Stronger Impact of Extreme Heat Event on Vegetation Temperature Sensitivity under Future Scenarios with High-Emission Intensity
Abstract
:1. Introduction
2. Data and Methods
2.1. CMIP6 Model Simulations
2.2. GIMMS LAI4g and ERA5 Temperature Data
2.3. MODIS Land Cover Data
2.4. Vegetation Sensitivity in Response to Temperature Variability
2.5. Extreme Heat Event and Trend Analysis
2.6. Quantifying Impact of Extreme Heat Events on Vegetation Temperature Sensitivity
3. Results
3.1. Temporal Variability of Vegetation Temperature Sensitivity
3.2. Comparing Magnitudes of Historical and Future Vegetation Temperature Sensitivity
3.3. Temporal Variability of the Extreme Heat Events in the 19th to 21st Centuries
3.4. Impact of Extreme Heat Events on Vegetation Temperature Sensitivity
4. Discussion
5. Conclusions
- (1)
- Overall, vegetation temperature sensitivity showed a declining trend in the historical period. The sensitivity trends under different future carbon emission scenarios exhibited significant differences. The sensitivity exhibited an upward trend until 2080 but yielded a declining trend after 2080 under the SSP126 scenario. In contrast, vegetation temperature sensitivity continuously increased under the SSP245 and SSP585 scenarios.
- (2)
- Vegetation temperature sensitivity gradually increased as carbon emission intensity rose. Specifically, the historical period exhibited the smallest sensitivity, followed by SSP126, SSP245, and SSP585. High sensitivity values were distributed in the high latitudes of the Northern Hemisphere, the Tibetan Plateau, and tropical forests for both the historical and future periods. Sensitivity in the high latitudes of the Northern Hemisphere and the Tibetan Plateau was lower under the SSP126 scenario than that in the historical period. However, the sensitivity of tropical forests was higher than that in the historical period in all three future scenarios.
- (3)
- Extreme heat events were linearly correlated with vegetation temperature sensitivity, and their correlation became strong as carbon emission intensity increased. During the historical period, the impact of the extreme heat events on vegetation temperature sensitivity was generally weak as the average of the associated correlation coefficients was approximately -0.1. Under the SSP126 scenario, the correlation between extreme heat events and vegetation temperature sensitivity in the Arctic permafrost region was relatively strong (correlation coefficient greater than 0.4). As for the SSP245 and SSP585 scenarios, the correlation was strong in the temperate and frigid zones (correlation coefficient greater than 0.6).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Yang, H.; Jin, T.; Wu, K. Assessment of Terrestrial Ecosystem Sensitivity to Climate Change in Arid, Semi-Arid, Sub-Humid, and Humid Regions Using EVI, LAI, and SIF Products. Ecol. Indic. 2024, 158, 111511. [Google Scholar] [CrossRef]
- Li, D.; Wu, S.; Liu, L.; Zhang, Y.; Li, S. Vulnerability of the Global Terrestrial Ecosystems to Climate Change. Glob. Chang. Biol. 2018, 24, 4095–4106. [Google Scholar] [CrossRef] [PubMed]
