Extraction of Alteration Information from Hyperspectral Data Base on Kernel Extreme Learning Machine
Abstract
:1. Introduction
2. Geological Setting of the Study Area
3. Data and Methods
3.1. Data Characteristic
3.2. Data Preprocessing
3.3. Spectral Angle Matching
3.4. Kernel Based Extreme Learning Machine
3.4.1. Principles of Kernel Extreme Learning Machine
3.4.2. Sparrow Search Algorithm
4. Alteration Information Extraction Experiment
4.1. Mineralized Sample Selection Based on Spectral Angle Matching
4.1.1. Spectral Endmember Identification
4.1.2. Extraction of Alteration Mineral Information Based on SAM
4.2. Extraction of Alteration Mineral Information Based on KELM
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, X.L.; Reed, I.S.; Stocker, A.D. Comparative performance analysis of adaptive multispectral detectors. IEEE Trans. Signal Process. 1993, 41, 2639–2656. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, M.; Lin, S.; Zhou, K.; Zhao, S.; Wang, H. Two-Stream Isolation Forest Based on Deep Features for Hyperspectral Anomaly Detection. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5504205. [Google Scholar] [CrossRef]
- Huo, Y.; Cheng, X.; Lin, S.; Zhang, M.; Wang, H. Memory-Augmented Autoencoder with Adaptive Reconstruction and Sample Attribution Mining for Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5518118. [Google Scholar] [CrossRef]
- Cheng, X.; Huo, Y.; Lin, S.; Dong, Y.; Zhao, S.; Zhang, M.; Wang, H. Deep feature aggregation network for hyperspectral anomaly detection. IEEE Trans. Instrum. Meas. 2024, 1. [Google Scholar] [CrossRef]
- Govil, H.; Gill, N.; Rajendran, S.; Santosh, M.; Kumar, S. Identification of new base metal mineralization in Kumaon Himalaya, India, using hyperspectral remote sensing and hydrothermal alteration. Ore Geol. Rev. 2018, 92, 271–283. [Google Scholar] [CrossRef]
- Bai, Y.; Lv, F.; Su, H.; Wu, Y.; Luan, Z. Review of Hyperspectral Remote Sensing Altered Mineral Information Extraction. Remote Sens. Inf. 2023, 38, 1–10. [Google Scholar]
- Zhang, C.; Ye, F.; Xu, Q.; Liu, H.; Meng, S. MTMF-based Altered Mineral Information for SASI hyperspectral images. Geol. Rev. 2015, 61, 428–429. [Google Scholar]
- Lian, C.; Yao, F.; Chen, M.; Ma, K.; Wang, H. The Study on Alteration Information Extraction of GF-5 Hyperspectral Data in Vegetation Coverage Area: A Case Study of the Yushui Copper Deposit in Guangdong Province. Geoscience 2020, 34, 680–686. [Google Scholar]
- Hecker, C.; van der Meijde, M.; van der Werff, H.; van der Meer, F.D. Assessing the Influence of Reference Spectra on Synthetic SAM Classification Results. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4162–4172. [Google Scholar] [CrossRef]
- Wu, Y.; Sheng, D.; Zhou, Y. Remote sensing mineralization alteration information extraction based on PCA and SVM optimized by cuckoo algorithm. J. Remote Sens. 2018, 22, 810–821. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, K. Random Forest-Based Mineralization Prediction of the Lala-Type Cu Deposit in the Huili Area, Sichuan Province. Geol. Explor. 2020, 56, 239–252. [Google Scholar]
- Luo, J.; Zhou, Z.; Zou, T.; Liu, B.; Gong, H. Construction of deep prospecting prediction model based on PSO-CNN. J. Chengdu Univ. Technol. Sci. Technol. Ed. 2022, 49, 697–708. [Google Scholar]
- Abdelkader, M.A.; Watanabe, Y.; Shebl, A.; El-Dokouny, H.A.; Dawoud, M.; Csamer, A. Effective delineation of rare metal-bearing granites from remote sensing data using machine learning methods: A case study from the Umm Naggat Area, Central Eastern Desert, Egypt. Ore Geol. Rev. 2022, 150, 105184. [Google Scholar] [CrossRef]
- Ni, J.; Suo, L.; Liu, H.; Rui, Z. Identification of Corn Varieties Based on Northern Goshawk Optimization Kernel Based Extreme Learning Machine. Spectrosc. Spectr. Anal. 2024, 44, 1584–1590. [Google Scholar]
- Zhang, Y.; Chen, Y.; Zhao, S. A Key Data Query Model for Introducing Neural Network Extreme Learning Machine. Comput. Simul. 2024, 41, 519–523. [Google Scholar]
- Xie, B.; Ma, J.; Zhou, Y.; Han, X.; Chen, J.; Zhu, S.; Yang, M.; Huang, F. Identification of Citri Grandis Fructus Immaturus Based on Hyperspectral Combined With HHO-KELM. Spectrosc. Spectr. Anal. 2024, 44, 1494–1500. [Google Scholar] [CrossRef]
- Wang, R.; Xu, X.; Lu, J. Short-term Wind Power Prediction Based on SSA Optimized Variational Mode Decomposition and Hybrid Kernel Extreme Learning Machine. Inf. Control. 2023, 52, 444–454. [Google Scholar]
