Coastal Vulnerability Index (CVI) Assessment: Evaluating Risks Associated with Human-Made Activities along the Limassol Coastline, Cyprus
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Land Use/Land Cover
3.2. Coastal Slope
3.3. Rate of Coastline Erosion
3.4. Mean Tidal Range
3.5. Mean Significant Wave Height
3.6. Coastal Elevation
3.7. Relative Sea-Level Rise
3.8. Coastal Geomorphology
3.9. Coastal Vulnerability Index (CVI)
Label | Factor | CVI Score | References | ||||
---|---|---|---|---|---|---|---|
Very Low (1) | Low (2) | Moderate (3) | High (4) | Very High (5) | |||
(a) | Coastal land cover | Tree cover | Shrubland, bare soil | Cropland, grassland | Herbaceous wetland | Built-up | [48,49,50] |
(b) | Coastal slope (%) | >12 | 8–12 | 4–8 | 2–4 | <2 | [51,52,53] |
(c) | Rate of coastline erosion (m/year) | >2 | +1.0:+2.0 | −1.1:+1.0 | −1.1:−2 | <−2.0 | [28,30] |
(d) | Mean tidal range (m) | >6.0 | 4.0–6.0 | 2.0–4.0 | 1.0–2.0 | <1.0 | [23,54] |
(e) | Mean significant wave height (m) | 0:<0.55 | 0.55–0.85 | 0.85–1.05 | 1.05–1.25 | >1.25 | [17,28] |
(f) | Coastal elevation (m) | ≥20 | 10–20 | 5–10 | 2–5 | 0–2 | [53,55] |
(g) | Relative sea-level rise (mm/year) | <1.8 | 1.8–2.5 | 2.5–3 | 3.0–3.4 | >3.4 | [28,56] |
(h) | Coastal geomorphology | Rocky cliffed coasts, fiords, fiards (Peak, ridge) | Medium cliffs, indented coasts (Shoulder, spur) | Low cliffs, glacial drift, alluvial plains (Flat, slope, footslope) | Cobble beaches, estuary, lagoon (Valley) | Barrier beaches, sand beaches, salt marsh, mudflats, deltas, mangroves, coral reefs (Hollow, pit) | [28,55] |
4. Results
4.1. Land Use/Land Cover
4.2. Coastal Slope
4.3. Rate of Coastline Erosion
4.4. Mean Tidal Range
4.5. Mean Significant Wave Height
4.6. Coastal Elevation
4.7. Relative Sea-Level Rise
4.8. Coastal Geomorphology
4.9. Coastal Vulnerability Index (CVI)
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Grid Cell | No. of Transects | LRR (m/Year) | NSM (m) | CVI | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | ||
A1 | 18 | −0.10 | 0.00 | 0.23 | −7.61 | −1.87 | 9.97 | 5.81 | 8.46 | 12.99 |
A2 | 33 | −0.33 | −0.09 | 0.11 | −19.95 | −7.16 | 4.27 | 3.35 | 16.17 | 25.98 |
A3 | 42 | −0.57 | −0.11 | 0.06 | −44.92 | −9.28 | 0.75 | 3.35 | 7.02 | 12.25 |
A4 | 31 | −0.22 | −0.02 | 1.03 | −16.07 | −4.33 | 55.47 | 5.81 | 19.05 | 37.50 |
A5 | 41 | −3.14 | −0.71 | 0.37 | −133.35 | −37.53 | 15.48 | 2.74 | 9.25 | 25.98 |
A6 | 35 | −3.02 | −0.59 | 0.16 | −130.40 | −28.55 | 7.72 | 3.35 | 10.05 | 29.05 |
A7 | 26 | −0.68 | −0.34 | 0.04 | −40.38 | −22.73 | −0.30 | 4.74 | 14.38 | 29.05 |
B1 | 34 | −0.18 | −0.04 | 0.07 | −15.83 | −4.61 | 3.40 | 2.74 | 6.20 | 11.62 |
B2 | 25 | −0.16 | −0.02 | 0.22 | −10.10 | −1.73 | 12.36 | 3.35 | 5.34 | 8.66 |
B3 | 31 | −0.18 | −0.07 | 0.04 | −13.39 | −6.94 | −0.72 | 2.74 | 5.80 | 8.22 |