- Horton, R.M.; Mankin, J.S.; Lesk, C.; Coffel, E.; Raymond, C. A Review of Recent Advances in Research on Extreme Heat Events. Curr. Clim. Chang. Rep. 2016, 2, 242–259. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, J.; Zhao, L.; Zhao, S.; Cui, G. The Positive Impact of Extreme Heat on Vegetation Growth in Northeast Asia. Agric. For. Meteorol. 2024, 347, 109918. [Google Scholar] [CrossRef]
- Baumbach, L.; Siegmund, J.F.; Mittermeier, M.; Donner, R.V. Impacts of Temperature Extremes on European Vegetation during the Growing Season. Biogeosciences 2017, 14, 4891–4903. [Google Scholar] [CrossRef]
- Bennett, A.C.; Rodrigues de Sousa, T.; Monteagudo-Mendoza, A.; Esquivel-Muelbert, A.; Morandi, P.S.; Coelho de Souza, F.; Castro, W.; Duque, L.F.; Flores Llampazo, G.; Manoel dos Santos, R.; et al. Sensitivity of South American Tropical Forests to an Extreme Climate Anomaly. Nat. Clim. Change 2023, 13, 967–974. [Google Scholar] [CrossRef]
- Doughty, C.E.; Keany, J.M.; Wiebe, B.C.; Rey-Sanchez, C.; Carter, K.R.; Middleby, K.B.; Cheesman, A.W.; Goulden, M.L.; Da Rocha, H.R.; Miller, S.D.; et al. Tropical Forests Are Approaching Critical Temperature Thresholds. Nature 2023, 621, 105–111. [Google Scholar] [CrossRef]
- Zhu, B.; Cheng, Y.; Hu, X.; Chai, Y.; Berghuijs, W.R.; Borthwick, A.G.L.; Slater, L. Constrained Tropical Land Temperature-Precipitation Sensitivity Reveals Decreasing Evapotranspiration and Faster Vegetation Greening in CMIP6 Projections. npj Clim. Atmos. Sci. 2023, 6, 91. [Google Scholar] [CrossRef]
- Bastos, A.; Gouveia, C.M.; Trigo, R.M.; Running, S.W. Analysing the Spatio-Temporal Impacts of the 2003 and 2010 Extreme Heatwaves on Plant Productivity in Europe. Biogeosciences 2014, 11, 3421–3435. [Google Scholar] [CrossRef]
- Alemayehu, T.; van Griensven, A.; Woldegiorgis, B.T.; Bauwens, W. An Improved SWAT Vegetation Growth Module and Its Evaluation for Four Tropical Ecosystems. Hydrol. Earth Syst. Sci. 2017, 21, 4449–4467. [Google Scholar] [CrossRef]
- Cox, P.M.; Pearson, D.; Booth, B.B.; Friedlingstein, P.; Huntingford, C.; Jones, C.D.; Luke, C.M. Sensitivity of Tropical Carbon to Climate Change Constrained by Carbon Dioxide Variability. Nature 2013, 494, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, H.; Li, X.; Piao, S.; Ciais, P.; Guo, W.; Yin, Y.; Poulter, B.; Peng, C.; Viovy, N.; et al. Higher Temperature Variability Reduces Temperature Sensitivity of Vegetation Growth in Northern Hemisphere. Geophys. Res. Lett. 2017, 44, 6173–6181. [Google Scholar] [CrossRef]
- Gao, S.; Liang, E.; Liu, R.; Babst, F.; Camarero, J.J.; Fu, Y.H.; Piao, S.; Rossi, S.; Shen, M.; Wang, T.; et al. An Earlier Start of the Thermal Growing Season Enhances Tree Growth in Cold Humid Areas but Not in Dry Areas. Nat. Ecol. Evol. 2022, 6, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Xiong, T.; Du, S.; Zhang, H.; Zhang, X. Satellite Observed Reversal in Trends of Spring Phenology in the Middle-High Latitudes of the Northern Hemisphere during the Global Warming Hiatus. Glob. Chang. Biol. 2023, 29, 2227–2241. [Google Scholar] [CrossRef]
- Zhang, Y.; Hong, S.; Liu, D.; Piao, S. Susceptibility of Vegetation Low-Growth to Climate Extremes on Tibetan Plateau. Agric. For. Meteorol. 2023, 331, 109323. [Google Scholar] [CrossRef]
