 1995. [Google Scholar]
- Ghonima, O. Statistical Modeling of United States Highway Concrete Bridge Decks; University of Delaware: Newark, DE, USA, 2017. [Google Scholar]
- USDOT. Federal Highway Administration National Bridge Inventory; USDOT: Washington, DC, USA, 2013. [Google Scholar]
- Eesa, A.S.; Orman, Z.; Brifcani, A.M.A. A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems. Expert Syst. Appl. 2015, 42, 2670–2679. [Google Scholar] [CrossRef]
- Zebari, R.; Abdulazeez, A.; Zeebaree, D.; Zebari, D.; Saeed, J. A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction. J. Appl. Sci. Technol. Trends 2020, 1, 56–70. [Google Scholar] [CrossRef]
- Mokhtari, S.; Abbaspour, A.; Yen, K.K.; Sargolzaei, A. A machine learning approach for anomaly detection in industrial control systems based on measurement data. Electronics 2021, 10, 407. [Google Scholar] [CrossRef]
- Janitza, S.; Strobl, C.; Boulesteix, A.-L. An AUC-based permutation variable importance measure for random forests. BMC Bioinform. 2013, 14, 119. [Google Scholar] [CrossRef]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Tree-based methods. In High-Dimensional Data Analysis in Cancer Research; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–19. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Wright, M.N.; Ziegler, A.; König, I.R. Do little interactions get lost in dark random forests? BMC Bioinform. 2016, 17, 145. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Pei, J.; Tong, H. Data Mining: Concepts and Techniques; Morgan kaufmann: Burlington, MA, USA, 2022. [Google Scholar]
- Song, Y.; Si, W.; Dai, F.; Yang, G. Weighted ReliefF with threshold constraints of feature selection for imbalanced data classification. Concurr. Comput. Pract. Exp. 2020, 32, e5691. [Google Scholar] [CrossRef]
- Wright, M.N.; Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. arXiv 2015, arXiv:1508.04409. [Google Scholar] [CrossRef]
- Han, J.; Kamber, M.; Pei, J. Data Mining Concepts and Techniques Third Edition; Morgan Kaufmann: Burlington, MA, USA, 2012. [Google Scholar]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Practical machine learning tools and techniques. In Data Mining, 4th ed.; Elsevier Publishers: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Alasadi, S.A.; Bhaya, W.S. Review of data preprocessing techniques in data mining. J. Eng. Appl. Sci. 2017, 12, 4102–4107. [Google Scholar]
- Gupta, H.; Asha, V. Impact of encoding of high cardinality categorical data to solve prediction problems. J. Comput. Theor. Nanosci. 2020, 17, 4197–4201. [Google Scholar] [CrossRef]
- Cerda, P.; Varoquaux, G.; Kégl, B. Similarity encoding for learning with dirty categorical variables. Mach. Learn. 2018, 107, 1477–1494. [Google Scholar] [CrossRef]
- Zheng, A.; Casari, A. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2018. [Google Scholar]
- Noel, D.D.; Justin, K.G.A.; Alphonse, A.K.; Désiré, L.H.; Dramane, D.; Nafan, D.; Malerba, G. Normality Assessment of Several Quantitative Data Transformation Procedures. Biostat. Biom. Open Access J. 2021, 10, 51–65. [Google Scholar] [CrossRef]
- Grandini, M.; Bagli, E.; Visani, G. Metrics for multi-class classification: An overview. arXiv 2020, arXiv:2008.05756. [Google Scholar]
- Azimi, M.; Eslamlou, A.D.; Pekcan, G. Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review. Sensors 2020, 20, 2778. [Google Scholar] [CrossRef]
- Dadras Eslamlou, A.; Huang, S. Artificial-Neural-Network-Based Surrogate Models for Structural Health Monitoring of Civil Structures: A Literature Review. Buildings 2022, 12, 2067. [Google Scholar] [CrossRef]
- Eslamlou, A.D.; Ghaderiaram, A.; Schlangen, E.; Fotouhi, M. A review on non-destructive evaluation of construction materials and structures using magnetic sensors. Constr. Build. Mater. 2023, 397, 132460. [Google Scholar] [CrossRef]