B4 | 27 | −0.31 | −0.14 | −0.01 | −20.49 | −10.34 | −2.33 | 3.35 | 8.08 | 15.00 |
B5 | 16 | −0.16 | −0.01 | 0.20 | −9.57 | −3.73 | 3.80 | 2.74 | 12.73 | 30.62 |
B6 | 32 | −0.57 | −0.08 | 0.08 | −28.00 | −6.44 | 2.21 | 5.81 | 13.53 | 30.00 |
B7 | 46 | −0.31 | 0.13 | 0.33 | −20.91 | 4.13 | 14.77 | 5.81 | 21.87 | 33.54 |
B8 | 39 | −0.10 | 0.01 | 0.25 | −7.49 | −0.68 | 12.65 | 5.81 | 6.85 | 10.06 |
B9 | 23 | −0.40 | −0.31 | −0.12 | −22.48 | −17.36 | −7.76 | 15.00 | 22.34 | 30.00 |
B10 | 18 | −0.71 | −0.50 | −0.24 | −37.08 | −27.61 | −12.77 | 8.66 | 23.25 | 37.50 |
C1 | 12 | −0.18 | −0.03 | 0.09 | −13.39 | −2.62 | 6.02 | 2.74 | 4.84 | 6.12 |
C2 | 35 | −0.56 | −0.04 | 0.20 | −29.22 | −3.15 | 9.58 | 4.74 | 6.13 | 11.62 |
C3 | 28 | −0.25 | −0.06 | 0.02 | −12.21 | −3.78 | 1.75 | 2.74 | 4.95 | 10.61 |
C4 | 9 | −0.35 | −0.08 | 0.08 | −20.15 | −6.18 | 1.05 | 5.81 | 10.31 | 14.23 |
C5 | 24 | −0.71 | −0.29 | −0.07 | −37.08 | −17.55 | −5.57 | 15.00 | 24.75 | 37.50 |
C6 | 24 | −1.05 | −0.65 | −0.23 | −59.84 | −37.05 | −12.92 | 15.00 | 25.38 | 33.54 |
D1 | 35 | −0.94 | −0.18 | 0.09 | −54.65 | −12.61 | 3.62 | 9.49 | 25.48 | 33.54 |
E1 | 3 | −0.01 | 0.04 | 0.08 | −1.78 | 0.44 | 1.97 | 23.72 | 27.75 | 33.54 |
E2 | 33 | −0.55 | −0.18 | 0.06 | −41.99 | −18.34 | 1.14 | 13.69 | 23.34 | 30.00 |
F1 | 19 | −1.10 | −0.52 | −0.23 | −65.69 | −33.95 | −6.75 | 10.61 | 22.88 | 30.62 |
References
- Le Cozannet, G.; Garcin, M.; Bulteau, T.; Mirgon, C.; Yates, M.L.; Méndez, M.; Baills, A.; Idier, D.; Oliveros, C. An AHP-Derived Method for Mapping the Physical Vulnerability of Coastal Areas at Regional Scales. Nat. Hazards Earth Syst. Sci. 2013, 13, 1209–1227. [Google Scholar] [CrossRef]
- Boye, C.B.; Appeaning Addo, K.; Wiafe, G.; Dzigbodi-Adjimah, K. Spatio-Temporal Analyses of Shoreline Change in the Western Region of Ghana. J. Coast Conserv. 2018, 22, 769–776. [Google Scholar] [CrossRef]
- Thirumurthy, S.; Jayanthi, M.; Samynathan, M.; Duraisamy, M.; Kabiraj, S.; Anbazhahan, N. Multi-Criteria Coastal Environmental Vulnerability Assessment Using Analytic Hierarchy Process Based Uncertainty Analysis Integrated into GIS. J. Environ. Manag. 2022, 313, 114941. [Google Scholar] [CrossRef]
- Watkiss, P.; Troeltzsch, J.; McGlade, K.; Watkiss, M. The Economic Cost of Climate Change in Europe: Synthesis Report on COACCH Interim Results; COACCH: Lecce, Italy, 2019; 29p. [Google Scholar]
- Parthasarathy, K.S.S.; Deka, P.C. Remote Sensing and GIS Application in Assessment of Coastal Vulnerability and Shoreline Changes: A Review. ISH J. Hydraul. Eng. 2021, 27, 588–600. [Google Scholar] [CrossRef]
- McAllister, E.; Payo, A.; Novellino, A.; Dolphin, T.; Medina-Lopez, E. Multispectral Satellite Imagery and Machine Learning for the Extraction of Shoreline Indicators. Coast. Eng. 2022, 174, 104102. [Google Scholar] [CrossRef]
- Janga, B.; Asamani, G.; Sun, Z.; Cristea, N. A Review of Practical AI for Remote Sensing in Earth Sciences. Remote Sens. 2023, 15, 4112. [Google Scholar] [CrossRef]