- Berdugo, M.; Delgado-Baquerizo, M.; Soliveres, S.; Hernández-Clemente, R.; Zhao, Y.; Gaitán, J.J.; Gross, N.; Saiz, H.; Maire, V.; Lehman, A.; et al. Global Ecosystem Thresholds Driven by Aridity. Science 2020, 367, 787–790. [Google Scholar] [CrossRef]
- Sun, B.; Jiang, M.; Han, G.; Zhang, L.; Zhou, J.; Bian, C.; Du, Y.; Yan, L.; Xia, J. Experimental Warming Reduces Ecosystem Resistance and Resilience to Severe Flooding in a Wetland. Sci. Adv. 2022, 8, eabl9526. [Google Scholar] [CrossRef] [PubMed]
- Wigneron, J.P.; Fan, L.; Ciais, P.; Bastos, A.; Brandt, M.; Chave, J.; Saatchi, S.; Baccini, A.; Fensholt, R. Tropical Forests Did Not Recover from the Strong 2015–2016 El Niño Event. Sci. Adv. 2020, 6, eaay4603. [Google Scholar] [CrossRef]
- De Keersmaecker, W.; Lhermitte, S.; Tits, L.; Honnay, O.; Somers, B.; Coppin, P. A Model Quantifying Global Vegetation Resistance and Resilience to Short-Term Climate Anomalies and Their Relationship with Vegetation Cover. Glob. Ecol. Biogeogr. 2015, 24, 539–548. [Google Scholar] [CrossRef]
- Wu, K.; Ryu, D.; Nie, L.; Shu, H. Time-Variant Error Characterization of SMAP and ASCAT Soil Moisture Using Triple Collocation Analysis. Remote Sens. Environ. 2021, 256, 112324. [Google Scholar] [CrossRef]
- Song, X.; Wang, D.Y.; Li, F.; Zeng, X.D. Evaluating the Performance of CMIP6 Earth System Models in Simulating Global Vegetation Structure and Distribution. Adv. Clim. Chang. Res. 2021, 12, 584–595. [Google Scholar] [CrossRef]
- Piao, S.; Nan, H.; Huntingford, C.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Peng, S.; Ahlström, A.; Canadell, J.G.; Cong, N.; et al. Evidence for a Weakening Relationship between Interannual Temperature Variability and Northern Vegetation Activity. Nat. Commun. 2014, 5, 5018. [Google Scholar] [CrossRef] [PubMed]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Ziehn, T.; Chamberlain, M.A.; Law, R.M.; Lenton, A.; Bodman, R.W.; Dix, M.; Stevens, L.; Wang, Y.P.; Srbinovsky, J. The Australian Earth System Model: ACCESS-ESM1.5. J. South. Hemisph. Earth Syst. Sci. 2020, 70, 193–214. [Google Scholar] [CrossRef]
- Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The Main Progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- Swart, N.; Cole, J.; Kharin, V.; Lazare, M.; Scinocca, J.; Gillett, N.; Anstey, J.; Arora, V.; Christian, J.; Hanna, S.; et al. The Canadian Earth System Model Version 5 (CanESM5.0.3). Geosci. Model Dev. 2019, 12, 4823–4873. [Google Scholar] [CrossRef]
- Cherchi, A.; Fogli, P.G.; Lovato, T.; Peano, D.; Iovino, D.; Gualdi, S.; Masina, S.; Scoccimarro, E.; Materia, S.; Bellucci, A.; et al. Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled Model. J. Adv. Model. Earth Syst. 2019, 11, 185–209. [Google Scholar] [CrossRef]
- Volodin, E. The Mechanisms of Cloudiness Evolution Responsible for Equilibrium Climate Sensitivity in Climate Model INM-CM4-8. Geophys. Res. Lett. 2021, 48, e2021GL096204. [Google Scholar] [CrossRef]