- Fard, F. Prediction of concrete bridge deck condition rating based on climate data in addition to bridge data: Five states as a case study. In Proceedings of the 17th International Conference on Knowledge Management, Potsdom, Germany, 23–24 June 2022. [Google Scholar]
- Gattulli, V.; Franchi, F.; Graziosi, F.; Marotta, A.; Rinaldi, C.; Potenza, F.; Sabatino, U.D. Design and evaluation of 5G-based architecture supporting data-driven digital twins updating and matching in seismic monitoring. Bull. Earthq. Eng. 2022, 20, 4345–4365. [Google Scholar] [CrossRef]
- Jia, H.; Lin, J.; Liu, J. Bridge seismic damage assessment model applying artificial neural networks and the random forest algorithm. Adv. Civ. Eng. 2020, 2020, 6548682. [Google Scholar] [CrossRef]
- Tokdemir, O.B.; Ayvalik, C.; Mohammadi, J. Prediction of highway bridge performance by artificial neural networks and genetic algorithms. In Proceedings of the 17th International Association for Automation and Robotics in Construction (ISARC), Taipei, Taiwan, 18–20 September 2000; pp. 1091–1098. [Google Scholar]
- Smarra, F.; Di Girolamo, G.D.; De Iuliis, V.; Jain, A.; Mangharam, R.; D’Innocenzo, A. Data-driven switching modeling for mpc using regression trees and random forests. Nonlinear Anal. Hybrid Syst. 2020, 36, 100882. [Google Scholar] [CrossRef]
- Taghaddos, M.; Mohamed, Y. Predicting bridge conditions in Ontario: A case study. In Proceedings of the International Symposium on Automation and Robotics in Construction (ISARC), Banff, AB, Canada, 21–24 May 2019; pp. 166–171. [Google Scholar]
- Creary, P.A.; Fang, F.C. The data mining approach for analyzing infrastructure operating conditions. Procedia-Soc. Behav. Sci. 2013, 96, 2835–2845. [Google Scholar] [CrossRef]
- Shirazi, A.; Fard, F.S.N. Financial Hedging and Risk Compression, A journey from linear regression to neural network. arXiv 2023, arXiv:2305.04801. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L.C. Adele Random Forests. Available online: https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm (accessed on 30 January 2022).
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013; Volume 112. [Google Scholar]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef]
- Dudek, G. Short-term load forecasting using random forests. In Intelligent Systems’ 2014: Proceedings of the 7th IEEE International Conference Intelligent Systems IS’2014, September 24–26, 2014, Warsaw, Poland, Volume 2: Tools, Architectures, Systems, Applications; Springer: Cham, Switzerland, 2015; pp. 821–828. [Google Scholar]
- Kavzoglu, T.; Colkesen, I.; Sahin, E.K. Machine learning techniques in landslide susceptibility mapping: A survey and a case study. In Landslides: Theory, Practice and Modelling; Springer: Cham, Switzerland, 2019; pp. 283–301. [Google Scholar]
- Naing, W.Y.N.; Htike, Z.Z. Forecasting of monthly temperature variations using random forests. ARPN J. Eng. Appl. Sci 2015, 10, 10109–10112. [Google Scholar]
- Cutler, D.R.; Edwards Jr, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Díaz-Uriarte, R.; Alvarez de Andrés, S. Gene selection and classification of microarray data using random forest. BMC Bioinform. 2006, 7, 3. [Google Scholar] [CrossRef]
- Freeman, E.A.; Moisen, G.G.; Coulston, J.W.; Wilson, B.T. Random forests and stochastic gradient boosting for predicting tree canopy cover: Comparing tuning processes and model performance. Can. J. For. Res. 2016, 46, 323–339. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ajit, P. Prediction of employee turnover in organizations using machine learning algorithms. Algorithms 2016, 4, C5. [Google Scholar]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T. Xgboost: Extreme Gradient Boosting, R package version 0.4-2. 2015.