- Apostolopoulos, D.; Nikolakopoulos, K. A Review and Meta-Analysis of Remote Sensing Data, GIS Methods, Materials and Indices Used for Monitoring the Coastline Evolution over the Last Twenty Years. Eur. J. Remote Sens. 2021, 54, 240–265. [Google Scholar] [CrossRef]
- Apostolopoulos, D.N.; Nikolakopoulos, K.G. Statistical Methods to Estimate the Accuracy of Diachronic Low-Resolution Satellite Instruments for Shoreline Monitoring. J.Appl. Remote Sens. 2021, 16, 012007. [Google Scholar] [CrossRef]
- Hamid, A.I.A.; Din, A.H.M.; Abdullah, N.M.; Yusof, N.; Hamid, M.R.A.; Shah, A.M. Exploring Space Geodetic Technology for Physical Coastal Vulnerability Index and Management Strategies: A Review. Ocean Coast Manag. 2021, 214, 105916. [Google Scholar] [CrossRef]
- Bera, R.; Maiti, R. An Assessment of Coastal Vulnerability Using Geospatial Techniques. Environ. Earth Sci. 2021, 80, 1–18. [Google Scholar] [CrossRef]
- Szlafsztein, C.; Sterr, H. Coastal Zone Management Tool: A GIS-Based Vulnerability Assessment to Natural Hazards. Mangrove Dyn. Manag. N. Braz. 2010, 211, 365–385. [Google Scholar]
- Yahia Meddah, R.; Ghodbani, T.; Senouci, R.; Rabehi, W.; Duarte, L.; Teodoro, A.C. Estimation of the Coastal Vulnerability Index Using Multi-Criteria Decision Making: The Coastal Social–Ecological System of Rachgoun, Western Algeria. Sustainability 2023, 15, 12838. [Google Scholar] [CrossRef]
- Talukder, B.; Hipel, K.W. Review and Selection of Multi-Criteria Decision Analysis (MCDA) Technique for Sustainability Assessment. In Energy Systems Evaluation (Volume 1) Sustainability Assessment; Springer: Cham, Switzerland, 2021; pp. 145–160. [Google Scholar]
- Tavana, M.; Soltanifar, M.; Santos-Arteaga, F.J. Analytical Hierarchy Process: Revolution and Evolution. Ann. Oper. Res. 2023, 326, 879–907. [Google Scholar] [CrossRef]
- Cruz-Ramírez, C.J.; Chávez, V.; Silva, R.; Muñoz-Perez, J.J.; Rivera-Arriaga, E. Coastal Management: A Review of Key Elements for Vulnerability Assessment. J. Mar. Sci. Eng. 2024, 12, 386. [Google Scholar] [CrossRef]
- Priya Rajan, S.M.; Nellayaputhenpeedika, M.; Tiwari, S.P.; Vengadasalam, R. Mapping and Analysis of the Physical Vulnerability of Coastal Tamil Nadu. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 1879–1895. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, X. Characteristics of Coastline Changes on Southeast Asia Islands from 2000 to 2015. Remote Sens. 2020, 12, 519. [Google Scholar] [CrossRef]
- ESRI Demographics Data. Available online: https://doc.arcgis.com/en/esri-demographics/latest/get-started/what-is-esri-demographics.htm (accessed on 19 August 2024).
- Geological Survey Department. Available online: https://www.moa.gov.cy/moa/gsd/gsd.nsf/dmlIndex_en/dmlIndex_en?opendocument (accessed on 19 August 2024).
