Exploration of the Urbanization Process and Its Impact on Vegetation in 125 Resource-Based Cities in China and Comparison with Other Cities
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methodology
3.1. GCUB Generation Method
3.2. Vegetation Coverage Indicator
3.3. Quantification of Urban Expansion and Vegetation Cover Change
3.4. Resource Dependency
4. Results
4.1. Accuracy Analysis of GCUB
4.2. Spatiotemporal Characteristics of RBCs’ Urban Entities
4.3. Vegetation Cover Response to Urban Expansion
4.4. Resource Dependence Analysis
5. Discussion
5.1. The Relationship between the Resource Curse, Urban Expansion, and Urban Greening
5.2. Research Shortcomings and Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perera, A.; Javanroodi, K.; Mauree, D.; Nik, V.; Florio, P.; Hong, T.; Chen, D. Challenges resulting from urban density and climate change for the EU energy transition. Nat. Energy 2023, 8, 397–412. [Google Scholar] [CrossRef]
- Zhang, X.Q. The trends, promises and challenges of urbanisation in the world. Habitat. Int. 2016, 54, 241–252. [Google Scholar] [CrossRef]
- Antonio Chaparro Torres, R.; Wang, J.; Zhang, J.; Liu, L.; Lan, Y. Temporal analysis of land degradation and urban expansion in central Yunnan Province using remote sensing for supporting sustainable development goals 11/15. Ecol. Indic. 2024, 163, 112058. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, W.; Qian, Y.; Han, L.; Pickett, S.; Wang, J.; Li, W.; Ouyang, Z. Beyond city expansion: Multi-scale environmental impacts of urban megaregion formation in China. Natl. Sci. Rev. 2022, 9, nwab107. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Hu, Z.; Wang, P.; Yan, Z.; Li, G.; Zhang, Y.; Zhou, T. Spatio-temporal evolution and optimization analysis of ecosystem service value-A case study of coal resource-based city group in Shandong, China. J. Clean. Prod. 2022, 363, 132602. [Google Scholar] [CrossRef]
- Badeeb, R.A.; Lean, H.H.; Clark, J. The evolution of the natural resource curse thesis: A critical literature survey. Resour. Policy 2017, 51, 123–134. [Google Scholar] [CrossRef]
- van der Ploeg, F. Natural Resources: Curse or Blessing? J. Econ. Lit. 2011, 49, 366–420. [Google Scholar] [CrossRef]
- Cao, Y.; Kong, L.; Zhang, L.; Ouyang, Z. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015. Land Use Policy 2021, 108, 105536. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Long, R.; Sun, Q.; Jiang, S.; Liu, B. Has the Sustainable Development Planning Policy Promoted the Green Transformation in China’s Resource-based Cities. Resour. Conserv. Recycl. 2022, 180, 106181. [Google Scholar] [CrossRef]
- Wen, S.; Jia, Z. Resource curse or resource blessing: Perspective on the nonlinear and regional relationships in China. J. Clean. Prod. 2022, 371, 133491. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, X.; Wang, M. Resource curse and green economic growth. Resour. Policy 2021, 74, 102325. [Google Scholar] [CrossRef]
- Liu, Q.; Li, F.; Peng, L.; Dong, S.; Yang, Y.; Cheng, H. Multiple evaluation framework of sustainability development in resource-based cities: A case study of China. Ecol. Indic. 2024, 158, 111338. [Google Scholar] [CrossRef]
- Li, W.; Cai, Z.; Jin, L. Urban green land use efficiency of resource-based cities in China: Multidimensional measurements, spatial-temporal changes, and driving factors. Sust. Cities Soc. 2024, 104, 105299. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Shen, C.; Li, W. End of rope or phoenix nirvana? Exploring the evolutionary paths of coal resource-based cities in China. Cities 2024, 154, 105382. [Google Scholar] [CrossRef]