- Ghimire, S.; Deo, R.C.; Casillas-Perez, D.; Salcedo-Sanz, S. Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms. Appl. Energy 2022, 316, 119063. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, C.; Li, Y.; Liu, N. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring. Expert Syst. Appl. 2017, 78, 225–241. [Google Scholar] [CrossRef]
- Liew, X.Y.; Hameed, N.; Clos, J. An investigation of XGBoost-based algorithm for breast cancer classification. Mach. Learn. Appl. 2021, 6, 100154. [Google Scholar] [CrossRef]
- Minsky, M.; Papert, S. Perceptrons: An Introduction to Computational; MIT press: Cambridge, MA, USA, 1988. [Google Scholar]
- Werbos, P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, Committee on Applied Mathematics, Harvard University, Cambridge, MA, USA, 1974. [Google Scholar]
- Uzair, M.; Jamil, N. Effects of hidden layers on the efficiency of neural networks. In Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 5–7 November 2020; pp. 1–6. [Google Scholar]
- Liu, C.; Zhao, Z.; Wen, G. Adaptive neural network control with optimal number of hidden nodes for trajectory tracking of robot manipulators. Neurocomputing 2019, 350, 136–145. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Sharma, S.; Sharma, S.; Athaiya, A. Activation functions in neural networks. Towards Data Sci 2017, 6, 310–316. [Google Scholar] [CrossRef]
- Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv 2015, arXiv:1505.00853. [Google Scholar]
- Arnold, T.B. kerasR: R Interface to the Keras Deep Learning Library. J. Open Source Softw. 2017, 2, 296. [Google Scholar] [CrossRef]
- Liu, K.; El-Gohary, N. Semantic modeling of bridge deterioration knowledge for supporting big bridge data analytics. In Proceedings of the ASCE Construction Research Congress (CRC), San Juan, Puerto Rico, 31 May–2 June 2016; pp. 930–939. [Google Scholar]
Condition Rating | Description |
---|---|
N | Not applicable |
9 | Excellent condition |
8 | Very good condition |
7 | Good condition |
6 | Satisfactory condition |
5 | Fair condition |
4 | Poor condition |
3 | Serious condition |
2 | Critical condition |
1 | Imminent failure condition |
0 | Failed condition |
No. | NBI Variable | Type | Item | Description |
---|---|---|---|---|
1 | Age | Numeric | Computed using 27, 90, 106 | Bridge age |
2 | ADT | Numeric | Computed using 29, 30, 90, 114, 115 | Average daily traffic |
3 | ADTT | Numeric | 109 | Percent of daily truck traffic |
4 | Lanes_On | Numeric | 28A | Lanes on the structure |
5 | Number_Spans_Main | Numeric | 45 | Number of main spans |
6 | Length_Max_Span | Numeric | 48 | Length of maximum span |
7 | Curb_Width | Numeric | Computed using 50A, 50B | Width of curb |