- Polidorou, M.; Evelpidou, N. Geomorphology of the Coastal Sand Dune Fields and Their Association with the Palaeolandscape Evolution of Akrotiri Peninsula, Lemesos, Cyprus. Geosciences 2021, 11, 448. [Google Scholar] [CrossRef]
- Salomon, F.; Blue, L. Geoarchaeology of the Akrotiri Peninsula; University of Leicester: Leicester, UK, 2018. [Google Scholar]
- Thieler, E.R.; Hammar-Klose, E.S. National Assessment of Coastal Vulnerability to Sea-Level Rise: Preliminary Results for the U.S. Atlantic Coast; US Geological Survey: Reston, VA, USA, 1999.
- Pantusa, D.; D’Alessandro, F.; Riefolo, L.; Principato, F.; Tomasicchio, G.R. Application of a Coastal Vulnerability Index. A Case Study along the Apulian Coastline, Italy. Water 2018, 10, 1218. [Google Scholar] [CrossRef]
- Roukounis, C.N.; Tsihrintzis, V.A. Indices of Coastal Vulnerability to Climate Change: A Review. Environ. Process. 2022, 9, 29. [Google Scholar] [CrossRef]
- Hamid, A.I.A.; Din, A.H.M.; Yusof, N.; Abdullah, N.M.; Omar, A.H.; Abdul Khanan, M.F. Coastal vulnerability index development: A review. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-4/W16, 229–235. [Google Scholar] [CrossRef]
- Nourdi, N.F.; Raphael, O.; Achab, M.; Loudi, Y.; Rudant, J.-P.; Minette, T.E.; Kambia, P.; Claude, N.J.; Romaric, N. Integrated Assessment of Coastal Vulnerability in the Bonny Bay: A Combination of Traditional Methods (Simple and AHP) and Machine Learning Approach. Estuaries Coasts 2024. [Google Scholar] [CrossRef]
- Hammar-Klose, E.S.; Thieler, E.R. Coastal Vulnerability to Sea-Level Rise: A Preliminary Database for the US Atlantic, Pacific, and Gulf of Mexico Coasts; US Geological Survey: Reston, VA, USA, 2001; ISBN 0607965193.
- Korres, G.; Ravdas, M.; Zacharioudaki, A.; Denaxa, D.; Sotiropoulou, M. Mediterranean Sea Waves Analysis and Forecast (CMEMS MED-Waves, MedWAM3 System) (Version 1) [Data Set]; Copernicus Monitoring Environment Marine Service (CMEMS): Ramonville-Saint-Agne, France, 2021. [Google Scholar]
- Mohamed, S.A. Coastal Vulnerability Assessment Using GIS-Based Multicriteria Analysis of Alexandria-Northwestern Nile Delta, Egypt. J. Afr. Earth Sci. 2020, 163, 103751. [Google Scholar] [CrossRef]
- Pang, T.; Wang, X.; Nawaz, R.A.; Keefe, G.; Adekanmbi, T. Coastal Erosion and Climate Change: A Review on Coastal-Change Process and Modeling. Ambio 2023, 52, 2034–2052. [Google Scholar] [CrossRef] [PubMed]
- Wright, L.D.; Wu, W.; Morris, J. Coastal Erosion and Land Loss: Causes and Impacts BT. In Tomorrow’s Coasts: Complex and Impermanent; Wright, L.D., Nichols, C.R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 137–150. ISBN 978-3-319-75453-6. [Google Scholar]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S. ESA WorldCover 10 m 2021 V200. 2022. Available online: https://zenodo.org/records/7254221 (accessed on 19 August 2024).