- Volodin, E.M.; Mortikov, E.V.; Kostrykin, S.V.; Galin, V.Y.; Lykossov, V.N.; Gritsun, A.S.; Diansky, N.A.; Gusev, A.V.; Iakovlev, N.G. Simulation of the Present-Day Climate with the Climate Model INMCM5. Clim. Dyn. 2017, 49, 3715–3734. [Google Scholar] [CrossRef]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bonnet, R.; Bony, S.; Bopp, L.; et al. Presentation and Evaluation of the IPSL-CM6A-LR Climate Model. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002010. [Google Scholar] [CrossRef]
- Held, I.M.; Guo, H.; Adcroft, A.; Dunne, J.P.; Horowitz, L.W.; Krasting, J.; Shevliakova, E.; Winton, M.; Zhao, M.; Bushuk, M.; et al. Structure and Performance of GFDL’s CM4.0 Climate Model. J. Adv. Model. Earth Syst. 2019, 11, 3691–3727. [Google Scholar] [CrossRef]
- Mauritsen, T.; Bader, J.; Becker, T.; Behrens, J.; Bittner, M.; Brokopf, R.; Brovkin, V.; Claussen, M.; Crueger, T.; Esch, M.; et al. Developments in the MPI-M Earth System Model Version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Syst. 2019, 11, 998–1038. [Google Scholar] [CrossRef] [PubMed]
- Räty, O.; Räisänen, J.; Ylhäisi, J.S. Evaluation of Delta Change and Bias Correction Methods for Future Daily Precipitation: Intermodel Cross-Validation Using ENSEMBLES Simulations. Clim. Dyn. 2014, 42, 2287–2303. [Google Scholar] [CrossRef]
- Jose, D.M.; Dwarakish, G.S. Bias Correction and Trend Analysis of Temperature Data by a High-Resolution CMIP6 Model over a Tropical River Basin. Asia-Pac. J. Atmos. Sci. 2022, 58, 97–115. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y.; Tang, J. Bias Correction of Surface Air Temperature and Precipitation in CORDEX East Asia Simulation: What Should We Do When Applying Bias Correction? Atmos. Res. 2022, 280, 106439. [Google Scholar] [CrossRef]
- Beyer, R.; Krapp, M.; Manica, A. An Empirical Evaluation of Bias Correction Methods for Palaeoclimate Simulations. Clim. Past 2020, 16, 1493–1508. [Google Scholar] [CrossRef]
- Wu, K.; Ryu, D.; Wagner, W.; Hu, Z. A Global-Scale Intercomparison of Triple Collocation Analysis- and Ground-Based Soil Moisture Time-Variant Errors Derived from Different Rescaling Techniques. Remote Sens. Environ. 2023, 285, 113387. [Google Scholar] [CrossRef]
- Cao, S.; Li, M.; Zhu, Z.; Wang, Z.; Zha, J.; Zhao, W.; Duanmu, Z.; Chen, J.; Zheng, Y.; Chen, Y.; et al. Spatiotemporally Consistent Global Dataset of the GIMMS Leaf Area Index (GIMMS LAI4g) from 1982 to 2020. Earth Syst. Sci. Data 2023, 15, 4877–4899. [Google Scholar] [CrossRef]
- Wu, K.; Chen, J.; Yang, H.; Yang, Y.; Hu, Z. Spatiotemporal Variations in the Sensitivity of Vegetation Growth to Typical Climate Factors on the Qinghai–Tibet Plateau. Remote Sens. 2023, 15, 2355. [Google Scholar] [CrossRef]
- Shen, M.; Zhu, X.; Peng, D.; Jiang, N.; Huang, Y.; Chen, J.; Wang, C.; Zhao, W. Greater Temperature Sensitivity of Vegetation Greenup Onset Date in Areas with Weaker Temperature Seasonality across the Northern Hemisphere. Agric. For. Meteorol. 2022, 313, 108759. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, L.; Yue, Y.; Chen, T. Global Vegetation-Temperature Sensitivity and Its Driving Forces in the 21st Century. Earth’s Future 2024, 12, e2022EF003395. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of Global Terrestrial Ecosystems to Climate Variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef]