8 | Deck_Area | Numeric | Computed using 49, 52 | Deck area |
9 | Operating_Rating | Numeric | 64 | Operating rating |
10 | Highway_District | Categorical | 2 | Highway agency district |
11 | Design_Load | Categorical | 31 | Designed live load |
12 | Reconstructed | Categorical | Computed using 106 | Reconstruction status |
13 | Main_Material | Categorical | 43A | Main structure material |
14 | Main_Design | Categorical | 43B | Main structure design |
15 | Spans_Material | Categorical | 44A | Span structure material |
16 | Spans_Design | Categorical | 44B | Span structure design |
17 | Deck_Geometry | Categorical | 68 | Rating for deck geometry |
18 | Deck_Type | Categorical | 107 | Type of deck system |
19 | Wearing_Surface | Categorical | 108A | Wearing surface |
State | Initial Bridges | Bridges with Incorrect Spatial Locations | Bridges Removed (%) | Bridges Remained | ||
---|---|---|---|---|---|---|
Missing Longitude or Latitude | Zero Longitude or Latitude | Outside the State | ||||
Alabama | 16,155 | 1 | 5 | 32 | 0.24 | 16,117 |
Arizona | 8428 | 0 | 1 | 3 | 0.05 | 8424 |
Arkansas | 12,946 | 0 | 32 | 0 | 0.25 | 12,914 |
California | 25,763 | 0 | 31 | 2 | 0.13 | 25,730 |
Colorado | 8829 | 0 | 14 | 6 | 0.23 | 8809 |
Connecticut | 4357 | 0 | 0 | 105 | 2.41 | 4252 |
Delaware | 882 | 0 | 0 | 1 | 0.11 | 881 |
District of Columbia | 243 | 0 | 0 | 3 | 1.23 | 240 |
Florida | 12,592 | 0 | 2 | 4 | 0.05 | 12,586 |
Georgia | 14,964 | 0 | 0 | 1 | 0.01 | 14,963 |
Idaho | 4522 | 0 | 6 | 3 | 0.2 | 4513 |
Illinois | 26,848 | 0 | 0 | 0 | 0 | 26,848 |
Indiana | 19,327 | 0 | 0 | 0 | 0 | 19,327 |
Iowa | 23,982 | 0 | 0 | 1 | 0 | 23,981 |
Kansas | 24,948 | 0 | 0 | 8 | 0.03 | 24,940 |
Kentucky | 14,422 | 0 | 2 | 1 | 0.02 | 14,419 |
Louisiana | 12,853 | 0 | 1 | 2 | 0.02 | 12,850 |
Maine | 2472 | 0 | 0 | 0 | 0 | 2472 |
Maryland | 5430 | 33 | 6 | 280 | 5.87 | 5111 |
Massachusetts | 5229 | 0 | 0 | 0 | 0 | 5229 |
Michigan | 11,271 | 0 | 0 | 2 | 0.02 | 11,269 |
Minnesota | 13,471 | 0 | 1 | 0 | 0.01 | 13,470 |
Mississippi | 16,878 | 0 | 0 | 9 | 0.05 | 16,869 |
Missouri | 24,538 | 0 | 0 | 0 | 0 | 24,538 |
Montana | 5271 | 0 | 12 | 9 | 0.4 | 5250 |
Nebraska | 15,348 | 0 | 0 | 3 | 0.02 | 15,345 |
Nevada | 2056 | 0 | 2 | 56 | 2.82 | 1999 |
New Hampshire | 2514 | 0 | 0 | 0 | 0 | 2514 |
New Jersey | 6801 | 0 | 0 | 13 | 0.19 | 6788 |
New Mexico | 4024 | 0 | 1 | 4 | 0.12 | 4019 |
New York | 17,552 | 0 | 0 | 0 | 0 | 17,552 |
North Carolina | 18,749 | 0 | 1 | 25 | 0.14 | 18,723 |
North Dakota | 4312 | 0 | 1 | 43 | 1.02 | 4268 |
Ohio | 27,072 | 0 | 0 | 0 | 0 | 27,072 |
Oklahoma | 23,155 | 0 | 3 | 0 | 0.01 | 23,152 |
Oregon | 8214 | 0 | 24 | 3 | 0.33 | 8187 |
Pennsylvania | 22,965 | 0 | 0 | 3 | 0.01 | 22,962 |