- Komar, P.D. Beach-Slope Dependence of Longshore Currents. J. Waterw. Port Coast. Ocean. Div. 1979, 105, 460–464. [Google Scholar] [CrossRef]
- Lazarus, E.D.; Murray, A.B. Process Signatures in Regional Patterns of Shoreline Change on Annual to Decadal Time Scales. Geophys. Res. Lett. 2007, 34, 5. [Google Scholar] [CrossRef]
- Baig, M.R.I.; Ahmad, I.A.; Shahfahad; Tayyab, M.; Rahman, A. Analysis of Shoreline Changes in Vishakhapatnam Coastal Tract of Andhra Pradesh, India: An Application of Digital Shoreline Analysis System (DSAS). Ann. GIS 2020, 26, 361–376. [Google Scholar] [CrossRef]
- Jonah, F.E.; Mensah, E.A.; Edziyie, R.E.; Agbo, N.W.; Adjei-Boateng, D. Coastal Erosion in Ghana: Causes, Policies, and Management. Coast. Manag. 2016, 44, 116–130. [Google Scholar] [CrossRef]
- Kundu, K.; Mandal, J.K. Shoreline Change Detection and Future Prediction of Sundarban Delta Using Remote Sensing Data and Digital Shoreline Analysis System. J. Indian Soc. Remote Sens. 2024, 52, 485–503. [Google Scholar] [CrossRef]
- Sayre, R.; Butler, K.; Van Graafeiland, K.; Breyer, S.; Wright, D.; Frye, C.; Karagulle, D.; Martin, M.; Cress, J.; Allen, T. A Global Ecological Classification of Coastal Segment Units. Oceanography 2021, 34, 120–129. [Google Scholar] [CrossRef]
- Abuodha, P.A.O.; Woodroffe, C.D. Assessing Vulnerability to Sea-Level Rise Using a Coastal Sensitivity Index: A Case Study from Southeast Australia. J. Coast Conserv. 2010, 14, 189–205. [Google Scholar] [CrossRef]
- Kulp, S.A.; Strauss, B.H. New Elevation Data Triple Estimates of Global Vulnerability to Sea-Level Rise and Coastal Flooding. Nat. Commun. 2019, 10, 4844. [Google Scholar] [CrossRef] [PubMed]
- Gesch, D.B. Best Practices for Elevation-Based Assessments of Sea-Level Rise and Coastal Flooding Exposure. Front. Earth Sci. 2018, 6, 230. [Google Scholar] [CrossRef]
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global Warming and Coastal Erosion. Clim. Change 2004, 64, 41–58. [Google Scholar] [CrossRef]
- Cooper, J.A.G.; Pilkey, O.H. Sea-Level Rise and Shoreline Retreat: Time to Abandon the Bruun Rule. Glob. Planet Change 2004, 43, 157–171. [Google Scholar] [CrossRef]
- Rovere, A.; Stocchi, P.; Vacchi, M. Eustatic and Relative Sea Level Changes. Curr. Clim. Change Rep. 2016, 2, 221–231. [Google Scholar] [CrossRef]
- Ellison, J.; Strickland, P. Establishing Relative Sea Level Trends Where a Coast Lacks a Long Term Tide Gauge. Mitig. Adapt. Strateg. Glob. Change 2015, 20, 1211–1227. [Google Scholar] [CrossRef]
- Hastuti, A.W.; Nagai, M.; Suniada, K.I. Coastal Vulnerability Assessment of Bali Province, Indonesia Using Remote Sensing and GIS Approaches. Remote Sens. 2022, 14, 4409. [Google Scholar] [CrossRef]
- Balica, S.F.; Wright, N.G.; van der Meulen, F. A Flood Vulnerability Index for Coastal Cities and Its Use in Assessing Climate Change Impacts. Nat. Hazards 2012, 64, 73–105. [Google Scholar] [CrossRef]
- Calil, J.; Reguero, B.G.; Zamora, A.R.; Losada, I.J.; Méndez, F.J. Comparative Coastal Risk Index (CCRI): A Multidisciplinary Risk Index for Latin America and the Caribbean. PLoS ONE 2017, 12, e0187011. [Google Scholar] [CrossRef]
- Mani Murali, R.; Ankita, M.; Amrita, S.; Vethamony, P. Coastal Vulnerability Assessment of Puducherry Coast, India, Using the Analytical Hierarchical Process. Nat. Hazards Earth Syst. Sci. 2013, 13, 3291–3311. [Google Scholar] [CrossRef]