- Alvioli, M. Administrative boundaries and urban areas in Italy: A perspective from scaling laws. Landsc. Urban. Plan. 2020, 204, 103906. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ning, X.; Zhang, H.; Liu, Y. Urban expansion analysis of China’s prefecture level city from 2000 to 2016 using high-precision urban boundary. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019), Yokohama, Japan, 28 July–2 August 2019; pp. 7514–7517. [Google Scholar]
- Richards, D.; Belcher, R. Global Changes in Urban Vegetation Cover. Remote Sens. 2020, 12, 23. [Google Scholar] [CrossRef]
- Harig, O.; Hecht, R.; Burghardt, D.; Meinel, G. Automatic Delineation of Urban Growth Boundaries Based on Topographic Data Using Germany as a Case Study. ISPRS Int. J. Geo-Inf. 2021, 10, 353. [Google Scholar] [CrossRef]
- He, X.; Zhu, Y.; Chang, P.; Zhou, C. Using Tencent User Location Data to Modify Night-Time Light Data for Delineating Urban Agglomeration Boundaries. Front. Environ. Sci. 2022, 10, 860365. [Google Scholar] [CrossRef]
- Hu, S.; Tong, L.; Frazier, A.E.; Liu, Y. Urban boundary extraction and sprawl analysis using Landsat images: A case study in Wuhan, China. Habitat. Int. 2015, 47, 183–195. [Google Scholar] [CrossRef]
- Li, J.; Huang, X. Impact of land-cover layout on particulate matter 2.5 in urban areas of China. Int. J. Digit. Earth 2020, 13, 474–486. [Google Scholar] [CrossRef]
- Yao, L. Assessment of long time-series greening signatures across the urban–rural gradient in Chinese cities. Ecol. Indic. 2024, 160, 111826. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Florczyk, A.; Melchiorri, M.; Corbane, C.; Schiavina, M.; Pesaresi, M.; Politis, P. Description of the GHS Urban Centre Database 2015; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Li, X.; Gong, P.; Zhou, Y.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Xiao, Y.; Xu, B.; Yang, J.; et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. 2020, 15, 094044. [Google Scholar] [CrossRef]
- Hafner, S.; Ban, Y.; Nascetti, A. Unsupervised domain adaptation for global urban extraction using Sentinel-1 SAR and Sentinel-2 MSI data. Remote Sens. Environ. 2022, 280, 113192. [Google Scholar] [CrossRef]
- Pesaresi, M.; Maffenini, L.; Freire, S.; Politis, P.; Schiavina, M. GHS-SDATA R2023A—GHS Supporting Data; Joint Research Centre (JRC): Brussels, Belgium, 2023. [Google Scholar]
- Uhl, J.H.; Leyk, S. A scale-sensitive framework for the spatially explicit accuracy assessment of binary built-up surface layers. Remote Sens. Environ. 2022, 279, 113117. [Google Scholar] [CrossRef]
- Leyk, S.; Uhl, J.; Balk, D.; Jones, B. Assessing the accuracy of multi-temporal built-up land layers across rural-urban trajectories in the United States. Remote Sens. Environ. 2018, 204, 898–917. [Google Scholar] [CrossRef] [PubMed]
- Freire, S.; Schiavina, M.; Florczyk, A.; MacManus, K.; Pesaresi, M.; Corbane, C.; Borkovska, O.; Mills, J.; Pistolesi, L.; Squires, J.; et al. Enhanced data and methods for improving open and free global population grids: Putting ‘leaving no one behind’ into practice. Int. J. Digit. Earth 2020, 13, 61–77. [Google Scholar] [CrossRef]
- Singh, N.; Dey, S.; Knibbs, L. Spatio-temporal patterns of tropospheric NO2 over India during 2005–2019. Atmos. Pollut. Res 2023, 14, 101692. [Google Scholar] [CrossRef]