- Lahiri, S.N. On the Moving Block Bootstrap under Long Range Dependence. Stat. Probab. Lett. 1993, 18, 405–413. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: Oxford, UK, 1948. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Yang, Q.; Jiang, C.; Ding, T. Impacts of Extreme-High-Temperature Events on Vegetation in North China. Remote Sens. 2023, 15, 4542. [Google Scholar] [CrossRef]
- Wang, C.; Cao, R.; Chen, J.; Rao, Y.; Tang, Y. Temperature Sensitivity of Spring Vegetation Phenology Correlates to Within-Spring Warming Speed over the Northern Hemisphere. Ecol. Indic. 2015, 50, 62–68. [Google Scholar] [CrossRef]
- Piao, S.; Cui, M.; Chen, A.; Wang, X.; Ciais, P.; Liu, J.; Tang, Y. Altitude and Temperature Dependence of Change in the Spring Vegetation Green-up Date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol. 2011, 151, 1599–1608. [Google Scholar] [CrossRef]
- Boulton, C.A.; Lenton, T.M.; Boers, N. Pronounced Loss of Amazon Rainforest Resilience since the Early 2000s. Nat. Clim. Chang. 2022, 12, 271–278. [Google Scholar] [CrossRef]
- Lovejoy, T.E.; Nobre, C. Amazon Tipping Point: Last Chance for Action. Sci. Adv. 2019, 5, eaba2949. [Google Scholar] [CrossRef]
- Flores, B.M.; Staal, A.; Jakovac, C.C.; Hirota, M.; Holmgren, M.; Oliveira, R.S. Soil Erosion as a Resilience Drain in Disturbed Tropical Forests. Plant Soil 2020, 450, 11–25. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.K. Increase in Compound Drought and Heatwaves in a Warming World. Geophys. Res. Lett. 2021, 48, e2020GL090617. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, S.; Gao, J.; Liu, L.; Li, D.; Yan, R.; Wang, J. Increased Stress from Compound Drought and Heat Events on Vegetation. Sci. Total Environ. 2024, 949, 175113. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; van Groenigen, K.J.; Gillespie, M.A.K.; Hollister, R.D.; Post, E.; Cooper, E.J.; Welker, J.M.; Huang, Y.; Min, X.; Chen, J.; et al. Diminishing Warming Effects on Plant Phenology over Time. New Phytol. 2024; Early View. [Google Scholar] [CrossRef]
- Hao, Z.; Hao, F.; Xia, Y.; Feng, S.; Sun, C.; Zhang, X.; Fu, Y.; Hao, Y.; Zhang, Y.; Meng, Y. Compound Droughts and Hot Extremes: Characteristics, Drivers, Changes, and Impacts. Earth-Sci. Rev. 2022, 235, 104241. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, X.; Zhou, T.; Zhang, W.; Hu, S.; Clark, R. Understanding and Attribution of Extreme Heat and Drought Events in 2022: Current Situation and Future Challenges. Adv. Atmos. Sci. 2023, 40, 1941–1951. [Google Scholar] [CrossRef]
- Dobricic, S.; Russo, S.; Pozzoli, L.; Wilson, J.; Vignati, E. Increasing Occurrence of Heat Waves in the Terrestrial Arctic. Environ. Res. Lett. 2020, 15, 024022. [Google Scholar] [CrossRef]
- Lenton, T.M.; Rockström, J.; Gaffney, O.; Rahmstorf, S.; Richardson, K.; Steffen, W.; Schellnhuber, H.J. Climate Tipping Points—Too Risky to Bet Against. Nature 2019, 575, 592–595. [Google Scholar] [CrossRef] [PubMed]
- See, C.R.; Virkkala, A.-M.; Natali, S.M.; Rogers, B.M.; Mauritz, M.; Biasi, C.; Bokhorst, S.; Boike, J.; Bret-Harte, M.S.; Celis, G.; et al. Decadal Increases in Carbon Uptake Offset by Respiratory Losses across Northern Permafrost Ecosystems. Nat. Clim. Chang. 2024, 14, 853–862. [Google Scholar] [CrossRef]