- Gaki-Papanastassiou, K.; Karymbalis, E.; Poulos, S.; Seni, A.; Zouva, C. Coastal Vulnerability Assessment to Sea-Level Rise Bαsed on Geomorphological and Oceanographical Parameters: The Case of Argolikos Gulf, Peloponnese, Greece*. Hell. J. Geosci. 2010, 45, 109–122. [Google Scholar]
- Karymbalis, E.; Chalkias, C.; Chalkias, G.; Grigoropoulou, E.; Manthos, G.; Ferentinou, M. Assessment of the Sensitivity of the Southern Coast of the Gulf of Corinth (Peloponnese, Greece) to Sea-Level Rise. Open Geosci. 2012, 4, 561–577. [Google Scholar] [CrossRef]
- Manno, G.; Azzara, G.; Lo Re, C.; Martinello, C.; Basile, M.; Rotigliano, E.; Ciraolo, G. An Approach for the Validation of a Coastal Erosion Vulnerability Index: An Application in Sicily. J. Mar. Sci. Eng. 2022, 11, 23. [Google Scholar] [CrossRef]
- Pantusa, D.; D’Alessandro, F.; Frega, F.; Francone, A.; Tomasicchio, G.R. Improvement of a Coastal Vulnerability Index and Its Application along the Calabria Coastline, Italy. Sci. Rep. 2022, 12, 21959. [Google Scholar]
- Tragaki, A.; Gallousi, C.; Karymbalis, E. Coastal Hazard Vulnerability Assessment Based on Geomorphic, Oceanographic and Demographic Parameters: The Case of the Peloponnese (Southern Greece). Land 2018, 7, 56. [Google Scholar] [CrossRef]
- Zampazas, G.; Karymbalis, E.; Chalkias, C. Assessment of the Sensitivity of Zakynthos Island (Ionian Sea, Western Greece) to Climate Change-Induced Coastal Hazards. Z. Geomorphol. 2022, 63, 183–200. [Google Scholar] [CrossRef]
- Natesan, U.; Parthasarathy, A.; Vishnunath, R.; Kumar, G.E.J.; Ferrer, V.A. Monitoring Longterm Shoreline Changes along Tamil Nadu, India Using Geospatial Techniques. Aquat. Procedia 2015, 4, 325–332. [Google Scholar] [CrossRef]
- Boumboulis, V.; Apostolopoulos, D.; Depountis, N.; Nikolakopoulos, K. The Importance of Geotechnical Evaluation and Shoreline Evolution in Coastal Vulnerability Index Calculations. J. Mar. Sci. Eng. 2021, 9, 423. [Google Scholar] [CrossRef]
- Hzami, A.; Heggy, E.; Amrouni, O.; Mahé, G.; Maanan, M.; Abdeljaouad, S. Alarming Coastal Vulnerability of the Deltaic and Sandy Beaches of North Africa. Sci. Rep. 2021, 11, 2320. [Google Scholar] [CrossRef]
- Rizzo, A.; Vandelli, V.; Buhagiar, G.; Micallef, A.S.; Soldati, M. Coastal Vulnerability Assessment along the North-Eastern Sector of Gozo Island (Malta, Mediterranean Sea). Water 2020, 12, 1405. [Google Scholar] [CrossRef]
- Ghoussein, Y.; Mhawej, M.; Jaffal, A.; Fadel, A.; El Hourany, R.; Faour, G. Vulnerability Assessment of the South-Lebanese Coast: A GIS-Based Approach. Ocean Coast Manag. 2018, 158, 56–63. [Google Scholar] [CrossRef]
- Chaib, W.; Guerfi, M.; Hemdane, Y. Evaluation of Coastal Vulnerability and Exposure to Erosion and Submersion Risks in Bou Ismail Bay (Algeria) Using the Coastal Risk Index (CRI). Arab. J. Geosci. 2020, 13, 420. [Google Scholar] [CrossRef]
- Gkaifyllia, A.; Sahtouris, S.; Ðorđević, N.; Papasarafianou, S.; Monioudi, I.; Tzoraki, O.; Hasiotis, T. Coastal Zone Vulnerability Analysis in East Mediterranean Basin: Greece, Cyprus and Montenegro. In Proceedings of the 18th International Conference on Environmental Science and Technology (CEST2023), Athens, Greece, 30 August–2 September 2023; Volume 18, p. 4. [Google Scholar]
- Déguénon, S.D.D.M.; Adade, R.; Teka, O.; Aheto, D.W.; Sinsin, B. Sea-Level Rise and Flood Mapping: A Review of Models for Coastal Management. Nat. Hazards 2024, 120, 2155–2178. [Google Scholar] [CrossRef]
- Soukissian, T.; Sotiriou, M.-A. Long-Term Variability of Wind Speed and Direction in the Mediterranean Basin. Wind 2022, 2, 513–534. [Google Scholar] [CrossRef]