Rhode Island | 777 | 0 | 0 | 0 | 0 | 777 |
South Carolina | 9455 | 0 | 0 | 3 | 0.03 | 9452 |
South Dakota | 5880 | 1 | 2 | 0 | 0.05 | 5877 |
Tennessee | 20,235 | 0 | 1 | 0 | 0 | 20,234 |
Texas | 54,682 | 0 | 2 | 0 | 0 | 54,680 |
Utah | 3062 | 0 | 1 | 0 | 0.03 | 3061 |
Vermont | 2827 | 0 | 0 | 3 | 0.11 | 2824 |
Virginia | 13,963 | 0 | 28 | 5 | 0.24 | 13,930 |
Washington | 8338 | 0 | 23 | 13 | 0.43 | 8302 |
West Virginia | 7295 | 0 | 9 | 0 | 0.12 | 7286 |
Wisconsin | 14,271 | 0 | 1 | 0 | 0.01 | 14,270 |
Wyoming | 3122 | 0 | 7 | 3 | 0.32 | 3112 |
Total | 613,290 | 612,388 |
No. | Predictor Variable | Type |
---|---|---|
1 | Age | Numeric |
2 | ADT | Numeric |
3 | ADTT | Numeric |
4 | Lanes_On | Numeric |
5 | Number_Spans_Main | Numeric |
6 | Length_Max_Span | Numeric |
7 | Curb_Width | Numeric |
8 | Deck_Area | Numeric |
9 | Operating_Rating | Numeric |
10 | Highway_District | Categorical |
11 | Design_Load | Categorical |
12 | Reconstructed | Categorical |
13 | Main_Material | Categorical |
14 | Main_Design | Categorical |
15 | Spans_Material | Categorical |
16 | Spans_Design | Categorical |
17 | Deck_Geometry | Categorical |
18 | Deck_Type | Categorical |
19 | Wearing_Surface | Categorical |
20 | NOAA_Climate_Regions | Categorical |
Response Variable | Values |
---|---|
Multiclass | 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 |
Number of Bridges in the Bridge Data of 2020 | Number of Bridges in the Five-Year Historical Bridge Data | |
---|---|---|
Structures without decks | 142,647 | 731,334 |
Missing values | 63,265 | 420,915 |
Invalid values | 493 | 369,451 |
Duplicate instances | 6728 | 1498 |
Total | 213,133 | 1,523,198 |
The Bridge Data of 2020 | The Five-Year Historical Bridge Data (2016–2020) | |
---|---|---|
Number of bridges | 399,255 | 1,557,827 |
Training set (80%) | 319,404 | 1,246,261 |
Test set (20%) | 79,851 | 311,566 |
Manual Inspection | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Precision | F1 Score | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prediction | |||||||||||||
0 | 63 | 2 | 5 | 5 | 9 | 13 | 8 | 0 | 0 | 0 | 60.0 | 58.3 | |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100.0 | 11.8 | |
2 | 2 | 0 | 17 | 1 | 1 | 5 | 1 | 1 | 0 | 0 | 60.7 | 36.2 | |
3 | 3 | 0 | 0 | 25 | 13 | 9 | 4 | 3 | 0 | 0 | 43.9 | 12.0 | |
4 | 2 | 0 | 3 | 29 | 169 | 138 | 39 | 14 | 3 | 1 | 42.5 | 13.2 | |
5 | 24 | 8 | 20 | 124 | 821 | 3439 | 1759 | 784 | 108 | 14 | 48.4 | 39.1 | |
6 | 10 | 5 | 18 | 140 | 840 | 4407 | 10,544 | 4847 | 377 | 60 | 49.6 | 50.7 | |
7 | 6 | 0 | 1 | 34 | 303 | 2405 | 7761 | 26,609 | 4772 | 305 | 63.1 | 69.7 | |
8 | 1 | 0 | 1 | 1 | 8 | 68 | 196 | 1841 | 4655 | 719 | 62.1 | 52.7 | |
9 | 0 | 0 | 1 | 0 | 2 | 9 | 21 | 63 | 276 | 855 | 69.7 | 53.8 | |