- Walker, X.J.; Baltzer, J.L.; Cumming, S.G.; Day, N.J.; Ebert, C.; Goetz, S.; Johnstone, J.F.; Potter, S.; Rogers, B.M.; Schuur, E.A.G.; et al. Increasing Wildfires Threaten Historic Carbon Sink of Boreal Forest Soils. Nature 2019, 572, 520–523. [Google Scholar] [CrossRef]
- Liang, L.; Liang, S.; Zeng, Z. Extreme Climate Sparks Record Boreal Wildfires and Carbon Surge in 2023. Innovation 2024, 5, 100631. [Google Scholar] [CrossRef]
- DeAngelo, J.; Azevedo, I.; Bistline, J.; Clarke, L.; Luderer, G.; Byers, E.; Davis, S.J. Energy Systems in Scenarios at Net-Zero CO2 Emissions. Nat. Commun. 2021, 12, 6096. [Google Scholar] [CrossRef]
- Perkins, S.E. A Review on the Scientific Understanding of Heatwaves—Their Measurement, Driving Mechanisms, and Changes at the Global Scale. Atmos. Res. 2015, 164–165, 242–267. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J.; Lin, W.; Xu, H. Comparison of CMIP6 and CMIP5 Models in Simulating Climate Extremes. Sci. Bull. 2020, 65, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Gallo, C.; Eden, J.M.; Dieppois, B.; Drobyshev, I.; Fulé, P.Z.; San-Miguel-Ayanz, J.; Blackett, M. Evaluation of CMIP6 Model Performances in Simulating Fire Weather Spatiotemporal Variability on Global and Regional Scales. Geosci. Model Dev. 2023, 16, 3103–3122. [Google Scholar] [CrossRef]
Models | Institute | Spatial Resolution | References |
---|---|---|---|
ACCESS-ESM1-5 | CSIRO, Australia | 1.875° × 1.241° | [24] |
BCC-CSM2-MR | BCC, China | 1.125° × 1.125° | [25] |
CanESM5 | CCCma, Canada | 2.8125° × 2.8125° | [26] |
CMCC-ESM2 | CMCC, Italy | 0.9° × 1.25° | [27] |
INM-CM4-8 | INM, Russia | 2° × 1.5° | [28] |
INM-CM5-0 | INM, Russia | 2° × 1.5° | [29] |
IPSL-CM6A-LR | IPSL, France | 2.5° × 1.259° | [30] |
GFDL-ESM4 | GFDL, USA | 1.3° × 1° | [31] |
MPI-ESM1-2-HR | DKRZ, Germany | 1.875° × 1.875° | [32] |
MPI-ESM1-2-LR | MPI-M, Germany | 2.5° × 1.875° | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Zhong, C.; Jin, T.; Chen, J.; Zhang, Z.; Hu, Z.; Wu, K. Stronger Impact of Extreme Heat Event on Vegetation Temperature Sensitivity under Future Scenarios with High-Emission Intensity. Remote Sens. 2024, 16, 3708. https://doi.org/10.3390/rs16193708
Yang H, Zhong C, Jin T, Chen J, Zhang Z, Hu Z, Wu K. Stronger Impact of Extreme Heat Event on Vegetation Temperature Sensitivity under Future Scenarios with High-Emission Intensity. Remote Sensing. 2024; 16(19):3708. https://doi.org/10.3390/rs16193708
Chicago/Turabian StyleYang, Han, Chaohui Zhong, Tingyuan Jin, Jiahao Chen, Zijia Zhang, Zhongmin Hu, and Kai Wu. 2024. "Stronger Impact of Extreme Heat Event on Vegetation Temperature Sensitivity under Future Scenarios with High-Emission Intensity" Remote Sensing 16, no. 19: 3708. https://doi.org/10.3390/rs16193708
APA StyleYang, H., Zhong, C., Jin, T., Chen, J., Zhang, Z., Hu, Z., & Wu, K. (2024). Stronger Impact of Extreme Heat Event on Vegetation Temperature Sensitivity under Future Scenarios with High-Emission Intensity. Remote Sensing, 16(19), 3708. https://doi.org/10.3390/rs16193708