- Evagorou, E.; Mettas, C.; Hadjimitsis, D. Satellite-Derived Bathymetry for Shallow Coastal Waters in Cyprus. In Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2021, Proceedings of the SPIE Remote Sensing, Online Only, Spain, 13–18 September 2021; Bostater, C.R., Neyt, X., Eds.; SPIE: Bellingham, WA, USA, 2021; p. 2. [Google Scholar]
- Saengsupavanich, C. Flaws in Coastal Erosion Vulnerability Assessment: Physical and Geomorphological Parameters. Arab. J. Geosci. 2022, 15, 57. [Google Scholar] [CrossRef]
- Konstantinou, A. Charalambous Mikaela Sketches in the Landscape—Zapalo 2017; Aristotle University of Thessaloniki: Thessaloniki, Greece, 2017. (In Greek) [Google Scholar]
- Toumazis, A.; Kyrou, K.; Iacovou, N.; Sophos, J.; Zervos, S.; Anastasakis, G. Pre-Reservoirs: A Sustainable Solution for Eroding Beaches/Deltas of Dammed Rivers. WIT Trans. Built Environ. 2008, 99, 179–188. [Google Scholar]
- Cleridou, N.; Benas, N.; Matsoukas, C.; Croke, B.; Vardavas, I. Water Resources of Cyprus under Changing Climatic Conditions: Modelling Approach, Validation and Limitations. Environ. Model. Softw. 2014, 60, 202–218. [Google Scholar] [CrossRef]
- Crawford, A. The Changing Maritime Landscape of the Akrotiri Peninsula (1650 BC–AD 650). Master’s Thesis, University of Southampton, Southampton, UK, 2016. [Google Scholar]
Label | Factor | Processing Steps | Spatial Resolution | Time Period | Data and Sources |
---|---|---|---|---|---|
(a) | Land cover |
| 10 m | 2021 |
|
(b) | Coastal slope (%) |
| 5 m | - |
|
(c) | Rate of coastline erosion (m/year) |
| <0.15 m | Shorelines from 1963, 1993, 2003, 2008, 2009, and 2019 |
|
(d) | Mean tidal range (m) |
| 30 m | 2014 |
|
(e) | Mean significant wave height (m) |
| 0.2 deg~22.2 km | 1993–2023 |
|
(f) | Coastal elevation (m) |
| 5 m | - |
|
(g) | Relative sea-level rise (mm/year) |
| ~4 km | 1993–2012 |
|
(h) | Coastal geomorphology |
| 5 m | - |
|
Quartile Range | CVI |
---|---|
0–20% | 2.73–5.8 |
20–40% | 5.8–10.06 |
40–60% | 10.06–19.36 |
60–80% | 19.36–25.98 |
80–100% | 25.98–37.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theocharidis, C.; Doukanari, M.; Kalogirou, E.; Christofi, D.; Mettas, C.; Kontoes, C.; Hadjimitsis, D.; Argyriou, A.V.; Eliades, M. Coastal Vulnerability Index (CVI) Assessment: Evaluating Risks Associated with Human-Made Activities along the Limassol Coastline, Cyprus. Remote Sens. 2024, 16, 3688. https://doi.org/10.3390/rs16193688
Theocharidis C, Doukanari M, Kalogirou E, Christofi D, Mettas C, Kontoes C, Hadjimitsis D, Argyriou AV, Eliades M. Coastal Vulnerability Index (CVI) Assessment: Evaluating Risks Associated with Human-Made Activities along the Limassol Coastline, Cyprus. Remote Sensing. 2024; 16(19):3688. https://doi.org/10.3390/rs16193688
Chicago/Turabian StyleTheocharidis, Christos, Marina Doukanari, Eleftheria Kalogirou, Demetris Christofi, Christodoulos Mettas, Charalampos Kontoes, Diofantos Hadjimitsis, Athanasios V. Argyriou, and Marinos Eliades. 2024. "Coastal Vulnerability Index (CVI) Assessment: Evaluating Risks Associated with Human-Made Activities along the Limassol Coastline, Cyprus" Remote Sensing 16, no. 19: 3688. https://doi.org/10.3390/rs16193688
APA StyleTheocharidis, C., Doukanari, M., Kalogirou, E., Christofi, D., Mettas, C., Kontoes, C., Hadjimitsis, D., Argyriou, A. V., & Eliades, M. (2024). Coastal Vulnerability Index (CVI) Assessment: Evaluating Risks Associated with Human-Made Activities along the Limassol Coastline, Cyprus. Remote Sensing, 16(19), 3688. https://doi.org/10.3390/rs16193688