Sum | 111 | 16 | 66 | 359 | 2166 | 10,493 | 20,333 | 34,162 | 10,191 | 1954 | |||
Recall | 56.8 | 6.25 | 25.8 | 7.0 | 7.8 | 32.8 | 51.9 | 77.9 | 45.7 | 43.8 | |||
Overall accuracy | 58.1% | ||||||||||||
Average F1 score | 39.7% |
Manual Inspection | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Precision | F1 Score | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prediction | |||||||||||||
0 | 346 | 4 | 3 | 6 | 22 | 43 | 18 | 2 | 1 | 1 | 77.6 | 78.2 | |
1 | 0 | 32 | 0 | 3 | 1 | 0 | 0 | 1 | 1 | 0 | 84.2 | 71.9 | |
2 | 9 | 0 | 258 | 16 | 13 | 2 | 2 | 0 | 1 | 0 | 85.7 | 83.1 | |
3 | 4 | 0 | 12 | 1226 | 114 | 46 | 9 | 9 | 3 | 6 | 85.8 | 77.1 | |
4 | 11 | 2 | 12 | 151 | 6614 | 806 | 174 | 117 | 21 | 11 | 83.5 | 76.2 | |
5 | 35 | 8 | 10 | 165 | 1418 | 31,405 | 3551 | 1374 | 245 | 54 | 82.1 | 80.1 | |
6 | 25 | 3 | 18 | 109 | 785 | 4985 | 63,955 | 6709 | 474 | 64 | 82.9 | 82.2 | |
7 | 9 | 1 | 5 | 58 | 415 | 2643 | 10,211 | 116,257 | 8441 | 380 | 84.0 | 86.9 | |
8 | 0 | 1 | 2 | 10 | 40 | 187 | 449 | 4637 | 33,252 | 1563 | 82.8 | 79.8 | |
9 | 0 | 0 | 0 | 7 | 9 | 26 | 49 | 173 | 717 | 6499 | 86.9 | 80.9 | |
Sum | 439 | 51 | 320 | 1751 | 9431 | 40,143 | 78,418 | 129,279 | 43,156 | 8578 | |||
Recall | 78.8 | 62.7 | 80.6 | 70.0 | 70.1 | 78.2 | 81.6 | 89.9 | 77.1 | 75.8 | |||
Overall accuracy | 83.4% | ||||||||||||
Average F1 score | 79.7% |
Parameter | Argument | The Bridge Data of 2020 | The Five-Year Historical Bridge Data |
---|---|---|---|
Max number of boosting iterations | “nrounds” | 1000 | 10,000 |
Training stops after 3 rounds | “early_stopping_rounds” | 3 | 3 |
Maximum depth of a tree | “max_depth” | 6 | 6 |
Learning rate | “eta” | 0.3 | 0.3 |
Manual Inspection | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Precision | F1 Score | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prediction | |||||||||||||
0 | 65 | 3 | 4 | 3 | 12 | 14 | 10 | 2 | 0 | 0 | 57.5 | 58.0 | |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100.0 | 11.8 | |
2 | 3 | 0 | 23 | 0 | 1 | 5 | 1 | 1 | 0 | 0 | 67.6 | 46.0 | |
3 | 4 | 1 | 0 | 36 | 27 | 28 | 10 | 1 | 0 | 0 | 33.6 | 15.5 | |
4 | 3 | 2 | 7 | 39 | 123 | 130 | 43 | 16 | 2 | 0 | 33.7 | 9.7 | |
5 | 21 | 7 | 15 | 119 | 789 | 2964 | 1611 | 823 | 136 | 25 | 45.5 | 34.9 | |
6 | 11 | 2 | 13 | 130 | 887 | 4666 | 9759 | 5130 | 393 | 50 | 46.4 | 47.2 | |
7 | 3 | 0 | 2 | 31 | 317 | 2600 | 8621 | 26,208 | 5108 | 299 | 60.7 | 67.8 | |
8 | 1 | 0 | 0 | 1 | 5 | 79 | 249 | 1833 | 4167 | 666 | 59.5 | 48.5 | |
9 | 0 | 0 | 2 | 0 | 5 | 7 | 29 | 148 | 385 | 914 | 61.3 | 53.1 | |
Sum | 111 | 16 | 66 | 359 | 2166 | 10,493 | 20,333 | 34,162 | 10,191 | 1954 | |||
Recall | 58.6 | 6.25 | 34.8 | 10 | 5.7 | 28.2 | 48.0 | 76.7 | 40.9 | 46.8 | |||