- Feng, L.; Zhang, J.; Zhan, Y. Combustion optimization of utility boilers based on ISSA and KELM. Therm. Power Gener. 2022, 51, 96–102. [Google Scholar]
- He, Z.; He, B. Weight Spectral Angle Mapper (WSAM) Method for Hyperspectral Mineral Mapping. Spectrosc. Spectr. Anal. 2011, 31, 2200–2204. [Google Scholar] [CrossRef]
- Chen, X.; Huang, W.; Zou, Y.; Liang, H.; Zhang, J.; Zhang, Y. Zircon U-Pb geochronology and geochemistry of ore-bearing porphyries in the southern Yulong porphyry copper belt, and factors resulting in the differences in scale of mineralization between the southern and northern Yulong porphyry copper belt. Acta Petrol. Sin. 2016, 32, 2522–2534. [Google Scholar]
- Sun, Y.; Liu, J.; Zhai, D.; Liu, Z.; Zhang, F.; Zhao, Y.; Liu, P.; Wang, Z. Alteration Minerals Mapping and Identification of Gold Mineralization Belt Based on ZY1-02D Hyper spectral Data in the Toudiaoquan-Nandatan Area, Gansu Province. Geol. Explor. 2022, 58, 399–409. [Google Scholar]
- Su, H. Dimensionality reduction for hyperspectral remote sensing: Advances, challenges, and prospects. Natl. Remote Sens. Bull. 2022, 26, 1504–1529. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Tian, Q.; Pan, W.; Li, Y.; Zhang, C.; Chen, X.; Yu, Z. Extraction of alteration information from hyperspectral core imaging based on wavelet packet transform and weight spectral angle mapper. Remote Sens. Land Resour. 2019, 31, 41–46. [Google Scholar]
- Wang, Z.; Zhang, H. A Classification Model for Remote Sensing lmages Based on SAM and Decision Tree. J. Wuhan Univ. Sci. Technol. 2006, 478–481. [Google Scholar]
- Huang, G.; Zhou, H.; Ding, X.; Zhang, R. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans. Syst. Man Cybern. Part B—Cybern. 2012, 42, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control. Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, K.; He, Z.; Yin, Z.; Wang, S. Semi-Supervised Ensemble Classifier with Improved Sparrow Search Algorithm and Its Application in Pulmonary Nodule Detection. Math. Probl. Eng. 2021, 2021, 6622935. [Google Scholar] [CrossRef]
- Qiang, Y.; Zhi, Z.; Qin, Z.; Li, W. Decomposition Technique of Mixed Pixel Used in Monitoring and Evaluation of Water Quality Based on ASTER. Remote Sens. Inf. 2011, 28, 20–25+85. [Google Scholar]
Satellite Sensor | Parameter | ||
---|---|---|---|
AHSI | Spectral range/μm | 0.40~2.50, 166 spectral bands | |
Spatial resolution/m | 30 | ||
Spectral resolution/nm | VNIR | 10 nm | |
SWIR | 20 nm | ||
Swath width/km | 60 |
Class | Number of Training Images |
---|---|
Calcite | 56 |
Dolomite | 130 |
Muscovite | 30 |
Illite | 231 |
Class | Accuracy | Recall | F1 |
---|---|---|---|
Calcite | 0.86 | 0.83 | 0.84 |
Dolomite | 0.95 | 0.89 | 0.92 |
Muscovite | 0.97 | 0.96 | 0.96 |
Illite | 0.83 | 0.78 | 0.80 |
Class | SSA-KELM | MTMF |
---|---|---|
Calcite | 0.80 | 0.60 |
Dolomite | 0.60 | 0.60 |
Muscovite | 0.80 | 0.80 |
Illite | 0.80 | 0.40 |
Class | KELM | RF | SVM | |||
---|---|---|---|---|---|---|
PA | UA | PA | UA | PA | UA | |
Calcite | 92.38 | 93.31 | 72.20 | 81.04 | 53.05 | 66.77 |
Dolomite | 78.42 | 79.23 | 92.67 | 64.06 | 79.14 | 79.23 |
Muscovite | 95.58 | 97.42 | 62.57 | 99.60 | 99.36 | 98.12 |
Illite | 89.26 | 88.14 | 90.04 | 93.00 | 82.71 | 79.14 |
OA | 90.54 | 79.26 | 87.50 |
Class | SSA | PSO | Grid Search |
---|---|---|---|
Calcite | 94.66 | 85.00 | 85.74 |
Dolomite | 93.75 | 84.60 | 82.59 |
Muscovite | 98.24 | 97.70 | 97.26 |
Illite | 98.55 | 91.20 | 94.92 |
OA | 95.47 | 90.80 | 89.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Tian, S. Extraction of Alteration Information from Hyperspectral Data Base on Kernel Extreme Learning Machine. Remote Sens. 2024, 16, 3646. https://doi.org/10.3390/rs16193646
Yang S, Tian S. Extraction of Alteration Information from Hyperspectral Data Base on Kernel Extreme Learning Machine. Remote Sensing. 2024; 16(19):3646. https://doi.org/10.3390/rs16193646
Chicago/Turabian StyleYang, Shuhan, and Shufang Tian. 2024. "Extraction of Alteration Information from Hyperspectral Data Base on Kernel Extreme Learning Machine" Remote Sensing 16, no. 19: 3646. https://doi.org/10.3390/rs16193646
APA StyleYang, S., & Tian, S. (2024). Extraction of Alteration Information from Hyperspectral Data Base on Kernel Extreme Learning Machine. Remote Sensing, 16(19), 3646. https://doi.org/10.3390/rs16193646