- Vermote, E.; Wolfe, R. MOD09GA MODIS/Terra Surface Reflectance Daily L2G Global 1km and 500m SIN Grid V006; NASA Eosdis Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2015. [Google Scholar]
- Shi, K.; Wu, Y.; Liu, S.; Chen, Z.; Huang, C.; Cui, Y. Mapping and evaluating global urban entities (2000–2020): A novel perspective to delineate urban entities based on consistent nighttime light data. Gisci. Remote Sens. 2023, 60, 2161199. [Google Scholar] [CrossRef]
- Xu, Z.; Jiao, L.; Lan, T.; Zhou, Z.; Cui, H.; Li, C.; Xu, G.; Liu, Y. Mapping hierarchical urban boundaries for global urban settlements. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102480. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Yao, S.; Wu, J.; Xia, H. How Good Are Global Layers for Mapping Rural Settlements? Evidence from China. Land. 2022, 11, 1308. [Google Scholar] [CrossRef]
- Uhl, J.H.; Leyk, S. Spatially explicit accuracy assessment of deep learning-based, fine-resolution built-up land data in the United States. Int. J. Appl. Earth Obs. Geoinf. 2023, 123, 103469. [Google Scholar] [CrossRef] [PubMed]
- Corbane, C.; Syrris, V.; Sabo, F.; Politis, P.; Melchiorri, M.; Pesaresi, M.; Soille, P.; Kemper, T. Convolutional neural networks for global human settlements mapping from Sentinel-2 satellite imagery. Neural Comput. Appl. 2021, 33, 6697–6720. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Zhang, L.; Liu, S. Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sens. Environ. 2016, 176, 272–281. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef]
- Zhou, Y.; Shi, Y. Toward establishing the concept of physical urban area in China. Acta Geogr. Sin. 1995, 4, 289–301. [Google Scholar]
- Dijkstra, L.; Brandmüller, T.; Kemper, T.; Khan, A.A.; Veneri, P. Applying the Degree of Urbanisation: A Methodological Manual to Define Cities, Towns and Rural Areas for International Comparisons; OECD: Paris, France, 2021. [Google Scholar]
- Wang, R.; Han, R.; Chen, Y. Key technical issues in the application of the code of practice for standard urban built-up area delineation. City Plan. Rev. 2024, 1–7. [Google Scholar]
- Wu, C.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sens. Environ. 2003, 84, 493–505. [Google Scholar] [CrossRef]
- Su, Y.; Wang, D.; Zhao, S.; Shi, J.; Shi, Y.; Wei, D. Examining long-term natural vegetation dynamics in the Aral Sea Basin applying the linear spectral mixture model. PeerJ 2021, 9, e10747. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, A.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.; Muñoz-Marí, J.; García-Haro, F.; Guanter, L.; et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021, 7, eabc7447. [Google Scholar] [CrossRef]
- Wu, S.; Chen, B.; Webster, C.; Xu, B.; Gong, P. Improved human greenspace exposure equality during 21st century urbanization. Nat. Commun. 2023, 14, 6460. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Hu, Y. Classification of resource-based cities from the perspective of resource decoupling. Resour. Sci. 2019, 41, 2172–2181. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, W.; Chen, J.; Gao, J.; Li, R.; Ren, J.; Zhu, X. A Self-Supervised Learning Approach for Extracting China Physical Urban Boundaries Based on Multi-Source Data. Remote Sens. 2023, 15, 3189. [Google Scholar] [CrossRef]
- Zhang, X.; Du, S.; Zhou, Y.; Xu, Y. Extracting physical urban areas of 81 major Chinese cities from high-resolution land uses. Cities 2022, 131, 104061. [Google Scholar] [CrossRef]