Overall accuracy | 55.4% | ||||||||||||
Average F1 score | 39.2% |
Manual Inspection | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Precision | F1 Score | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prediction | |||||||||||||
0 | 330 | 4 | 1 | 4 | 23 | 32 | 18 | 5 | 1 | 2 | 78.6 | 76.8 | |
1 | 2 | 31 | 0 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 83.8 | 70.5 | |
2 | 6 | 0 | 256 | 11 | 14 | 3 | 5 | 1 | 1 | 0 | 86.2 | 83.0 | |
3 | 4 | 2 | 11 | 1226 | 112 | 60 | 13 | 9 | 5 | 7 | 84.6 | 76.6 | |
4 | 26 | 1 | 13 | 166 | 6400 | 814 | 224 | 120 | 33 | 15 | 81.9 | 74.2 | |
5 | 36 | 7 | 11 | 151 | 1430 | 28,933 | 4044 | 1858 | 319 | 44 | 78.6 | 75.2 | |
6 | 22 | 3 | 19 | 114 | 901 | 6323 | 59,307 | 9097 | 661 | 80 | 77.5 | 76.6 | |
7 | 12 | 3 | 8 | 64 | 482 | 3722 | 14,147 | 112,570 | 9706 | 392 | 79.8 | 83.3 | |
8 | 1 | 0 | 1 | 8 | 56 | 233 | 612 | 5402 | 31,583 | 1287 | 80.6 | 76.7 | |
9 | 0 | 0 | 0 | 6 | 11 | 23 | 48 | 216 | 847 | 6751 | 85.4 | 81.9 | |
Sum | 439 | 51 | 320 | 1751 | 9431 | 40,143 | 78,418 | 129,279 | 43,156 | 8578 | |||
Recall | 75.2 | 60.8 | 80.0 | 70.0 | 67.9 | 72.1 | 75.6 | 87.1 | 73.2 | 78.7 | |||
Overall accuracy | 79.4% | ||||||||||||
Average F1 score | 77.5% |
Parameter | The Bridge Data of 2020 | The Five-Year Historical Bridge Data | ||||
---|---|---|---|---|---|---|
Nodes | Dropout Rate | Activation Function | Nodes | Dropout Rate | Activation Function | |
Input layer | 250 | - | - | 250 | - | - |
First hidden layer | 128 | 0.1 | ReLU | 128 | 0.1 | ReLU |
Second hidden layer | 64 | 0.1 | ReLU | 64 | 0.1 | ReLU |
Third hidden layer | - | - | - | 32 | 0.1 | ReLU |
Output layer | 10 | - | Softmax | 10 | - | Softmax |
Manual Inspection | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Precision | F1 Score | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prediction | |||||||||||||
0 | 67 | 3 | 2 | 13 | 11 | 11 | 25 | 5 | 5 | 0 | 47.2 | 53.0 | |
1 | 9 | 2 | 7 | 10 | 35 | 4 | 4 | 2 | 3 | 2 | 2.6 | 4.3 | |
2 | 5 | 1 | 31 | 73 | 72 | 2 | 2 | 1 | 0 | 2 | 16.4 | 24.3 | |
3 | 13 | 4 | 5 | 60 | 267 | 9 | 7 | 1 | 4 | 1 | 16.2 | 16.4 | |
4 | 10 | 0 | 2 | 34 | 380 | 16 | 2 | 6 | 1 | 2 | 83.9 | 29.0 | |
5 | 1 | 2 | 8 | 79 | 1020 | 3360 | 2186 | 802 | 165 | 8 | 44.0 | 37.1 | |
6 | 3 | 4 | 5 | 54 | 216 | 4021 | 7825 | 3901 | 308 | 22 | 47.8 | 42.7 | |
7 | 3 | 0 | 3 | 27 | 100 | 3017 | 10,049 | 27,610 | 5550 | 115 | 59.4 | 68.5 | |
8 | 0 | 0 | 3 | 7 | 65 | 52 | 197 | 1749 | 4035 | 767 | 58.7 | 47.3 | |
9 | 0 | 0 | 0 | 2 | 0 | 1 | 36 | 85 | 120 | 1035 | 80.9 | 64.0 | |
Sum | 111 | 16 | 66 | 359 | 2166 | 10,493 | 20,333 | 34,162 | 10,191 | 1954 | |||
Recall | 60.4 | 12.5 | 47.0 | 16.7 | 17.5 | 32.0 | 38.5 | 80.8 | 39.6 | 53.0 | |||
Overall accuracy | 55.6% | ||||||||||||
Average F1 score | 38.7% |
Manual Inspection | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Precision | F1 Score | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prediction | |||||||||||||
0 | 290 | 0 | 12 | 5 | 10 | 55 | 21 | 5 | 0 | 0 | 72.9 | 69.3 | |
1 | 0 | 39 | 2 | 0 | 0 | 2 | 2 | 2 | 3 | 2 | 75.0 | 75.7 | |
2 | 7 | 1 | 250 | 5 | 2 | 25 | 12 | 1 | 0 | 1 | 82.2 | 80.1 | |
3 | 8 | 0 | 7 | 1350 | 65 | 87 | 35 | 18 | 1 | 7 | 85.6 | 81.1 | |
4 | 10 | 4 | 11 | 207 | 7010 | 643 | 152 | 126 | 15 | 2 | 85.7 | 79.6 | |
5 | 75 | 1 | 21 | 124 | 1102 | 31,223 | 6136 | 3656 | 254 | 54 | 73.2 | 75.4 | |
6 | 36 | 4 | 12 | 43 | 989 | 6950 | 61,921 | 15,257 | 508 | 99 | 72.2 | 75.4 | |
7 | 7 | 2 | 5 | 14 | 214 | 1021 | 9865 | 103,725 | 5950 | 425 | 85.6 | 82.8 | |
8 | 5 | 0 | 0 | 3 | 38 | 135 | 222 | 5978 | 36,058 | 1385 | 82.3 | 82.9 | |
9 | 1 | 0 | 0 | 0 | 1 | 2 | 52 | 511 | 367 | 6603 | 87.6 | 81.9 | |
Sum | 439 | 51 | 320 | 1751 | 9431 | 40,143 | 78,418 | 129,279 | 43,156 | 8578 | |||
Recall | 66.1 | 76.5 | 78.1 | 77.1 | 74.3 | 77.8 | 79.0 | 80.2 | 83.6 | 77.0 | |||
Overall accuracy | 79.7% | ||||||||||||
Average F1 score | 78.4% |
ML Algorithm | Time (min) | Overall Accuracy | Average F1 Score | |
---|---|---|---|---|
The bridge data of 2020 | Random forest | 4 | 58.1% | 39.7% |
XGBoost | 4 | 55.4% | 39.2% | |
ANN | 5 | 55.6% | 38.7% | |
The five-year historical bridge data (2016–2020) | Random Forest | 73 | 83.4% | 79.7% |
XGBoost | 894 | 79.4% | 77.5% | |
ANN | 225 | 79.7% | 78.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fard, F.; Sadeghi Naieni Fard, F. Development and Utilization of Bridge Data of the United States for Predicting Deck Condition Rating Using Random Forest, XGBoost, and Artificial Neural Network. Remote Sens. 2024, 16, 367. https://doi.org/10.3390/rs16020367
Fard F, Sadeghi Naieni Fard F. Development and Utilization of Bridge Data of the United States for Predicting Deck Condition Rating Using Random Forest, XGBoost, and Artificial Neural Network. Remote Sensing. 2024; 16(2):367. https://doi.org/10.3390/rs16020367
Chicago/Turabian StyleFard, Fariba, and Fereshteh Sadeghi Naieni Fard. 2024. "Development and Utilization of Bridge Data of the United States for Predicting Deck Condition Rating Using Random Forest, XGBoost, and Artificial Neural Network" Remote Sensing 16, no. 2: 367. https://doi.org/10.3390/rs16020367
APA StyleFard, F., & Sadeghi Naieni Fard, F. (2024). Development and Utilization of Bridge Data of the United States for Predicting Deck Condition Rating Using Random Forest, XGBoost, and Artificial Neural Network. Remote Sensing, 16(2), 367. https://doi.org/10.3390/rs16020367