- Yin, C.; Meng, F.; Yang, X.; Yang, F.; Fu, P.; Yao, G.; Chen, R. Spatio-temporal evolution of urban built-up areas and analysis of driving factors—A comparison of typical cities in north and south China. Land. Use Policy 2022, 117, 106114. [Google Scholar] [CrossRef]
- He, T.; Song, H. A novel approach to assess the urban land-use efficiency of 767 resource-based cities in China. Ecol. Indic. 2023, 151, 110298. [Google Scholar] [CrossRef]
- Alexander Wandl, D.I.; Nadin, V.; Zonneveld, W.; Rooij, R. Beyond urban–rural classifications: Characterising and mapping territories-in-between across Europe. Landsc. Urban. Plan. 2014, 130, 50–63. [Google Scholar] [CrossRef]
- Urso, G. Metropolisation and the challenge of rural-urban dichotomies. Urban. Geogr. 2021, 42, 37–57. [Google Scholar] [CrossRef]
- Han, J.; Hu, Z.; Sajadi, P.; Li, S.; Zhang, Y.; Cui, R.; Pilla, F. Evaluating urban development in China’s resource-based cities: A new perspective using nighttime light data. Int. J. Digit. Earth 2024, 17, 2349747. [Google Scholar] [CrossRef]
- He, T.; Song, H.; Chen, W. Recognizing the transformation characteristics of resource-based cities using night-time light remote sensing data: Evidence from 126 cities in China. Resour. Policy 2023, 85, 104013. [Google Scholar] [CrossRef]
Dataset | GHS-SOMD [27] | GUE [33] | GUB [25] | GHUB [34] |
---|---|---|---|---|
Resolution | 1 km | 500 m | 30 m | 30 m |
Years Covered | 1975–2020 | 2000–2020 | 1990–2020 | 2018 |
Area Covered | Global | Global | Global | Global |
Data Source | GHS-BUILT-S and GHS-POP | Nighttime light data | Impervious surface data | Impervious surface data |
GCUB | Urban | Non-Urban | PA | GHS-SMOD | Urban | Non-Urban | PA |
Urban | 615 | 45 | 93% | Urban | 564 | 96 | 85% |
Non-Urban | 132 | 1208 | Non-Urban | 190 | 1150 | ||
UA | 82% | UA | 75% | ||||
OA | 91% | F-score | 87% | OA | 86% | F-score | 80% |
GUE | Urban | Non-Urban | PA | GUB | Urban | Non-Urban | PA |
Urban | 489 | 171 | 74% | Urban | 647 | 13 | 98% |
Non-Urban | 110 | 1230 | Non-Urban | 487 | 853 | ||
UA | 82% | UA | 57% | ||||
OA | 86% | F-score | 78% | OA | 75% | F-score | 72% |
GHUB | Urban | Non-Urban | PA | ||||
Urban | 611 | 49 | 93% | ||||
Non-Urban | 379 | 961 | |||||
UA | 62% | ||||||
OA | 79% | F-score | 74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Sajadi, P.; Hu, Z.; Zhou, K.; Li, S.; Feng, Z.; Pilla, F. Exploration of the Urbanization Process and Its Impact on Vegetation in 125 Resource-Based Cities in China and Comparison with Other Cities. Remote Sens. 2024, 16, 3640. https://doi.org/10.3390/rs16193640
Han J, Sajadi P, Hu Z, Zhou K, Li S, Feng Z, Pilla F. Exploration of the Urbanization Process and Its Impact on Vegetation in 125 Resource-Based Cities in China and Comparison with Other Cities. Remote Sensing. 2024; 16(19):3640. https://doi.org/10.3390/rs16193640
Chicago/Turabian StyleHan, Jiazheng, Payam Sajadi, Zhenqi Hu, Kaiping Zhou, Shijin Li, Zhanjie Feng, and Francesco Pilla. 2024. "Exploration of the Urbanization Process and Its Impact on Vegetation in 125 Resource-Based Cities in China and Comparison with Other Cities" Remote Sensing 16, no. 19: 3640. https://doi.org/10.3390/rs16193640
APA StyleHan, J., Sajadi, P., Hu, Z., Zhou, K., Li, S., Feng, Z., & Pilla, F. (2024). Exploration of the Urbanization Process and Its Impact on Vegetation in 125 Resource-Based Cities in China and Comparison with Other Cities. Remote Sensing, 16(19), 3640. https://doi.org/10.3390/rs16193640